
Chapter 7
Step 5: Extracting Segments

7.1 Grouping Consumers

Data-driven market segmentation analysis is exploratory by nature. Consumer data
sets are typically not well structured. Consumers come in all shapes and forms; a
two-dimensional plot of consumers’ product preferences typically does not contain
clear groups of consumers. Rather, consumer preferences are spread across the
entire plot. The combination of exploratory methods and unstructured consumer
data means that results from any method used to extract market segments from such
data will strongly depend on the assumptions made on the structure of the segments
implied by the method. The result of a market segmentation analysis, therefore,
is determined as much by the underlying data as it is by the extraction algorithm
chosen. Segmentation methods shape the segmentation solution.

Many segmentation methods used to extract market segments are taken from
the field of cluster analysis. In that case, market segments correspond to clusters.
As pointed out by Hennig and Liao (2013), selecting a suitable clustering method
requires matching the data analytic features of the resulting clustering with the
context-dependent requirements that are desired by the researcher (p. 315). It is,
therefore, important to explore market segmentation solutions derived from a range
of different clustering methods. It is also important to understand how different
algorithms impose structure on the extracted segments.

One of the most illustrative examples of how algorithms impose structure is
shown in Fig. 7.1. In this figure, the same data set – containing two spiralling
segments – is segmented using two different algorithms, and two different numbers
of segments. The top row in Fig. 7.1 shows the market segments obtained when
running k-means cluster analysis (for details see Sect. 7.2.3) with 2 (left) and 8
segments (right), respectively. As can be seen, k-means cluster analysis fails to
identify the naturally existing spiral-shaped segments in the data. This is because
k-means cluster analysis aims at finding compact clusters covering a similar range
in all dimensions.
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k−means 2 cluster k−means 8 cluster

single linkage 2 cluster single linkage 8 cluster

Fig. 7.1 k-means and single linkage hierarchical clustering of two spirals

The bottom row in Fig. 7.1 shows the market segments obtained from single
linkage hierarchical clustering (for details see Sect. 7.2.2). This algorithm correctly
identifies the existing two spiralling segments, even if the incorrect number of
segments is specified up front. This is because the single linkage method constructs
snake-shaped clusters. When asked to return too many (8) segments, outliers are
defined as micro-segments, but the two main spirals are still correctly identified. k-
means cluster analysis fails to identify the spirals because it is designed to construct
round, equally sized clusters. As a consequence, the k-means algorithm ignores the
spiral structure and, instead, places consumers in the same market segments if they
are located close to one another (in Euclidean space), irrespective of the spiral they
belong to.

This illustration gives the impression that single linkage clustering is much
more powerful, and should be preferred over other approaches of extracting market
segments from data. This is not the case. This particular data set was constructed
specifically to play to the strengths of the single linkage algorithm allowing single
linkage to identify the grouping corresponding to the spirals, and highlighting
how critical the interaction between data and algorithm is. There is no single best
algorithm for all data sets. If consumer data is well-structured, and well-separated,
distinct market segments exist, tendencies of different algorithms matter less. If,
however, data is not well-structured, the tendency of the algorithm influences the
solution substantially. In such situations, the algorithm will impose a structure that
suits the objective function of the algorithm.
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Table 7.1 Data set and segment characteristics informing extraction algorithm selection

Data set characteristics: – Size (number of consumers, number of segmentation variables)

– Scale level of segmentation variables (nominal, ordinal, metric, mixed)

– Special structure, additional information

Segment characteristics: – Similarities of consumers in the same segment

– Differences between consumers from different segments

– Number and size of segments

The aim of this chapter is to provide an overview of the most popular extraction
methods used in market segmentation, and point out their specific tendencies of
imposing structure on the extracted segments. None of these methods outperform
other methods in all situations. Rather, each method has advantages and disadvan-
tages.

So-called distance-based methods are described first. Distance-based methods
use a particular notion of similarity or distance between observations (consumers),
and try to find groups of similar observations (market segments). So-called model-
based methods are described second. These methods formulate a concise stochastic
model for the market segments. In addition to those main two groups of extraction
methods, a number of methods exist which try to achieve multiple aims in one
step. For example, some methods perform variable selection during the extraction
of market segments. A few such specialised algorithms are also discussed in this
chapter.

Because no single best algorithm exists, investigating and comparing alternative
segmentation solutions is critical to arriving at a good final solution. Data char-
acteristics and expected or desired segment characteristics allow a pre-selection
of suitable algorithms to be included in the comparison. Table 7.1 contains the
information needed to guide algorithm selection.

The size of the available data set indicates if the number of consumers is
sufficient for the available number of segmentation variables, the expected number
of segments, and the segment sizes. The minimum segment size required from a
target segment has been defined as one of the knock-out criteria in Step 2. It informs
the expectation about how many segments of which size will be extracted. If the
target segment is expected to be a niche segment, larger sample sizes are required.
Larger samples allow a more fine-grained extraction of segments. If the number of
segmentation variables is large, but not all segmentation variables are expected to be
key characteristics of segments, extraction algorithms which simultaneously select
variables are helpful (see Sect. 7.4).

The scale level of the segmentation variables determines the most suitable variant
of an extraction algorithms. For distance-based methods, the choice of the distance
measure depends on the scale level of the data. The scale level also determines
the set of suitable segment-specific models in the model-based approach. Other
special structures of the data can restrict the set of suitable algorithms. If the data set
contains repeated measurements of consumers over time, for example, an algorithm
that takes this longitudinal nature of the data into account is needed. Such data
generally requires a model-based approach.
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We also need to specify the characteristics consumers should have in common to
be placed in the same segment, and how they should differ from consumers in other
segments. These features have, conceptually, been specified in Step 2, and need to
be recalled here. The structure of segments extracted by the algorithm needs to align
with these expected characteristics.

We distinguish directly observable characteristics from those that are only
indirectly accessible. Benefits sought are an example of a directly observable
characteristic. They are contained directly in the data, placing no restrictions on the
segment extraction algorithm to be chosen. An example of an indirect characteristic
is consumer price sensitivity. If the data contains purchase histories and price
information, and market segments are based on similar price sensitivity levels,
regression models are needed. This, in turn calls for the use of a model-based
segment extraction algorithm.

In the case of binary segmentation variables, another aspect needs to be
considered. We may want consumers in the same segments to have both the presence
and absence of segmentation variables in common. In this case, we need to treat
the binary segmentation variables symmetrically (with 0s and 1s treated equally).
Alternatively, we may only care about segmentation variables consumers have in
common. In this case, we treat them asymmetrically (with only common 1s being
of interest). An example of where it makes sense to treat them asymmetrically is if
we use vacation activities as the segmentation variables. It is very interesting if two
tourists both engage in horse-riding during their vacation. It is not so interesting if
two tourists do not engage in horse-riding. Biclustering (see Sect. 7.4.1) uses binary
information asymmetrically. Distance-based methods can use distance measures
that account for this asymmetry, and extract segments characterised by common 1s.

7.2 Distance-Based Methods

Consider the problem of finding groups of tourists with similar activity patterns
when on vacation. A fictitious data set is shown in Table 7.2. It contains seven
people indicating the percentage of time they spend enjoying BEACH, ACTION, and
CULTURE when on vacation. Anna and Bill only want to relax on the beach, Frank
likes beach and action, Julia and Maria like beach and culture, Michael wants action
and a little bit of culture, and Tom does everything.

Market segmentation aims at grouping consumers into groups with similar needs
or behaviour, in this example: groups of tourists with similar patterns of vacation
activities. Anna and Bill have exactly the same profile, and should be in the same
segment. Michael is the only one not interested in going to the beach, which
differentiates him from the other tourists. In order to find groups of similar tourists
one needs a notion of similarity or dissimilarity, mathematically speaking: a distance
measure.
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Table 7.2 Artificial data set
on tourist activities:
percentage of time spent on
three activities

Anna
Bill
Frank
Julia
Maria
Michael
Tom

100
100
60
70
80
0
50

0
0
40
0
0
90
20

0
0
0
30
20
10
30

beach action culture

7.2.1 Distance Measures

Table 7.2 is a typical data matrix. Each row represents an observation (in this case
a tourist), and every column represents a variable (in this case a vacation activity).
Mathematically, this can be represented as an n × p matrix where n stands for the
number of observations (rows) and p for the number of variables (columns):

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠

The vector corresponding to the i-th row of matrix X is denoted as xi =
(xi1, xi2, . . . , xip)′ in the following, such that X = {x1, x2, . . . xp} is the set of
all observations. In the example above, Anna’s vacation activity profile is vector
x1 = (100, 0, 0)′ and Tom’s vacation activity profile is vector x7 = (50, 20, 30)′.

Numerous approaches to measuring the distance between two vectors exist;
several are used routinely in cluster analysis and market segmentation. A distance
is a function d(·, ·) with two arguments: the two vectors x and y between which the
distance is being calculated. The result is the distance between them (a nonnegative
value). A good way of thinking about distance is in the context of geography. If
the distance between two cities is of interest, the location of the cities are the two
vectors, and the length of the air route in kilometres is the distance. But even in the
context of geographical distance, other measures of natural distance between two
cities are equally valid, for example, the distance a car has to drive on roads to get
from one city to the other.

A distance measure has to comply with a few criteria. One criterion is symmetry,
that is:

d(x, y) = d(y, x).

A second criterion is that the distance of a vector to itself and only to itself is 0:

d(x, y) = 0 ⇔ x = y.
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In addition, most distance measures fulfil the so-called triangle inequality:

d(x, z) ≤ d(x, y) + d(y, z).

The triangle inequality says that if one goes from x to z with an intermediate stop in
y, the combined distance is at least as long as going from x to z directly.

Let x = (x1, . . . , xp)′ and y = (y1, . . . , yp)′ be two p-dimensional vectors. The
most common distance measures used in market segmentation analysis are:

Euclidean distance:

d(x, y) =
√√√√

p∑
j=1

(xj − yj )2

Manhattan or absolute distance:

d(x, y) =
p∑

j=1

|xj − yj |

Asymmetric binary distance: applies only to binary vectors, that is, all xj and yj are
either 0 or 1.

d(x, y) =
{

0, x = y = 0
(#{j |xj = 1 and yj = 1})/(#{j |xj = 1 or yj = 1})

In words: the number of dimensions where both x and y are equal to 1 divided
by the number of dimensions where at least one of them is 1.

Euclidean distance is the most common distance measure used in market
segmentation analysis. Euclidean distance corresponds to the direct “straight-line”
distance between two points in two-dimensional space, as shown in Fig. 7.2 on the
left. Manhattan distance derives its name from the fact that it gives the distance
between two points assuming that streets on a grid (like in Manhattan) need to be
used to get from one point to another. Manhattan distance is illustrated in Fig. 7.2 on
the right. Both Euclidean and Manhattan distance use all dimensions of the vectors
x and y.

Fig. 7.2 A comparison of
Euclidean and Manhattan
distance

Euclidean distance Manhattan distance
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The asymmetric binary distance does not use all dimensions of the vectors.
It only uses dimensions where at least one of the two vectors has a value of 1.
It is asymmetric because it treats 0s and 1s differently. Similarity between two
observations is only concluded if they share 1s, but not if they share 0s. The
dissimilarity between two observations is increased if one has a 1 and the other not.
This has implications for market segmentation analysis. Imagine, for example, that
the tourist vacation activity profiles not only include common vacation activities, but
also unusual activities, such as HORSEBACK RIDING and BUNGEE JUMPING. The
fact that two tourists have in common that they do not ride horses or that they do
not bungee jump is not very helpful in terms of extracting market segments because
the overall proportion of horse riders and bungee jumpers in the tourist population
is low. If, however, two tourists do horse ride or bungee jump, this represents key
information about similarities between them.

The asymmetric binary distance corresponds to the proportion of common 1s
over all dimensions where at least one vector contains a 1. In the tourist example: the
number of common vacation activities divided by the number of vacation activities
at least one of the two tourists engages in. A symmetric binary distance measure
(which treats 0s and 1s equally) emerges from using the Manhattan distance between
the two vectors. The distance is then equal to the number of vacation activities where
values are different.

The standard R function to calculate distances is called dist(). It takes as
arguments a data matrix x and – optionally – the distance method. If no distance
method is explicitly specified, Euclidean distance is the default. The R function
returns all pairwise distances between the rows of x.

Using the vacation activity data in Table 7.2, we first need to load the data:

R> data("annabill", package = "MSA")

Then, we can calculate the Euclidean distance between all tourists with the
following command:

R> D1 <- dist(annabill)
R> round(D1, 2)

Anna Bill Frank Julia Maria Michael
Bill 0.00
Frank 56.57 56.57
Julia 42.43 42.43 50.99
Maria 28.28 28.28 48.99 14.14
Michael 134.91 134.91 78.74 115.76 120.83
Tom 61.64 61.64 37.42 28.28 37.42 88.32

The distance between Anna and Bill is zero because they have identical vacation
activity profiles. The distance between Michael and all other people in the data set
is substantial because Michael does not go to the beach where most other tourists
spend a lot of time.
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Manhattan distance – which is also referred to as absolute distance – is very
similar to Euclidean distance for this data set:

R> D2 <- dist(annabill, method = "manhattan")
R> D2

Anna Bill Frank Julia Maria Michael
Bill 0
Frank 80 80
Julia 60 60 80
Maria 40 40 80 20
Michael 200 200 120 180 180
Tom 100 100 60 40 60 140

No rounding is necessary because the Manhattan distance is automatically integer
if all values in the data matrix are integer.

The printout contains only six rows and columns in both cases. To save computer
memory, dist() does not return the full symmetric matrix of all pairwise
distances. It only returns the lower triangle of the matrix. If the full matrix is
required, it can be obtained by coercing the return object of dist() to the full
7 × 7 matrix:

R> as.matrix(D2)

Anna Bill Frank Julia Maria Michael Tom
Anna 0 0 80 60 40 200 100
Bill 0 0 80 60 40 200 100
Frank 80 80 0 80 80 120 60
Julia 60 60 80 0 20 180 40
Maria 40 40 80 20 0 180 60
Michael 200 200 120 180 180 0 140
Tom 100 100 60 40 60 140 0

Both Euclidean and Manhattan distance treat all dimensions of the data equally;
they take a sum over all dimensions of squared or absolute differences. If the
different dimensions of the data are not on the same scale (for example, dimension 1
indicates whether or not a tourist plays golf, and dimension 2 indicates how many
dollars the tourist spends per day on dining out on average), the dimension with the
larger numbers will dominate the distance calculation between two observations.
In such situations data needs to be standardised before calculating distances (see
Sect. 6.4.2).

Function dist can only be used if the segmentation variables are either all
metric or all binary. In R package cluster (Maechler et al. 2017), function daisy
calculates the dissimilarity matrix between observations contained in a data frame.
In this data frame the variables can be numeric, ordinal, nominal and binary.
Following Gower (1971), all variables are rescaled to a range of [0, 1] which allows
for a suitable weighting between variables. If variables are metric, the results are the
same as for dist:

R> library("cluster")
R> round(daisy(annabill), digits = 2)
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Dissimilarities :
Anna Bill Frank Julia Maria Michael

Bill 0.00
Frank 56.57 56.57
Julia 42.43 42.43 50.99
Maria 28.28 28.28 48.99 14.14
Michael 134.91 134.91 78.74 115.76 120.83
Tom 61.64 61.64 37.42 28.28 37.42 88.32

Metric : euclidean
Number of objects : 7

7.2.2 Hierarchical Methods

Hierarchical clustering methods are the most intuitive way of grouping data because
they mimic how a human would approach the task of dividing a set of n observations
(consumers) into k groups (segments). If the aim is to have one large market
segment (k = 1), the only possible solution is one big market segment containing
all consumers in data X. At the other extreme, if the aim is to have as many
market segments as there are consumers in the data set (k = n), the number of
market segments has to be n, with each segment containing exactly one consumer.
Each consumer represents their own cluster. Market segmentation analysis occurs
between those two extremes.

Divisive hierarchical clustering methods start with the complete data set X and
splits it into two market segments in a first step. Then, each of the segments is again
split into two segments. This process continues until each consumer has their own
market segment.

Agglomerative hierarchical clustering approaches the task from the other end.
The starting point is each consumer representing their own market segment (n sin-
gleton clusters). Step-by-step, the two market segments closest to one another are
merged until the complete data set forms one large market segment.

Both approaches result in a sequence of nested partitions. A partition is a
grouping of observations such that each observation is exactly contained in one
group. The sequence of partitions ranges from partitions containing only one group
(segment) to n groups (segments). They are nested because the partition with k + 1
groups (segments) is obtained from the partition with k groups by splitting one of
the groups.

Numerous algorithms have been proposed for both strategies. The unifying
framework for agglomerative clustering – which was developed in the seminal paper
by Lance and Williams (1967) – contains most methods still in use today. In each
step, standard implementations of hierarchical clustering perform the optimal step.
This leads to a deterministic algorithm. This means that every time the hierarchical
clustering algorithm is applied to the same data set, the exactly same sequence of
nested partitions is obtained. There is no random component.



84 7 Step 5: Extracting Segments

Underlying both divisive and agglomerative clustering is a measure of distance
between groups of observations (segments). This measure is determined by specify-
ing (1) a distance measure d(x, y) between observations (consumers) x and y, and
(2) a linkage method. The linkage method generalises how, given a distance between
pairs of observations, distances between groups of observations are obtained.
Assuming two sets X and Y of observations (consumers), the following linkage
methods are available in the standard R function hclust() for measuring the
distance l(X,Y) between these two sets of observations:

Single linkage: distance between the two closest observations of the two sets.

l(X,Y) = min
x∈X,y∈Y

d(x, y)

Complete linkage: distance between the two observations of the two sets that are
farthest away from each other.

l(X,Y) = max
x∈X,y∈Y

d(x, y)

Average linkage: mean distance between observations of the two sets.

l(X,Y) = 1

|X||Y|
∑
x∈X

∑
y∈Y

d(x, y),

where |X| denotes the number of elements in X.

These linkage methods are illustrated in Fig. 7.3, and all of them can be combined
with any distance measure. There is no correct combination of distance and
linkage method. Clustering in general, and hierarchical clustering in specific, are
exploratory techniques. Different combinations can reveal different features of the
data.

Single linkage uses a “next neighbour” approach to join sets, meaning that the
two closest consumers are united. As a consequence, single linkage hierarchical
clustering is capable of revealing non-convex, non-linear structures like the spirals
in Fig. 7.1. In situations where clusters are not well-separated – and this means in

Single linkage Complete linkage Average linkage

Fig. 7.3 A comparison of different linkage methods between two sets of points
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most consumer data situations – the next neighbour approach can lead to undesirable
chain effects where two groups of consumers form a segment only because two
consumers belonging to each of those segments are close to one another. Average
and complete linkage extract more compact clusters.

A very popular alternative hierarchical clustering method is named after Ward
(1963), and based on squared Euclidean distances. Ward clustering joins the two
sets of observations (consumers) with the minimal weighted squared Euclidean
distance between cluster centers. Cluster centers are the midpoints of each cluster.
They result from taking the average over the observations in the cluster. We can
intepret them as segment representatives.

When using Ward clustering we need to check that the correct distance is used
as input (Murtagh and Legendre 2014). The two options are Euclidean distance or
squared Euclidean distance. Function hclust() in R can deal with both kinds of
input. The input, along with the suitable linkage method, needs to be specified in
the R command as either Euclidean distance with method = "ward.D2", or as
squared Euclidean distance with method = "ward.D"

The result of hierarchical clustering is typically presented as a dendrogram.
A dendrogram is a tree diagram. The root of the tree represents the one-cluster
solution where one market segment contains all consumers. The leaves of the tree
are the single observations (consumers), and branches in-between correspond to the
hierarchy of market segments formed at each step of the procedure. The height of
the branches corresponds to the distance between the clusters. Higher branches point
to more distinct market segments. Dendrograms are often recommended as a guide
to select the number of market segments. Based on the authors’ experience with
market segmentation analysis using consumer data, however, dendrograms rarely
provide guidance of this nature because the data sets underlying the analysis are not
well structured enough.

As an illustration of the dendrogram, consider the seven tourists in Table 7.2 and
the Manhattan distances between them. Agglomerative hierarchical clustering with
single linkage will first identify the two people with the smallest distance (Anna
and Bill with a distance of 0). Next, Julia and Maria are joined into a market
segment because they have the second smallest distance between them (20). The
single linkage distance between these two groups is 40, because that is the distance
from Maria to Anna and Bill. Tom has a distance of 40 to Julia, hence Anna, Bill,
Julia, Maria and Tom are joined to a group of five in the third step. This process
continues until all tourists are united in one big group. The resulting dendrogram is
shown in Fig. 7.4 on the left.

The result of complete linkage clustering is provided in the right dendrogram in
Fig. 7.4. For this small data set, the result is very similar. The only major difference
is that Frank and Tom are first grouped together in a segment of two, before they are
merged into a segment with all other tourists (except for Michael) in the data set.
In both cases, Michael is merged last because his activity profile is very different.
The result from average linkage clustering is not shown because the corresponding
dendrogram is almost identical to that of complete linkage clustering.
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Fig. 7.4 Single and complete linkage clustering of the tourist data shown in Table 7.2

The order of the leaves of the tree (the observations or consumers) is not unique.
At every split into two branches, the left and right branch could be exchanged,
resulting in 2n possible dendrograms for exactly the same clustering where n is the
number of consumers in the data set. As a consequence, dendrograms resulting from
different software packages may look different although they represent exactly the
same market segmentation solution. Another possible source of variation between
software packages is how ties are broken, meaning, which two groups are joined
first when several have exactly the same distance.

Example: Tourist Risk Taking

A data set on “tourist disasters” contains survey data collected by an online
research panel company in October 2015 commissioned by UQ Business School
(Hajibaba et al. 2017). The target population were adult Australian residents who
had undertaken at least one personal holiday in the past 12 months. The following
commands load the data matrix:

R> library("MSA")
R> data("risk", package = "MSA")
R> dim(risk)

[1] 563 6

This data set contains 563 respondents who state how often they take risks from the
following six categories:

1. recreational risks: e.g., rock-climbing, scuba diving
2. health risks: e.g., smoking, poor diet, high alcohol consumption
3. career risks: e.g., quitting a job without another to go to
4. financial risks: e.g., gambling, risky investments



7.2 Distance-Based Methods 87

5. safety risks: e.g., speeding
6. social risks: e.g., standing for election, publicly challenging a rule or decision
Respondents are presented with an ordinal scale consisting of five answer options
(1=NEVER, 5=VERY OFTEN). In the subsequent analysis, we assume equidistance
between categories. Respondents, on average, display risk aversion with mean
values for all columns close to 2 (=RARELY):

R> colMeans(risk)

Recreational Health Career Financial
2.190053 2.396092 2.007105 2.026643
Safety Social

2.266430 2.017762

The following command extracts market segments from this data set using Manhat-
tan distance and complete linkage:

R> risk.dist <- dist(risk, method = "manhattan")
R> risk.hcl <- hclust(risk.dist, method = "complete")
R> risk.hcl

Call:
hclust(d = risk.dist, method = "complete")

Cluster method : complete
Distance : manhattan
Number of objects: 563

plot(risk.hcl) generates the dendrogram shown in Fig. 7.5. The dendrogram
visualises the sequence of nested partitions by indicating each merger or split. The
straight line at the top of the dendrogram indicates the merger of the last two groups
into a single group. The y-axis indicates the distance between these two groups. At
the bottom each single observation is one line.

The dendrogram in Fig. 7.5 indicates that the largest additional distance between
two clusters merged occurred when the last two clusters were combined to the
single cluster containing all observations. Cutting the dendrogram at a specific
height selects a specific partition. The boxes numbered 1–6 in Fig. 7.5 illustrate
how this dendrogram or tree can be cut into six market segments. The reason that
the boxes are not numbered from left to right is that the market segment labelled
number 1 contains the first observation (the first consumer) in the data set. Which
consumers have been assigned to which market segment can be computed using
function cutree(), which takes an object as returned by hclust and either the
height h at which to cut or the number k of segments to cut the tree into.

R> c2 <- cutree(risk.hcl, h = 20)
R> table(c2)

c2
1 2

511 52
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Fig. 7.5 Complete linkage hierarchical cluster analysis of the tourist risk taking data set

R> c6 <- cutree(risk.hcl, k = 6)
R> table(c6)

c6
1 2 3 4 5 6

90 275 27 25 74 72

A simple way to assess the characteristics of the clusters is to look at the column-
wise means by cluster.

R> c6.means <- aggregate(risk, list(Cluster = c6), mean)
R> round(c6.means, 1)

Recreational Health Career Financial Safety Social
1 2.0 2.2 1.9 2.0 2.2 2.8
2 1.9 1.8 1.5 1.6 2.0 1.4
3 3.9 4.4 2.9 3.2 3.3 4.1
4 4.1 3.3 4.1 2.8 3.4 3.2
5 2.3 2.6 3.2 2.6 2.6 2.2
6 2.0 3.8 1.8 2.4 2.3 2.0

But it is much easier to understand the cluster characteristics by visualising the
column-wise means by clusters using a barchart (Fig. 7.6). barchart(risk.
hcl, risk, k=6) from R package flexclust results in such a barchart. (A
refined version of this plot – referred to as the segment profile plot – is described
in detail in Sect. 8.3). The dark red dots correspond to the total mean values across
all respondents; the bars indicate the mean values within each one of the segments.
Segments are interpreted by inspecting the difference between the total population
(red dots) and the segments (bars). For the tourist risk taking data set, the largest
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Fig. 7.6 Bar chart of cluster means from hierarchical clustering for the tourist risk taking data set

segment is cluster 2. People assigned to this segment avoid all types of risks as
indicated by all bars being lower than all the red dots. Segments 3 and 4 display
above average risk taking in all areas, while segments 1, 5 and 6 have average risk
taking values for 5 of the 6 categories, but are characterised by their willingness to
take above average risk in one category. Members of segment 1 are more willing
to accept social risks than the overall population, members of segment 5 are more
willing to accept career risks, and members of segment 6 are more willing to accept
health risks.

7.2.3 Partitioning Methods

Hierarchical clustering methods are particularly well suited for the analysis of small
data sets with up to a few hundred observations. For larger data sets, dendrograms
are hard to read, and the matrix of pairwise distances usually does not fit into com-
puter memory. For data sets containing more than 1000 observations (consumers),
clustering methods creating a single partition are more suitable than a nested
sequence of partitions. This means that – instead of computing all distances between
all pairs of observations in the data set at the beginning of a hierarchical partitioning
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cluster analysis using a standard implementation – only distances between each
consumer in the data set and the centre of the segments are computed. For a data
set including information about 1000 consumers, for example, the agglomerative
hierarchical clustering algorithm would have to calculate (1000×999)/2 = 499,500
distances for the pairwise distance matrix between all consumers in the data set.

A partitioning clustering algorithm aiming to extract five market segments, in
contrast, would only have to calculate between 5 and 5000 distances at each step of
the iterative or stepwise process (the exact number depends on the algorithm used).
In addition, if only a few segments are extracted, it is better to optimise specifically
for that goal, rather than building the complete dendrogram and then heuristically
cutting it into segments.

7.2.3.1 k-Means and k-Centroid Clustering

The most popular partitioning method is k-means clustering. Within this method, a
number of algorithms are available. R function kmeans() implements the algo-
rithms by Forgy (1965), Hartigan and Wong (1979), Lloyd (1982) and MacQueen
(1967). These algorithms use the squared Euclidean distance. A generalisation to
other distance measures, also referred to as k-centroid clustering, is provided in R
package flexclust.

Let X = {x1, . . . , xn} be a set of observations (consumers) in a data set. Parti-
tioning clustering methods divide these consumers into subsets (market segments)
such that consumers assigned to the same market segment are as similar to one
another as possible, while consumers belonging to different market segments are as
dissimilar as possible. The representative of a market segment is referred to in many
partitioning clustering algorithms as the centroid. For the k-means algorithm based
on the squared Euclidean distance, the centroid consists of the column-wise mean
values across all members of the market segment. The data set contains observations
(consumers) in rows, and variables (behavioural information or answers to survey
questions) in columns. The column-wise mean, therefore, is the average response
pattern across all segmentation variables for all members of the segment (Fig. 7.6).

The following generic algorithm represents a heuristic for solving the optimi-
sation problem of dividing consumers into a given number of segments such that
consumers are similar to their fellow segment members, but dissimilar to members
of other segments. This algorithm is iterative; it improves the partition in each step,
and is bound to converge, but not necessarily to the global optimum.

It involves five steps with the first four steps visualised in a simplified way in
Fig. 7.7:

1. Specify the desired number of segments k.
2. Randomly select k observations (consumers) from data set X (see Step 2 in

Fig. 7.7) and use them as initial set of cluster centroids C = {c1, . . . , ck}. If five
market segments are being extracted, then five consumers are randomly drawn
from the data set, and declared the representatives of the five market segments. Of
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Fig. 7.7 Simplified visualisation of the k-means clustering algorithm

course, these randomly chosen consumers will – at this early stage of the process
– not be representing the optimal segmentation solution. They are needed to get
the step wise (iterative) partitioning algorithm started.

3. Assign each observation xi to the closest cluster centroid (segment
representative, see Step 3 in Fig. 7.7) to form a partition of the data, that is,
k market segments S1, . . . ,Sk where

Sj = {x ∈ X|d(x, cj ) ≤ d(x, ch), 1 ≤ h ≤ k}.
This means that each consumer in the data set is assigned to one of the initial
segment representatives. This is achieved by calculating the distance between
each consumer and each segment representative, and then assigning the consumer
to the market segment with the most similar representative. If two segment
representatives are equally close, one needs to be randomly selected. The result
of this step is an initial – suboptimal – segmentation solution. All consumers in
the data set are assigned to a segment. But the segments do not yet comply with
the criterion that members of the same segment are as similar as possible, and
members of different segments are as dissimilar as possible.
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4. Recompute the cluster centroids (segment representatives) by holding cluster
membership fixed, and minimising the distance from each consumer to the
corresponding cluster centroid (representative see Step 4 in Fig. 7.7):

cj = arg min
c

∑
x∈Sj

d(x, c).

For squared Euclidean distance, the optimal centroids are the cluster-wise
means, for Manhattan distance cluster-wise medians, resulting in the so-called
k-means and k-medians procedures, respectively. In less mathematical terms:
what happens here is that – acknowledging that the initial segmentation solution
is not optimal – better segment representatives need to be identified. This is
exactly what is achieved in this step: using the initial segmentation solution, one
new representative is “elected” for each of the market segments. When squared
Euclidean distance is used, this is done by calculating the average across all
segment members, effectively finding the most typical, hypothetical segment
members and declaring them to be the new representatives.

5. Repeat from step 3 until convergence or a pre-specified maximum number of
iterations is reached. This means that the steps of assigning consumers to their
closest representative, and electing new representatives is repeated until the
point is reached where the segment representatives stay the same. This is when
the stepwise process of the partitioning algorithm stops and the segmentation
solution is declared to be the final one.

The algorithm will always converge: the stepwise process used in a partitioning
clustering algorithm will always lead to a solution. Reaching the solution may take
longer for large data sets, and large numbers of market segments, however. The
starting point of the process is random. Random initial segment representatives
are chosen at the beginning of the process. Different random initial representatives
(centroids) will inevitably lead to different market segmentation solutions. Keeping
this in mind is critical to conducting high quality market segmentation analysis
because it serves as a reminder that running one single calculation with one single
algorithm leads to nothing more than one out of many possible segmentation
solutions. The key to a high quality segmentation analysis is systematic repetition,
enabling the data analyst to weed out less useful solutions, and present to the users
of the segmentation solution – managers of the organisation wanting to adopt target
marketing – the best available market segment or set of market segments.

In addition, the algorithm requires the specification of the number of segments.
This sounds much easier than it is. The challenge of determining the optimal number
of market segments is as old as the endeavour of grouping people into segments
itself (Thorndike 1953). A number of indices have been proposed to assist the
data analyst (these are discussed in detail in Sect. 7.5.1). We prefer to assess the
stability of different segmentation solutions before extracting market segments. The
key idea is to systematically repeat the extraction process for different numbers of
clusters (or market segments), and then select the number of segments that leads to
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Fig. 7.8 Artificial Gaussian data clustered using squared Euclidean distance (left), Manhattan
distance (middle) and angle distance (right)

either the most stable overall segmentation solution, or to the most stable individual
segment. Stability analysis is discussed in detail in Sects. 7.5.3 and 7.5.4. In any
case, partitioning clustering does require the data analyst to specify the number of
market segments to be extracted in advance.

What is described above is a generic version of a partitioning clustering algo-
rithm. Many variations of this generic algorithm are available; some are discussed
in the subsequent subsections. The machine learning community has also proposed
a number of clustering algorithms. Within this community, the term unsupervised
learning is used to refer to clustering because groups of consumers are created
without using an external (or dependent) variable. In contrast, supervised learning
methods use a dependent variable. The equivalent statistical methods are regression
(when the dependent variable is metric), and classification (when the dependent
variable is nominal). Hastie et al. (2009) discuss the relationships between statistics
and machine learning in detail. Machine learning algorithms essentially achieve the
same thing as their statistical counterparts. The main difference is in the vocabulary
used to describe the algorithms.

Irrespective of whether traditional statistical partitioning methods such as k-
means are used, or whether any of the algorithms proposed by the machine learning
community is applied, distance measures are the basic underlying calculation. Not
surprisingly, therefore, the choice of the distance measure has a significant impact on
the final segmentation solution. In fact, the choice of the distance measure typically
has a bigger impact on the nature of the resulting market segmentation solution
than the choice of algorithm (Leisch 2006). To illustrate this, artificial data from a
bivariate normal distribution are clustered three times using a generalised version
of the k-means algorithm. A different distance measure is used for each calculation:
squared Euclidean distance, Manhattan distance, and the difference between angles
when connecting observations to the origin.

Figure 7.8 shows the resulting three partitions. As can be seen, squared Euclidean
and Manhattan distance result in similarly shaped clusters in the interior of the data.
The direction of cluster borders in the outer region of the data set, however, are
quite different. Squared Euclidean distance results in diagonal borders, while the
borders for Manhattan distance are parallel to the axes. Angle distance slices the
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data set into cake piece shaped segments. Figure 7.8 shows clearly the effect of the
chosen distance measure on the segmentation solution. Note, however, that – while
the three resulting segmentation solutions are different – neither of them is superior
or inferior, especially given that no natural clusters are present in this data set.

Example: Artificial Mobile Phone Data

Consider a simple artificial data set for a hypothetical mobile phone market. It
contains two pieces of information about mobile phone users: the number of features
they want in a mobile phone, and the price they are willing to pay for it. We can
artificially generate a random sample for such a scenario in R. To do this, we first
load package flexclust which also contains a wide variety of partitioning clustering
algorithms for many different distance measures:

R> library("flexclust")
R> set.seed(1234)
R> PF3 <- priceFeature(500, which = "3clust")

Next, we set the seed of the random number generator to 1234. We use seed
1234 throughout the book whenever randomness is involved to make all results
reproducible. After setting the seed of the random number generator, it always
produces exactly the same sequence of numbers. In the example above, function
priceFeature() draws a random sample with uniform distribution on three
circles. Data sets drawn with different seeds will all look very similar, but the exact
location of points is different.

Figure 7.9 shows the data. The x-axis plots mobile phone features. The y-axis
plots the price mobile phone users are willing to pay. The data contains three very
distinct and well-separated market segments. Members of the bottom left market
segment want a cheap mobile phone with a limited set of features. Members of the
middle segment are willing to pay a little bit more, and expect a few additional
features. Members of the small market segment located in the top right corner of
Fig. 7.9 are willing to pay a lot of money for their mobile phone, but have very high
expectations in terms of features.

Next, we extract market segments from this data. Figure 7.9 shows clearly that
three market segments exist (when working with empirical data it is not known
how many, if any, natural segments are contained in the data). To obtain a solution
containing three market segments for the artificially generated mobile phone data
set using k-means, we use function cclust() from package flexclust. Compared
to the standard R function kmeans(), function cclust() returns richer objects,
which are useful for the subsequent visualisation of results using tools from package
flexclust. Function cclust() implements the k-means algorithm by determining
the centroids using the average values across segment members, and by assigning
each observation to the closest centroid using Euclidean distance.

R> PF3.km3 <- cclust(PF3, k = 3)
R> PF3.km3
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Fig. 7.9 Artificial mobile
phone data set
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The cluster centres (centroids, representatives of each market segment), and the
vector of cluster memberships (the assignment of each consumer to a specific market
segment) can be extracted using

R> parameters(PF3.km3)

features / performance / quality price
[1,] 7.976827 8.027105
[2,] 5.021999 4.881439
[3,] 1.990105 2.062453

R> clusters(PF3.km3)[1:20]

[1] 1 2 3 3 2 3 2 3 1 1 3 1 3 2 2 3 2 1 2 1

The term [1:20] in the above R command asks for the segment memberships
of only the first 20 consumers in the data set to be displayed (to save space). The
numbering of the segments (clusters) is random; it depends on which consumers
from the data set have been randomly chosen to be the initial segment representa-
tives. Exactly the same solution could be obtained with a different numbering of
segments; the market segment labelled cluster 1 in one calculation could be labelled
cluster 3 in the next calculation, although the grouping of consumers is the same.

The information about segment membership can be used to plot market segments
in colour, and to draw circles around them. These circles are referred to as convex
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hulls. In two-dimensional space, the convex hull of a set of observations is a closed
polygon connecting the outer points in a way that ensures that all points of the set
are located within the polygon. An additional requirement is that the polygon has
no “inward dents”. This means that any line connecting two data points of the set
must not lie outside the convex hull. To generate a coloured scatter plot of the data
with convex hulls for the segments – such as the one depicted in Fig. 7.10 – we can
use function clusterhull() from package MSA:

R> clusterhulls(PF3, clusters(PF3.km3))

Figure 7.10 visualises the segmentation solution resulting from a single run of the
k-means algorithm with one specific set of initial segment representatives. The final
segmentation solution returned by the k-means algorithm differs for different initial
values. Because each calculation starts with randomly selected consumers serving as
initial segment representatives, it is helpful to rerun the process of selecting random
segment representatives a few times to eliminate a particularly bad initial set of
segment representatives. The process of selecting random segment representatives
is called random initialisation.

Specifying the number of clusters (number of segments) is difficult because,
typically, consumer data does not contain distinct, well-separated naturally existing
market segments. A popular approach is to repeat the clustering procedure for
different numbers of market segments (for example: everything from two to eight
market segments), and then compare – across those solutions – the sum of distances
of all observations to their representative. The lower the distance, the better the
segmentation solution because members of market segments are very similar to one
another.

We now calculate 10 runs of the k-means algorithm for each number of segments
using different random initial representatives (nrep = 10), and retain the best
solution for each number of segments. The number of segments varies from 2 to 8
(k = 2:8):

Fig. 7.10 Three-segment
k-means partition for the
artificial mobile phone data
set
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R> PF3.km28 <- stepcclust(PF3, k = 2:8, nrep = 10)

2 : * * * * * * * * * *
3 : * * * * * * * * * *
4 : * * * * * * * * * *
5 : * * * * * * * * * *
6 : * * * * * * * * * *
7 : * * * * * * * * * *
8 : * * * * * * * * * *

R> PF3.km28

stepFlexclust object of family 'kmeans'

call:
stepcclust(PF3, k = 2:8, nrep = 10)

iter converged distsum
1 NA NA 1434.6462
2 5 TRUE 827.6455
3 3 TRUE 464.7213
4 4 TRUE 416.6217
5 11 TRUE 374.4978
6 11 TRUE 339.6770
7 12 TRUE 313.8717
8 15 TRUE 284.9730

In this case, we extract market segmentation solutions containing between 2 and
8 segments (argument k = 2:8). For each one of those solutions, we retain the
best out of ten random initialisations (nrep = 10), using the sum of Euclidean
distances between the segment members and their segment representatives as
criterion.

Function stepcclust() enables automated parallel processing on multiple
cores of a computer (see help("stepcclust") for details). This is useful
because the repeated calculations for different numbers of segments and different
random initialisations are independent. In the example above 7 × 10 = 70 segment
extractions are required. Without parallel computing, these 70 segment extractions
run sequentially one after the other. Parallel computing means that a number
of calculations can run simultaneously. Parallel computing is possible on most
modern standard laptops, which can typically run at least four R processes in
parallel, reducing the required runtime of the command by a factor of four (e.g.,
15 s instead of 60 s). More powerful desktop machines or compute servers allow
many more parallel R processes. For single runs of stepcclust() this makes
little difference, but as soon as advanced bootstrapping procedures are used, the
difference in runtime can be substantial. Calculations which would run for an hour,
are processed in 15 min on a laptop, and in 1.5 min on a computer server running
40 parallel processes. The R commands used are exactly the same, but parallel
processing needs to be enabled before using them. The help page for function
stepcclust() offers examples on how to do that.
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Fig. 7.11 Scree plot for
k-means partitions with
k = 1, . . . , 8 segments for the
artificial mobile phone data
set
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The sums of within-cluster distances for different numbers of clusters (number of
market segments) are visualised using plot(PF3.km28). Figure 7.11 shows the
resulting scree plot. The scree plot displays – for each number of segments – the sum
of within-cluster distances. For clustering results obtained using stepcclust,
this is the sum of the Euclidean distances between each segment member and the
representative of the segment. The smaller this number, the more homogeneous the
segments; members assigned to the same market segment are similar to one another.
Optimally, the scree plot shows distinct drops in the sum of within-cluster distances
for the first numbers of segments, followed only by small decreases afterwards. The
number of segments where the last distinct drop occurs is the optimal number of
segments. After this point, homogeneous segments are split up artificially, resulting
in no major decreases in the sum of within-cluster distances.

The point of the scree plot indicating the best number of segments is where
an elbow occurs. The elbow is illustrated in Fig. 7.12. Figure 7.12 contains the
scree plot as well as an illustration of the elbow. The elbow is visualised by the
two intersecting lines with different slopes. The point where the two lines intersect
indicates the optimal number of segments. In the example shown in Fig. 7.12, large
distance drops are visible when the number of segments increases from one to two
segments, and then again from two to three segments. A further increase in segments
leads to small reductions in distance.

For this simple artificial data set – constructed to contain three distinct and
exceptionally well-separated market segments – the scree plot in Fig. 7.11 correctly
points to three market segments being a good choice. The scree plot only provides
guidance if market segments are well-separated. If they are not, stability analysis –
discussed in detail in Sects. 7.5.3 and 7.5.4 – can inform the number of segments
decision.
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Fig. 7.12 Scree plot for
k-means partitions with
k = 1, . . . , 8 segments for the
artificial mobile phone data
set including a visualisation
of the elbow consisting of
two intersecting lines with
different slopes
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Example: Tourist Risk Taking

To illustrate the difference between an artificially created data set (containing three
textbook market segments), and a data set containing real consumer data, we use
the tourist risk taking data set. We generate solutions for between 2 and 8 segments
(k = 2, . . . , 8 clusters) using the following command:

R> set.seed(1234)
R> risk.km28 <- stepcclust(risk, k = 2:8, nrep = 10)

We use the default seed of 1234 for the random number generator, and initialise
each k-means run with a different set of k random representatives. To make it
possible for readers to get exactly the same results as shown in this book, the seed
is actively set. Figure 7.13 contains the corresponding sum of distances. As can be
seen immediately, the drops in distances are much less distinct for this consumer
data set than they were for the artificial mobile phone data set. No obvious number
of segments recommendation emerges from this plot. But if this plot were the only
available decision tool, the two-segment solution would be chosen. We obtain the
corresponding bar chart using

R> barchart(risk.km28[["2"]])

(Figure not shown). The solution containing two market segments splits the data
into risk-averse people and risk-takers, reflecting the two main branches of the
dendrogram in Fig. 7.5.

Figure 7.14 show the six-segment solution. It is similar to the partition resulting
from the hierarchical clustering procedure, but not exactly the same. The six-
segment solution resulting from the partitioning algorithm contains two segments
of low risk takers (segments 1 and 4), two segments of high risk takers (segments 2
and 5), and two distinctly profiled segments, one of which contains people taking
recreational and social risks (segment 3), and another one containing health risk
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Fig. 7.13 Scree plot for
k-means partitions with
k = 1, . . . , 8 segments for the
tourist risk taking data set
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Fig. 7.14 Bar chart of cluster means from k-means clustering for the tourist risk taking data set

takers (segment 6). Both partitions obtained using either hierarchical or partitioning
clustering methods are reasonable from a statistical point of view. Which partition is
more suitable to underpin the market segmentation strategy of an organisation needs
to be evaluated jointly by the data analyst and the user of the segmentation solution
using the tools and methods presented in Sect. 7.5 and in Steps 6, 7 and 8.
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7.2.3.2 “Improved” k-Means

Many attempts have been made to refine and improve the k-means clustering
algorithm. The simplest improvement is to initialise k-means using “smart” starting
values, rather than randomly drawing k consumers from the data set and using them
as starting points. Using randomly drawn consumers is suboptimal because it may
result in some of those randomly drawn consumers being located very close to one
another, and thus not being representative of the data space. Using starting points
that are not representative of the data space increases the likelihood of the k-means
algorithm getting stuck in what is referred to as a local optimum. A local optimum
is a good solution, but not the best possible solution. One way of avoiding the
problem of the algorithm getting stuck in a local optimum is to initialise it using
starting points evenly spread across the entire data space. Such starting points better
represent the entire data set.

Steinley and Brusco (2007) compare 12 different strategies proposed to initialise
the k-means algorithm. Based on an extensive simulation study using artificial data
sets of known structure, Steinley and Brusco conclude that the best approach is
to randomly draw many starting points, and select the best set. The best starting
points are those that best represent the data. Good representatives are close to their
segment members; the total distance of all segment members to their representatives
is small (as illustrated on the left side of Fig. 7.15). Bad representatives are far away
from their segment members; the total distance of all segment members to their
representatives is high (as illustrated on the right side of Fig. 7.15).

7.2.3.3 Hard Competitive Learning

Hard competitive learning, also known as learning vector quantisation (e.g. Ripley
1996), differs from the standard k-means algorithm in how segments are extracted.
Although hard competitive learning also minimises the sum of distances from
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Fig. 7.15 Examples of good (left) and bad (right) starting points for k-means clustering
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each consumer contained in the data set to their closest representative (centroid),
the process by which this is achieved is slightly different. k-means uses all
consumers in the data set at each iteration of the analysis to determine the new
segment representatives (centroids). Hard competitive learning randomly picks one
consumer and moves this consumer’s closest segment representative a small step
into the direction of the randomly chosen consumer.

As a consequence of this procedural difference, different segmentation solutions
can emerge, even if the same starting points are used to initialise the algorithm.
It is also possible that hard competitive learning finds the globally optimal market
segmentation solution, while k-means gets stuck in a local optimum (or the other
way around). Neither of the two methods is superior to the other; they are just
different. An application of hard competitive learning in market segmentation
analysis can be found in Boztug and Reutterer (2008), where the procedure is
used for segment-specific market basket analysis. Hard competitive learning can be
computed in R using function cclust(x, k, method = "hardcl") from
package flexclust.

7.2.3.4 Neural Gas and Topology Representing Networks

A variation of hard competitive learning is the neural gas algorithm proposed
by Martinetz et al. (1993). Here, not only the segment representative (centroid)
is moved towards the randomly selected consumer. Instead, also the location
of the second closest segment representative (centroid) is adjusted towards the
randomly selected consumer. However, the location of the second closest repre-
sentative is adjusted to a smaller degree than that of the primary representative.
Neural gas has been used in applied market segmentation analysis (Dolnicar and
Leisch 2010, 2014). Neural gas clustering can be performed in R using func-
tion cclust(x, k, method = "neuralgas") from package flexclust. An
application with real data is presented in Sect. 7.5.4.1.

A further extension of neural gas clustering are topology representing networks
(TRN, Martinetz and Schulten 1994). The underlying algorithm is the same as in
neural gas. In addition, topology representing networks count how often each pair
of segment representatives (centroids) is closest and second closest to a randomly
drawn consumer. This information is used to build a virtual map in which “similar”
representatives – those which had their values frequently adjusted at the same time
– are placed next to one other. Almost the same information – which is central
to the construction of the map in topology representing networks – can be obtained
from any other clustering algorithms by counting how many consumers have certain
representatives as closest and second closest in the final segmentation solution.
Based on this information, the so-called segment neighbourhood graph (Leisch
2010) is generated. The segment neighbourhood graph is part of the default segment
visualisation functions of package flexclust. Currently there appears to be no
implementation of the original topology representing network (TRN) algorithm in
R, but using neural gas in combination with neighbourhood graphs achieves similar
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results. Function cclust() returns the neighbourhood graph by default (see
Figs. 7.19, 7.41, 8.4 and 8.6 for examples). Neural gas and topology representing
networks are not superior to the k-means algorithm or to hard competitive learning;
they are different. As a consequence, they result in different market segmentation
solutions. Given that data-driven market segmentation analysis is exploratory by
very nature, it is of great value to have a larger toolbox of algorithms available for
exploration.

7.2.3.5 Self-Organising Maps

Another variation of hard competitive learning are self-organising maps (Kohonen
1982, 2001), also referred to as self-organising feature maps or Kohonen maps.
Self-organising maps position segment representatives (centroids) on a regular grid,
usually a rectangular or hexagonal grid. Examples of grids are provided in Fig. 7.16.

The self-organising map algorithm is similar to hard competitive learning: a
single random consumer is selected from the data set, and the closest representative
for this random consumer moves a small step in their direction. In addition,
representatives which are direct grid neighbours of the closest representative move
in the direction of the selected random consumer. The process is repeated many
times; each consumer in the data set is randomly chosen multiple times, and used
to adjust the location of the centroids in the Kohonen map. What changes over the
many repetitions, however, is the extent to which the representatives are allowed to
change. The adjustments get smaller and smaller until a final solution is reached.
The advantage of self-organising maps over other clustering algorithms is that the
numbering of market segments is not random. Rather, the numbering aligns with
the grid along which all segment representatives (centroids) are positioned. The
price paid for this advantage is that the sum of distances between segment members
and segment representatives can be larger than for other clustering algorithms. The
reason is that the location of representatives cannot be chosen freely. Rather, the
grid imposes restrictions on permissible locations. Comparisons of self-organising
maps and topology representing networks with other clustering algorithms, such as
the standard k-means algorithm, as well as for market segmentation applications are
provided in Mazanec (1999) and Reutterer and Natter (2000).

Fig. 7.16 Rectangular (left) and hexagonal (right) grid for self-organising maps
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Fig. 7.17 5 × 5
self-organising map of the
tourist risk taking data set
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Many implementations of self-organising maps are available in R packages.
Here, we use function som() from package kohonen (Wehrens and Buydens 2007)
because it offers good visualisations of the fitted maps. The following R commands
load package kohonen, fit a 5 × 5 rectangular self-organising map to the tourist
risk taking data, and plot it using the colour palette flxPalettte from package
flexclust:

R> library("kohonen")
R> set.seed(1234)
R> risk.som <- som(risk, somgrid(5, 5, "rect"))
R> plot(risk.som, palette.name = flxPalette, main = "")

The resulting map is shown in Fig. 7.17. As specified in the R code, the map
has the shape of a five by five rectangular grid, and therefore extracts 25 market
segments. Each circle on the grid represents one market segment. Neighbouring
segments are more similar to one another than segments located far away from one
another. The pie chart provided in Fig. 7.17 for each of the market segments contains
basic information about the segmentation variables. Members of the segment in the
top left corner take all six kinds of risks frequently. Members of the segment in
the bottom right corner do not take any kind of risk ever. The market segments
in-between display different risk taking tendencies. For example, members of the



7.2 Distance-Based Methods 105

market segment located at the very centre of the map take financial risks and career
risks, but not recreational, health, safety and social risks.

7.2.3.6 Neural Networks

Auto-encoding neural networks for cluster analysis work mathematically differently
than all cluster methods presented so far. The most popular method from this family
of algorithms uses a so-called single hidden layer perceptron. A detailed description
of the method and its usage in a marketing context is provided by Natter (1999).
Hruschka and Natter (1999) compare neural networks and k-means.

Figure 7.18 illustrates a single hidden layer perceptron. The network has three
layers. The input layer takes the data as input. The output layer gives the response
of the network. In the case of clustering this is the same as the input. In-between
the input and output layer is the so-called hidden layer. It is named hidden because
it has no connections to the outside of the network. The input layer has one so-
called node for every segmentation variable. The example in Fig. 7.18 uses five
segmentation variables. The values of the three nodes in the hidden layer h1, h2
and h3 are weighted linear combinations of the inputs

hj = fj

(
5∑

i=1

αij xi

)

for a non-linear function fj . Each weight αij in the formula is depicted by an arrow
connecting nodes in input layer and hidden layer. The fj are chosen such that 0 ≤
hj ≤ 1, and all hj sum up to one (h1 + h2 + h3 = 1).

In the simplest case, the outputs x̂i are weighted combinations of the hidden
nodes

Fig. 7.18 Schematic
representation of an
auto-encoding neural network
with one hidden layer
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x̂i =
3∑

j=1

βjihi,

where coefficients βji correspond to the arrows between hidden nodes and output
nodes. When training the network, the parameters αij and βji are chosen such
that the squared Euclidean distance between inputs and outputs is as small as
possible for the training data available (the consumers to be segmented). In neural
network vocabulary, the term training is used for parameter estimation. This gives
the network its name auto-encoder; it is trained to predict the inputs xi as accurately
as possible. The task would be trivial if the number of hidden nodes would be equal
to the number available as inputs. If, however, fewer hidden nodes are used (which
is usually the case), the network is forced to learn how to best represent the data
using segment representatives.

Once the network is trained, parameters connecting the hidden layer to the
output layer are interpreted in the same way as segment representatives (centroids)
resulting from traditional cluster algorithms. The parameters connecting the input
layer to the hidden layer can be interpreted in the following way: consider that for
one particular consumer h1 = 1, and hence h2 = h3 = 0. In this case x̂i = β1i for
i = 1, . . . , 5. This is true for all consumers where h1 is 1 or close to 1. The network
predicts the same value for all consumers with h1 ≈ 1. All these consumers are
members of market segment 1 with representative β1i . All consumers with h2 ≈ 1,
are members of segment 2, and so on.

Consumers who have no hj value close to 1 can be seen as in-between segments.
k-means clustering and hard competitive learning produce crisp segmentations,
where each consumer belongs to exactly one segment. Neural network cluster-
ing is an example of a so-called fuzzy segmentation with membership values
between 0 (not a member of this segment) and 1 (member of only this segment).
Membership values between 0 and 1 indicate membership in multiple segments.
Several implementations of auto-encoding neural networks are available in R.
One example is function autoencode() in package autoencoder (Dubossarsky
and Tyshetskiy 2015). Many other clustering algorithms generate fuzzy market
segmentation solutions, see for example R package fclust (Ferraro and Giordani
2015).

7.2.4 Hybrid Approaches

Several approaches combine hierarchical and partitioning algorithms in an attempt
to compensate the weaknesses of one method with the strengths of the other.
The strengths of hierarchical cluster algorithms are that the number of market
segments to be extracted does not have to be specified in advance, and that
similarities of market segments can be visualised using a dendrogram. The biggest
disadvantage of hierarchical clustering algorithms is that standard implementations
require substantial memory capacity, thus restricting the possible sample size of
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the data for applying these methods. Also, dendrograms become very difficult to
interpret when the sample size is large.

The strength of partitioning clustering algorithms is that they have minimal
memory requirements during calculation, and are therefore suitable for segmenting
large data sets. The disadvantage of partitioning clustering algorithms is that the
number of market segments to be extracted needs to be specified in advance.
Partitioning algorithms also do not enable the data analyst to track changes
in segment membership across segmentation solutions with different number of
segments because these segmentation solutions are not necessarily nested.

The basic idea behind hybrid segmentation approaches is to first run a parti-
tioning algorithm because it can handle data sets of any size. But the partitioning
algorithm used initially does not generate the number of segments sought. Rather,
a much larger number of segments is extracted. Then, the original data is discarded
and only the centres of the resulting segments (centroids, representatives of each
market segment) and segment sizes are retained, and used as input for the hierar-
chical cluster analysis. At this point, the data set is small enough for hierarchical
algorithms, and the dendrogram can inform the decision how many segments to
extract.

7.2.4.1 Two-Step Clustering

IBM SPSS (IBM Corporation 2016) implemented a procedure referred to as two-
step clustering (SPSS 2001). The two steps consist of run a partitioning procedure
followed by a hierarchical procedure. The procedure has been used in a wide
variety of application areas, including internet access types of mobile phone users
(Okazaki 2006), segmenting potential nature-based tourists based on temporal
factors (Tkaczynski et al. 2015), identifying and characterising potential electric
vehicle adopters (Mohamed et al. 2016), and segmenting travel related risks (Ritchie
et al. 2017).

The basic idea can be demonstrated using simple R commands. For this purpose
we use the artificial mobile phone data set introduced in Sect. 7.2.3. First we cluster
the original data using k-means with k much larger than the number of market
segments sought, here k = 30:

R> set.seed(1234)
R> PF3.k30 <- stepcclust(PF3, k = 30, nrep = 10)

The exact number of clusters k in this first step is not crucial. Here, 30 clusters were
extracted because the original data set only contains 500 observations. For large
empirical data sets much larger numbers of clusters can be extracted (100, 500 or
1000). The choice of the original number of clusters to extract is not crucial because
the primary aim of the first step is to reduce the size of the data set by retaining only
one representative member of each of the extracted clusters. Such an application of
cluster methods is often also referred to as vector quantisation. The following R
command plots the result of running k-means to extract k = 30 clusters:

R> plot(PF3.k30, data = PF3)
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This plot is shown in Fig. 7.19. The plot visualises the cluster solution using a
neighbourhood graph. In a neighbourhood graph, the cluster means are the nodes,
and are plotted using circles with the cluster number (label) in the middle. The edges
between the nodes correspond to the similarity between clusters. In addition – if the
data is provided – a scatter plot of the data with the observations coloured by cluster
memberships and cluster hulls is plotted.

As can be seen, the 30 extracted clusters are located within the three segments
contained in this artificially created data set. But because the number of clusters
extracted is ten times larger (30) than the actual number of segments (3), each natu-
rally existing market segment is split up into a number of even more homogeneous
segments. The top right market segment – willing to pay a high price for a mobile
phone with many features – has been split up in eight subsegments.

The representatives of each of these 30 market segments (centroids, cluster
centres) as well as the segment sizes serve as the new data set for the second step of
the procedure, the hierarchical cluster analysis. To achieve this, we need to extract
the cluster centres and segment sizes from the k-means solution:

R> PF3.k30.cent <- parameters(PF3.k30)
R> sizes <- table(clusters(PF3.k30))

Based on this information, we can extract segments with hierarchical clustering
using the following R command:

R> PF3.hc <- hclust(dist(PF3.k30.cent), members = sizes)

Figure 7.20 contains the resulting dendrogram produced by plot(PF3.hc).
The three long vertical lines in this dendrogram clearly point to the existence of
three market segments in the data set. It cannot be determined from the hierarchical
cluster analysis, however, which consumer belongs to which market segment. This
cannot be determined because the original data was discarded. What needs to
happen in the final step of two-step clustering, therefore, is to link the original data
with the segmentation solution derived from the hierarchical analysis. This can be
achieved using function twoStep() from package MSA which takes as argument
the hierarchical clustering solution, the cluster memberships of the original data
obtained with the partitioning clustering method, and the number k of segments to
extract:

R> PF3.ts3 <- twoStep(PF3.hc, clusters(PF3.k30), k = 3)
R> table(PF3.ts3)

PF3.ts3
1 2 3

200 100 200

As can be seen from this table (showing the number of members in each segment),
the number of segment members extracted matches the number of segment members
generated for this artificial data set. That the correct segments were indeed extracted
is confirmed by inspecting the plot generated with the following R command:
plot(PF3, col = PF3.ts3). The resulting plot is not shown because it is
in principal identical to that shown in Fig. 7.10.
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Fig. 7.19 k-means clustering of the artificial mobile phone data set into 30 clusters

4 27
12 17 8 10 20 23

16
1 25 13

24 30 2 26
5

11 14
28

6 22
3 7 18 9 15
19 21 29

0
2

4
6

8
10

Fig. 7.20 Hierarchical clustering of the 30 k-means cluster centres of the artificial mobile phone
data set



110 7 Step 5: Extracting Segments

The R commands presented in this section may be slightly less convenient to
use than the fully automated two-step procedure within SPSS. But they illustrate
the key strength of R: the details of the algorithms used are known, and the data
analyst can choose from the full range of hierarchical and partitioning clustering
procedures available in R, rather than being limited to what has been implemented
in a commercial statistical software package.

7.2.4.2 Bagged Clustering

Bagged clustering (Leisch 1998, 1999) also combines hierarchical clustering algo-
rithms and partitioning clustering algorithms, but adds bootstrapping (Efron and
Tibshirani 1993). Bootstrapping can be implemented by random drawing from the
data set with replacement. That means that the process of extracting segments is
repeated many times with randomly drawn (bootstrapped) samples of the data.
Bootstrapping has the advantage of making the final segmentation solution less
dependent on the exact people contained in consumer data.

In bagged clustering, we first cluster the bootstrapped data sets using a parti-
tioning algorithm. The advantage of starting with a partitioning algorithm is that
there are no restrictions on the sample size of the data. Next, we discard the original
data set and all bootstrapped data sets. We only save the cluster centroids (segment
respresentatives) resulting from the repeated partitioning cluster analyses. These
cluster centroids serve as our data set for the second step: hierarchical clustering.
The advantage of using hierarchical clustering in the second step is that the resulting
dendrogram may provide clues about the best number of market segments to extract.

Bagged clustering is suitable in the following circumstances (Dolnicar and
Leisch 2004; Leisch 1998):

• If we suspect the existence of niche markets.
• If we fear that standard algorithms might get stuck in bad local solutions.
• If we prefer hierarchical clustering, but the data set is too large.

Bagged clustering can identify niche segments because hierarchical clustering
captures market niches as small distinct branches in the dendrogram. The increased
chance of arriving at a good segmentation solution results from: (1) drawing many
bootstrap samples from the original data set, (2) repeating the k-means analysis – or
any other partitioning algorithm – many times to avoid a suboptimal initialisation
(the random choice of initial segment representatives), (3) using only the centroids
resulting from the k-means studies in the second (hierarchical) step of the analysis,
and (4) using the deterministic hierarchical analysis in the final step.

Bagged clustering consists of five steps starting with a data set X of size n:

1. Create b bootstrap samples of size n by drawing with replacement consumers
from the data set (using b = 50 or 100 bootstrap samples works well).

2. Repeat the preferred partitioning method for each bootstrap sample, generating
b × k cluster centres (centroids, representatives of market segments) with k

representing the number of clusters (segments). Leisch (1999) shows that the
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exact number of clusters k selected is not important, as long as the number
selected is higher than the number of segments expected to exist in the data.
If k is larger than necessary, segments artificially split up in this step are merged
during hierarchical clustering.

3. Use all cluster centres resulting from the repeated partitioning analyses to create
a new, derived data set. Discard the original data. In the subsequent steps,
replace the original data with the derived data set containing the cluster centres
(centroids, representatives of market segments). It is for this reason that bagged
clustering can deal with large data sets; it effectively discards the large data set
once it has successfully extracted a number of cluster centres.

4. Calculate hierarchical clustering using the derived data set.
5. Determine the final segmentation solution by selecting a cut point for the

dendrogram. Then, assign each original observation (consumer in the data set)
to the market segment the representative of which is closest to that particular
consumer.

Bagged clustering has been successfully applied to tourism data (Dolnicar and
Leisch 2003; Prayag et al. 2015). For illustration purposes, we use the winter
vacation activities data discussed in Dolnicar and Leisch (2003). The underlying
marketing challenge for the Austrian winter tourist destination is to identify
tourist market segments on the basis of their vacation activities. The available
data set contains responses from 2961 tourists surveyed as part of the Austrian
National Guest Survey (winter 1997/1998). Respondents indicated whether they
have engaged in each of 27 winter vacation activities. As a consequence, 27 binary
segmentation variables are available for market segmentation analysis. Activities
include typical winter sports such as alpine skiing and ice skating, but also more
generic tourist activities such as going to a spa or visiting museums. A detailed
description of the data set is provided in Appendix C.2.

We first load the data set from package MSA, and inspect the labels of the 27
winter vacation activities used as segmentation variables:

R> data("winterActiv", package = "MSA")
R> colnames(winterActiv)

[1] "alpine skiing" "cross-country skiing"
[3] "snowboarding" "carving"
[5] "ski touring" "ice-skating"
[7] "sleigh riding" "tennis"
[9] "horseback riding" "going to a spa "

[11] "using health facilities" "hiking"
[13] "going for walks" "organized excursions"
[15] "excursions" "relaxing"
[17] "going out in the evening" "going to discos/bars"
[19] "shopping" "sight-seeing"
[21] "museums" "theater/opera"
[23] "heurigen" "concerts"
[25] "tyrolean evenings" "local events"
[27] "pool/sauna"
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We run bagged clustering using bclust() from package flexclust. We can
specify the same number of base.k = 10 market segments for the partitioning
algorithm and base.iter = 50 bootstrap samples as in Dolnicar and Leisch
(2003) using the following R command:

R> set.seed(1234)
R> winter.bc <- bclust(winterActiv, base.k = 10,
+ base.iter = 50)

Committee Member:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50

Computing Hierarchical Clustering

bclust uses k-means as partitioning method, and the Euclidean distance together
with average linkage in the hierarchical clustering part as the default.

Bagged clustering is an example of a so-called ensemble clustering method
(Hornik 2005). These methods are called ensemble methods because they com-
bine several segmentation solutions into one. Ensembles are also referred to as
committees. Every repeated segment extraction using a different bootstrap sample
contributes one committee member. The final step is equivalent to all committee
members voting on the final market segmentation solution.

Figure 7.21 shows a dendrogram resulting from the second part of bagged
clustering, the hierarchical cluster analysis of the k × b = 10 × 50 = 500
cluster centres (centroids, representatives of segments). This dendrogram appears

0.
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5

1.
0

1.
5

Fig. 7.21 Dendrogram for bagged cluster analysis of the winter vacation activities data set
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to recommend four market segments. But assigning observations to these segments
shows that the left branch of the dendrogram contains two thirds of all tourists. This
large market segment is not very distinct.

Splitting this large segment up into two subsegments leads to a SNOW-
BOARD/PARTY SEGMENT and a SUPER ACTIVES segment. To gain insight into
the characteristics of all resulting segments, we generate a bar chart (Fig. 7.22)
using the following R command:

R> barchart(winter.bc, k = 5)

To inspect segmentation solutions containing fewer or more than five market
segments, we can change the argument k to the desired number of clusters (number
of segments).

Note that the bootstrapping procedure is based on artificial random numbers.
Random number generators in R have changed over the last decade. As a conse-
quence, the results presented here are not identical to those in Dolnicar and Leisch
(2003), but qualitatively the same market segments emerge.

As can be seen from Fig. 7.22, the five segments extracted using bagged
clustering vary substantially in size. The largest segment or cluster (segment 3)
contains more than one third of all tourists in the sample. The smallest segment
(segment 4) contains only 6%. This tiny segment is not particularly interesting
from an organisational point of view, however: it is characterised by above average
agreement with all vacation activities. As such, there is a risk that this segment
may capture acquiescence response style (the tendency of survey respondents to
agree with everything they are asked). Before selecting a segment of such nature as
a target segment, it would have to be investigated (using other variables from the
same survey) whether the profile is a reflection of overall high vacation activity or a
response style.

The second smallest segment in this solution (segment 2) is still a niche segment,
containing only 11% of respondents. Segment 2 displays some very interesting
characteristics: members of this segment rarely go skiing. Instead, a large proportion
of them goes to a spa or a health facility. They also go for walks, and hike
more frequently than the average tourist visiting Austria in that particular winter
season. Relaxation is also very high on the list of priorities for this market segment.
Segment 2 (HEALTH TOURISTS) is a very interesting niche segment in the context
of Austrian tourism. Austria has a large number of thermal baths built along thermal
lines. Water from these hot thermal springs is believed to have health benefits.
Thermal springs are popular, not only among people who are recovering from
injuries, but also as a vacation or short break destination for (mainly older) tourists.

If the same data set had been analysed using a different algorithm, such as k-
means, this niche segment of HEALTH TOURISTS would not have emerged.

An additional advantage of bagged clustering – compared to standard parti-
tioning algorithms – is that the two-step process effectively has a built-in variable
uncertainty analysis. This analysis provides element-wise uncertainty bands for the
cluster centres. These bands are shown in Fig. 7.23, which contains a boxplot of the
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data set
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133 cluster centres (centroids, representatives of market segments) forming segment
5 as generated by

R> bwplot(winter.bc, k = 5, clusters = 5)

Here, only the plot for segment 5 is provided. The same R code can generate
boxplots for all other market segments resulting from bagged clustering.

A general explanation of boxplots and how they are interpreted is provided in
Sect. 6.3 using Fig. 6.2. Looking at Fig. 7.23: if the 133 cluster centres are spread
across the full width of the plot for a specific vacation activity, it indicates that
the market segment is not very distinct with respect to this activity. If, however,
all cluster centres are lumped together, this is a key characteristic of this particular
market segment.

As can be seen in Fig. 7.23, cluster centres assigned to segment 5 display little
variation with respect to a number of variables: going skiing (which most of them
do), a range of cultural activities (which most of them do not engage in), and a few
other activities, such as horseback riding and organised excursions.
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Fig. 7.23 Boxplot of cluster centres from bagged cluster analysis for segment 5 of the winter
vacation activities data set
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With respect to other vacation activities, however, there is a lot of variation
among the cluster centres assigned to segment 5, including relaxation, going out
in the evening, going to discos and bars, shopping, and going to the pool or sauna.

Note that the marginal probabilities in the total population for alpine skiing and
relaxing are almost the same (both approximately 70%). The difference in variability
is therefore not simply an artefact of how many people undertake these activities
overall. Low variability in unpopular winter activities, on the other hand, is not
unexpected: if almost nobody in the total tourist population goes horseback riding,
it is not a key insight that cluster centres assigned to segment 5 do not go horseback
riding either.

7.3 Model-Based Methods

Distance-based methods have a long history of being used in market segmentation
analysis. More recently, model-based methods have been proposed as an alternative.
According to Wedel and Kamakura (2000, p. XIX) – the pioneers of model-
based methods in market segmentation analysis – mixture methodologies have
attracted great interest from applied marketing researchers and consultants. Wedel
and Kamakura (2000, p. XIX) predict that in terms of impact on academics and
practitioners, next to conjoint analysis, mixture models will prove to be the most
influential methodological development spawned by marketing problems to date.

Here, a slightly more pragmatic perspective is taken. Model-based methods are
viewed as one additional segment extraction method available to data analysts.
Given that extracting market segments is an exploratory exercise, it is helpful to use
a range of extraction methods to determine the most suitable approach for the data
at hand. Having model-based methods available is particularly useful because these
methods extract market segments in a very different way, thus genuinely offering an
alternative extraction technique.

As opposed to distance-based clustering methods, model-based segment extrac-
tion methods do not use similarities or distances to assess which consumers should
be assigned to the same market segment. Instead, they are based on the assumption
that the true market segmentation solution – which is unknown – has the following
two general properties: (1) each market segment has a certain size, and (2) if a
consumer belongs to market segment A, that consumer will have characteristics
which are specific to members of market segment A. These two properties are
assumed to hold, but the exact nature of these properties – the sizes of these
segments, and the values of the segment-specific characteristics – is not known
in advance. Model-based methods use the empirical data to find those values for
segment sizes and segment-specific characteristics that best reflect the data.

Model-based methods can be seen as selecting a general structure, and then fine-
tuning the structure based on the consumer data. The model-based methods used in
this section are called finite mixture models because the number of market segments
is finite, and the overall model is a mixture of segment-specific models. The two
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properties of the finite mixture model can be written down in a more formal way.
Property 1 (that each market segment has a certain size) implies that the segment
membership z of a consumer is determined by the multinomial distribution with
segment sizes π :

z ∼ Multinomial(π).

Property 2 states that members of each market segment have segment-specific
characteristics. These segment-specific characteristics are captured by the vector
θ , containing one value for each segment-specific characteristic. Function f (),
together with θ , captures how likely specific values y are to be observed in the
empirical data, given that the consumer has segment membership z, and potentially
given some additional pieces of information x for that consumer:

f (y|x, θz).

These functions f () together with their parameters θ are also referred to as segment-
specific models and correspond to statistical distribution functions.

This leads to the following finite mixture model:

k∑
h=1

πhf (y|x, θh), πh > 0,

k∑
h=1

πh = 1. (7.1)

The values to be estimated – across all segments h ranging from 1 to k – consist
of the segment sizes π (positive values summing to one), and the segment-specific
characteristics θ . The values that need to be estimated are called parameters.

Different statistical frameworks are available for estimating the parameters of
the finite mixture model. Maximum likelihood estimation (see for example Casella
and Berger 2010) is commonly used. Maximum likelihood estimation aims at
determining the parameter values for which the observed data is most likely to occur.
The maximum likelihood estimate has a range of desirable statistical properties.
The likelihood is given by interpreting the function in Eq. 7.1 as a function of the
parameters instead of the data. However, even for the simplest mixture models,
this likelihood function cannot be maximised in closed form. Iterative methods are
required such as the EM algorithm (Dempster et al. 1977; McLachlan and Basford
1988; McLachlan and Peel 2000). This approach regards the segment memberships
z as missing data, and exploits the fact that the likelihood of the complete data
(where also the segment memberships are included as observed data) is easier
to maximise. An alternative statistical inference approach is to use the Bayesian
framework for estimation. If a Bayesian approach is pursued, mixture models are
usually fitted using Markov chain Monte Carlo methods (see for example Frühwirth-
Schnatter 2006).

Regardless of the way the finite mixture model is estimated, once values for the
segment sizes, and the segment-specific characteristics are determined (for example
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using the maximum likelihood or the posterior mode estimates), consumers in the
empirical data set can be assigned to segments using the following approach. First,
the probability of each consumer to be a member of each segment is determined.
This is based on the information available for the consumer, which consists of y,
the potentially available x, and the estimated parameter values of the finite mixture
model:

Prob(z = h|x, y, π1, . . . , πk, θ1, . . . , θk) = πhf (y|x, θh)∑k
j πjf (y|x, θj )

(7.2)

The consumers are then assigned to segments using these probabilities by selecting
the segment with the highest probability.

As is the case with partitioning clustering methods, maximum likelihood esti-
mation of the finite mixture model with the EM algorithm requires specifying the
number of segments k to extract in advance. But the true number of segments is
rarely known. A standard strategy to select a good number of market segments is to
extract finite mixture models with a varying number of segments and compare them.
Selecting the correct number of segments is as problematic in model-based methods
as it is to select the correct number of clusters when using partitioning methods.

In the framework of maximum likelihood estimation, so-called information
criteria are typically used to guide the data analyst in their choice of the number
of market segments. Most common are the Akaike information criterion or AIC
(Akaike 1987), the Bayesian information criterion or BIC (Schwarz 1978; Fraley
and Raftery 1998), and the integrated completed likelihood or ICL (Biernacki et al.
2000). All these criteria use the likelihood as a measure of goodness-of-fit of the
model to the data, and penalise for the number of parameters estimated. This penal-
isation is necessary because the maximum likelihood value increases as the model
becomes more complex (more segments, more independent variables). Comparing
models of different complexity using maximum likelihoods will therefore always
lead to the recommendation of the larger model. The criteria differ in the exact
value of the penalty. The specific formulae for AIC, BIC and ICL are given by:

AIC = 2df − 2 log(L) (7.3)

BIC = log(n)df − 2 log(L) (7.4)

ICL = log(n)df − 2 log(L) + 2ent (7.5)

where df is the number of all parameters of the model, log(L) is the maximised log-
likelihood, and n is the number of observations. ent is the mean entropy (Shannon
1948) of the probabilities given in Eq. 7.2. Mean entropy decreases if the assignment
of observations to segments is clear. The entropy is lowest if a consumer has a
100% probability of being assigned to a certain segment. Mean entropy increases
if segment assignments are not clear. The entropy is highest if a consumer has the
same probability of being a member of each market segment.
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All criteria decrease if fewer parameters are used or the likelihood increases. In
contrast, more parameters or smaller likelihoods will increase them. The goal is to
minimise them. Because log(n) is larger than 2 for n larger than 7, BIC penalises
stronger than AIC for additional parameters, and prefers smaller models in case
different model sizes are recommended. The ICL uses an additional penalty to the
BIC, which takes the separatedness of segments into account. In addition to these
three criteria, a number of other information criteria have been proposed; no one
specific information criterion has been shown to consistently outperform the others
in model-based clustering applications.

At first glance, finite mixture models may appear unnecessarily complicated.
The advantage of using such models is that they can capture very complex
segment characteristics, and can be extended in many different ways. One possible
extension of the presented finite mixture model includes a model where the segment-
specific models differ not only in the segment characteristics θ , but also in the
general structure. There is an extensive literature available on finite mixture models
including several research monographs (see for example McLachlan and Peel 2000;
Frühwirth-Schnatter 2006). The finite mixture model literature uses the following
terminology: market segments are referred to as mixture components, segment sizes
as prior probabilities or component sizes, and the probability of each consumer to
be a member of each segment given in Eq. 7.2 as posterior probability.

7.3.1 Finite Mixtures of Distributions

The simplest case of model-based clustering has no independent variables x, and
simply fits a distribution to y. To compare this with distance-based methods, finite
mixtures of distributions basically use the same segmentation variables: a number of
pieces of information about consumers, such as the activities they engage in when
on vacation. No additional information about these consumers, such as total travel
expenditures, is simultaneously included in the model.

The finite mixture model reduces to

k∑
h=1

πhf (y|θh), πh ≥ 0,

k∑
h=1

πh = 1. (7.6)

The formulae are the same as in Eq. 7.1, the only difference is that there is no x.
The statistical distribution function f () depends on the measurement level or scale
of the segmentation variables y.
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7.3.1.1 Normal Distributions

For metric data, the most popular finite mixture model is a mixture of several multi-
variate normal distributions. The multivariate normal distribution can easily model
covariance between variables; and approximate multivariate normal distributions
occur in both biology and business. For example, physical measurements on humans
like height, arm length, leg length or foot length are almost perfectly modelled
by a multivariate normal distribution. All these variables have an approximate
univariate normal distribution individually, but are not independent of each other.
Taller people have longer arms, longer legs and bigger feet. All measurements are
positively correlated. An example from business is that prices in markets with many
players can be modelled using (log-)normal distributions. In sum, a mixture of
normal distributions can be used for market segmentation when the segmentation
variables are metric, for example: money spent on different consumption categories,
time spent engaging in different vacation activities, or body measurements for the
segments of different clothes sizes.

Mathematically, f () in Eq. 7.6 is the multivariate normal distribution which has
two sets of parameters (mean and variance) like the univariate normal distribution.
If p segmentation variables are used, these have p mean values, and each segment
has a segment-specific mean vector μh of length p. In addition to the p variances of
the p segmentation variables, the covariance structure can be modelled, resulting in
a p ×p covariance matrix �h for each segment. The covariance matrix �h contains
the variances of the p segmentation variables in the diagonal and the covariances
between pairs of segmentation variables in the other entries. The covariance matrix
is symmetric, and contains p(p + 1)/2 unique values.

The segment-specific parameters θh are the combination of the mean vector μh

and the covariance matrix �h, and the number of parameters to estimate is p +
p(p + 1)/2.

Mixtures of normal distributions can be illustrated using the simple artificial
mobile phone data set presented in Sect. 7.2.3 and shown in Fig. 7.9:

R> library("flexclust")
R> set.seed(1234)
R> PF3 <- priceFeature(500, which = "3clust")

Fitting a mixture of normal distributions is best done in R with package mclust (Fra-
ley et al. 2012; Fraley and Raftery 2002). Function Mclust fits models for different
numbers of segments using the EM algorithm. Initialisation is deterministic using
the partition inferred from a hierarchical clustering approach with a likelihood-based
distance measure. Here, we extract two to eight market segments (argument G for
number of segments):

R> library("mclust")
R> PF3.m28 <- Mclust(PF3, G = 2:8)
R> PF3.m28
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Fig. 7.24 Uncertainty plot of
the mixture of normal
distributions for the artificial
mobile phone data set
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'Mclust' model object:
best model: spherical, varying volume (VII) with
3 components

Ignoring the statement about “spherical, varying volume (VII)” for
the moment, we see that the BIC correctly recommends extracting three segments.

Figure 7.24 shows the market segments resulting from the mixture of normal
distributions for the artificial mobile phone. We obtain this plot using the following
R command:

R> plot(PF3.m28, what = "uncertainty")

The plot in Fig. 7.24 is referred to as an uncertainty plot. The uncertainty plot
illustrates the ambiguity of segment assignment. A consumer who cannot be clearly
assigned to one of the market segments is considered uncertain. The further away
from 1 a consumer’s maximum segment assignment probability is (as determined
using Eq. 7.2), the less certain is the segment assignment. The uncertainty plot is
a useful visualisation alerting the data analyst to solutions that do not induce clear
partitions, and pointing to market segments being artificially created, rather than
reflecting the existence of natural market segments in the data. The uncertainty
plot consists of a scatter plot of observations (consumers). The colours of the
observations indicate segment assignments. Larger solid coloured bubbles have
higher assignment uncertainty. The means and covariance matrices of the segments
are superimposed to provide insights into the fitted mixture of normal distributions.

The “spherical, varying volume (VII)” part of the Mclust output
indicates which specific mixture model of normal distributions is selected according
to the BIC. Model selection for mixtures of normal distributions does not only
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require selecting the number of segments, but also choosing an appropriate shape
of the covariance matrices of the segments.

For two-dimensional data (like in the mobile phone example), each market
segment can be shaped like an ellipse. The ellipses can have different shapes, areas
and orientations. The ellipse corresponding to one market segment could be very flat
and point from bottom left to top right, while another one could be a perfect circle.
For the mobile phone data set, the procedure correctly identifies that the ellipses are
shaped as circles. But the areas covered by the three circles are not the same. The
segment in the top right corner is less spread out and more compact.

A circle with more than two dimensions is a sphere. The area covered by a sphere
is its volume. The “spherical, varying volume (VII)” part uses the
terms for higher dimensional spaces because the dimensionality is larger than two in
most applications. The output indicates that spherical covariance matrices are used
for the segments but with different volume. This selected shape for the covariance
matrices is shown in Fig. 7.24, where the axes of the ellipses are parallel to the
coordinate axes, and have the shape of a circle.

Spherical covariance structures correspond to covariance matrices where only
the main diagonal elements are non-zero, and they all have the same value. So –
instead of p(p + 1)/2 parameters – only one parameter has to be estimated for each
covariance matrix: the radius of the sphere (circle in the 2-dimensional example).
If it were known in advance that only spherical clusters are present in the data, the
task of fitting the mixture of normal distributions would be much simpler because
fewer parameters have to be estimated.

The covariance matrices of the mixture of normal distributions used for the
segments strongly affect the number of parameters that need to be estimated. Given
that each �h contains p(p + 1)/2 parameters for p segmentation variables, the
number of parameters that has to be estimated grows quadratically with the number
of segmentation variables p.

The simple mobile phone example contains only two segmentation variables
(p = 2). The number of parameters for each market segment is 2 (length of μh)
plus 3 (symmetric 2 × 2 matrix �h), which sums up to 2 + 3 = 5. If three market
segments are extracted, a total of 3 × 5 = 15 parameters have to be estimated for
the segments, plus two segment sizes (the three πh have to sum up to one, such that
π3 = 1 − π1 − π2). In sum, a mixture of normal distributions with three segments
for the artificial mobile phone data set has 15 + 2 = 17 parameters.

If ten segmentation variables are used (p = 10), the number of parameters that
need to be estimated increases to 10 mean values, covariance matrices with 10 ×
11/2 = 55 parameters, and 10 + 55 = 65 parameters per segment. For a three-
segment model this means that 3 × 65 + 2 = 197 parameters have to be estimated.
As a consequence, large sample sizes are required to ensure reliable estimates.

To reduce the number of parameters to estimate, package mclust imposes
restrictions on the covariance matrices. One possible restriction is to use spherical
instead of ellipsoidal covariances, such that only a single radius has to be estimated
for each segment. An even more parsimonious model restricts all spheres for all
segments to having the same radius (and hence the same volume).
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Table 7.3 The 14 covariance
models available in package
mclust

EII Spherical, equal volume

VII Spherical, unequal volume

EEI Diagonal, equal volume and shape

VEI Diagonal, varying volume, equal shape

EVI Diagonal, equal volume, varying shape

VVI Diagonal, varying volume and shape

EEE Ellipsoidal, equal volume, shape, and orientation

EVE Ellipsoidal, equal volume and orientation

VEE Ellipsoidal, equal shape and orientation

VVE Ellipsoidal, equal orientation

EEV Ellipsoidal, equal volume and equal shape

VEV Ellipsoidal, equal shape

EVV Ellipsoidal, equal volume

VVV Ellipsoidal, varying volume, shape, and orientation

By default, Mclust tries a full model where all segments have different
covariance matrices without any restrictions (called model VVV in Table 7.3 for
varying volume, shape, and orientation). In addition, 13 restricted models are
estimated: the smallest model assumes identical spheres for all segments (EII,
spherical, equal volume). A list of all models is shown in Table 7.3, and illustrated
in Fig. 7.25. Mathematical details are provided in the mclust documentation.

The BIC values obtained for each of the resulting models for different numbers
of segments are shown in Fig. 7.26. We obtain this plot using:

R> plot(PF3.m28, what = "BIC")

R package mclust uses the negative BIC values (instead of the BIC values defined
in Eq. 7.4), but refers to them as BIC values. It makes no difference to the results,
except that we now want to maximise, not minimise the BIC.

Figure 7.26 plots the BIC value along the y-axis, and the number of segments
(ranging from 2 to 8) along the x-axis. The BIC values obtained for each covariance
model are joined using lines. The different colours and point characters used for
each of the covariance models are indicated in the legend in the bottom right corner.
As can be seen, BIC values are low for two segments, then dramatically increase
for three segments, and show no further significant improvement for solutions with
more than three segments. The BIC therefore recommends a spherical, varying
volume (VII) model with three segments. This leads to selecting a model that allows
to extract the three well-separated, distinct segments using a parsimonious mixture
model. Unfortunately, if empirical consumer data is used as the basis for market
segmentation analysis, it is not always possible to easily assess the quality of the
recommendation made by information criteria such as the BIC.
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EII VII EEI VEI EVI

VVI EEE EVE VEE VVE

EEV VEV EVV VVV

Fig. 7.25 Visualisation of the 14 covariance models available in package mclust

Fig. 7.26 BIC values of the
mixtures of normal
distributions for the artificial
mobile phone data set
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Example: Australian Vacation Motives

In addition to their vacation motives, survey respondents also answered a range of
other questions. These answers are contained in the data frame vacmotdesc. The
following three metric variables are available: moral obligation score, NEP score,
and environmental behaviour score on vacation. We load the data set and extract the
metric variables using:

R> data("vacmot", package = "flexclust")
R> vacmet <- vacmotdesc[, c("Obligation", "NEP",
+ "Vacation.Behaviour")]
R> vacmet <- na.omit(vacmet)

Because variable VACATION.BEHAVIOUR contains missing values, we remove
respondents with missing values using na.omit. We then visualise the data:

R> pairs(vacmet, pch = 19, col = rgb(0, 0, 0, 0.2))

Solid points are drawn using pch = 19. To avoid losing information due to
overplotting, the points are black with transparency using rgb(0, 0, 0, 0.2)
with an α-shading value of 0.2. Figure 7.27 indicates that no clearly separated
segments exist in the data.

Command Mclust fits all 14 different covariance matrix models by default, and
returns the best model with respect to the BIC:

R> vacmet.m18 <- Mclust(vacmet, G = 1:8)

Alternatively, Mclust can fit only selected covariance matrix models. In the
example below, we fit only covariance models where the covariance matrices have
equal volume, shape and orientation over segments. We can look up those model
names in Table 7.3:

R> vacmet.m18.equal <- Mclust(vacmet, G = 1:8,
+ modelNames = c("EEI", "EII", "EEE"))

The best models according to the BIC are:

R> vacmet.m18

'Mclust' model object:
best model:
ellipsoidal, equal shape and orientation (VEE)
with 2 components

R> vacmet.m18.equal

'Mclust' model object:
best model:
ellipsoidal, equal volume, shape and orientation (EEE)
with 3 components

Results indicate that – in the case where all 14 different covariance matrices are
considered – a mixture model with two segments is selected. In the restricted case,
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Fig. 7.27 Scatter plot of the metric variables in the Australian travel motives data set

a model with three segments emerges. Figures 7.28 and 7.29 visualise the fitted
models using classification plots. The classification plot is similar to the uncertainty
plot, except that all data points are of the same size regardless of their uncertainty
of assignment.

R> plot(vacmet.m18, what = "classification")
R> plot(vacmet.m18.equal, what = "classification")

In both selected mixture models, the covariance matrices have identical orien-
tation and shape. This implies that the correlation structure between the variables
is the same across segments. However, in the case where all covariance models
are considered, the covariance matrices differ in volume. Using mixtures of normal
distributions means that the data points are not assigned to the segment where the
mean is closest in Euclidean space (as is the case for k-means clustering). Rather, the
distance induced by the covariance matrices (Mahalanobis distance) is used, and the
segment sizes are taken into account. Assigning segment membership in this way
implies that observations are not necessarily assigned to the segment representative
closest to them in Euclidean space. However, restricting covariance matrices to be
identical over segments at least ensures that the same distance measure is used
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Fig. 7.28 Classification plot of the mixture of normal distributions for the Australian travel
motives data set selected using the BIC among all covariance models

for all segment representatives for segment membership assignment except for the
differences in segment sizes.

7.3.1.2 Binary Distributions

For binary data, finite mixtures of binary distributions, sometimes also referred to as
latent class models or latent class analysis (Bhatnagar and Ghose 2004; Kemperman
and Timmermanns 2006; Campbell et al. 2014) are popular. In this case, the p

segmentation variables in the vector y are not metric, but binary (meaning that all
p elements of y are either 0 or 1). The elements of y, the segmentation variables,
could be vacation activities where a value of 1 indicates that a tourist undertakes this
activity, and a value of 0 indicates that they do not.

The mixture model assumes that respondents in different segments have different
probabilities of undertaking certain activities. For example, some respondents may
be interested in alpine skiing and not interested in sight-seeing. This leads to these



128 7 Step 5: Extracting Segments

Obligation

2.0 3.0 4.0 5.0

1
2

3
4

5

2.
0

3.
0

4.
0

5.
0

NEP

1 2 3 4 5

Vacation.
Behaviour

2 3 4 5

2
3

4
5

Fig. 7.29 Classification plot of the mixture of normal distributions for the Australian travel
motives data set selected using the BIC among the models with identical covariance matrices across
segments

two variables being negatively correlated in the overall data set. However, this cor-
relation is due to groups of respondents interested in one of the two actitivies only.

To illustrate mixtures of binary distributions, we use the data set containing
winter activities of Austrian tourists (introduced in the context of bagged clustering
in Sect. 7.2.4). We first investigate the observed frequency patterns for the variables
ALPINE SKIING and SIGHT-SEEING:

R> data("winterActiv", package = "MSA")
R> winterActiv2 <- winterActiv[, c("alpine skiing",
+ "sight-seeing")]
R> table(as.data.frame(winterActiv2))

sight-seeing
alpine skiing 0 1

0 416 527
1 1663 355
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Of the 2961 respondents, only 355 (12%) stated they engaged in both activities. If
the two activities were not associated, we would expect this percentage to be much
higher:

R> p <- colMeans(winterActiv2)
R> p

alpine skiing sight-seeing
0.6815265 0.2978723

R> round(prod(p) * 100)

[1] 20

The expected percentage is 20%. This indicates an association between the two
variables across the complete data set. The expected counts for the patterns (given
the overall mean activity levels for the two activities) are:

R> n <- nrow(winterActiv2)
R> expected <- function(p) {
+ res <- outer(c(1 - p[1], p[1]), c(1 - p[2], p[2]))
+ dimnames(res) <- setNames(rep(list(c("0", "1")), 2),
+ names(p))
+ res
+ }
R> round(n * expected(p))

sight-seeing
alpine skiing 0 1

0 662 281
1 1417 601

The model of independent binary distributions does not represent the data well (as
indicated by the discrepancy between the observed and expected frequencies). We
thus fit a mixture of binary distributions to the data. The expected frequencies of a
suitable mixture model should correspond to the observed frequencies.

The R package flexmix (Leisch 2004; Grün and Leisch 2008) implements a
general framework for mixture modelling for a wide variety of segment mod-
els, including mixtures of regression models (see Sect. 7.3.2). We use function
flexmix to fit the mixture model with one single run of the EM algorithm. We
need to specify the dependent (winterActiv2) and the independent variables
(1) using the formula interface. The formula is of the form y ~ x where y are
the dependent variables, and x are the independent variables. Because mixtures of
distributions do not contain any independent variables x (see Eq. 7.6), the formula
used for mixtures of distributions is y ~ 1. Here, we extract two market segments
(k = 2), and we use independent binary distributions as segment-specific model
(FLXMCmvbinary):

R> library("flexmix")
R> winterActiv2.m2 <- flexmix(winterActiv2 ~ 1, k = 2,
+ model = FLXMCmvbinary())
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Function flexmix() initialises the EM algorithm by randomly assigning proba-
bilities for each consumer to be a member of each of the market segments. The
EM algorithm can get stuck in local optima of the likelihood. We can avoid that by
using several random starts with different initialisations, and retain the solution with
the highest likelihood using the function stepFlexmix. We specify the number
of random restarts using nrep = 10 for ten random restarts. The random restart
procedure is undertaken for the full range of market segments specified, in this
case 1 to 4 (k = 1:4). The argument verbose = FALSE prevents progress
information on the calculations to be printed.

R> winterActiv2.m14 <- stepFlexmix(winterActiv2 ~ 1,
+ k = 1:4, model = FLXMCmvbinary(), nrep = 10,
+ verbose = FALSE)
R> winterActiv2.m14

Call:
stepFlexmix(winterActiv2 ~ 1, model = FLXMCmvbinary(),

k = 1:4, nrep = 10, verbose = FALSE)
iter converged k k0 logLik AIC BIC ICL

1 2 TRUE 1 1 -3656.137 7316.274 7328.260 7328.260
2 30 TRUE 2 2 -3438.491 6886.982 6916.948 7660.569
3 22 TRUE 3 3 -3438.490 6892.981 6940.927 10089.526
4 21 TRUE 4 4 -3438.490 6898.980 6964.907 10979.912

The output shows summary information for each of the four models fitted for
different numbers of segments (k = 1:4). These four models are those resulting
from the best of 10 restarts. The summary information consists of: the number
of iterations of the EM algorithm until convergence (iter), whether or not the
EM algorithm converged (converged), the number of segments in the fitted
model (k), the number of segments initially specified (k0), the log-likelihood
obtained (logLik), and the values for the information criteria (AIC, BIC and
ICL). By default, package flexmix removes small segments when running the
EM algorithm. Small segments can cause numeric problems in the estimation
of the parameters because of the limited number of observations (consumers).
We can add the argument control = list(minprior = 0) to the call of
stepFlexmix() to avoid losing small segments. This argument specification
ensures that k is equal to k0.

Results indicate EM algorithm convergence for all models. The number of
segments in the final models are the same as the number used for initialisation.
The log-likelihood increases strongly when going from one to two segments, but
remains approximately the same for more segments. All information criteria except
for the ICL suggest using a mixture with two segments. The best model with respect
to the BIC results from:

R> best.winterActiv2.m14 <- getModel(winterActiv2.m14)

By default, the BIC value recommends a model. We can use the AIC by setting
which = "AIC". We can specify the number of segments with which = "2".
The following command returns basic information on this two-segment model:

R> best.winterActiv2.m14
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Call:
stepFlexmix(winterActiv2 ~ 1, model = FLXMCmvbinary(),

k = 2, nrep = 10, verbose = FALSE)

Cluster sizes:
1 2

1298 1663

convergence after 30 iterations

This basic information contains the number of consumers assigned to each segment
and the number of iterations required to reach convergence.

The parameters of the segment-specific models are the probabilities of observing
a 1 in each of the variables. These probabilities characterise the segments, and have
the same interpretation as centroids in k-means clustering of binary data. They are
used in the same way to create tables and figures of segment profiles, as discussed
in detail in Step 6. We obtain the probabilities using:

R> p <- parameters(best.winterActiv2.m14)
R> p

Comp.1 Comp.2
center.alpine skiing 0.3531073 0.94334159
center.sight-seeing 0.6147303 0.04527384

Segment 1 (denoted as Comp.1) contains respondents with a high likelihood to go
sight-seeing, and a low probability of going alpine skiing. Respondents in segment 2
(Comp.2) go alpine skiing, and are not interested in sight-seeing.

The expected table of frequencies given this fitted model results from:

R> pi <- prior(best.winterActiv2.m14)
R> pi

[1] 0.4435012 0.5564988

R> round(n * (pi[1] * expected(p[, "Comp.1"]) +
+ pi[2] * expected(p[, "Comp.2"])))

center.sight-seeing
center.alpine skiing 0 1

0 416 526
1 1663 355

The table of expected frequencies is similar to the table of observed frequencies.
Using the mixture model, the association between the two variables is explained by
the segments. Within each segment, the two variables are not associated. But the
fact that members of the segments differ in their vacation activity patterns, leads to
the association of the two variables across all consumers.
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Fig. 7.30 AIC, BIC and ICL
values of mixtures of binary
distributions for the winter
vacation activities data set
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Example: Austrian Winter Vacation Activities

We fit a mixture of binary distributions to the data set containing 27 winter activities.
We vary the number of segments from 2 to 8, and use 10 random initialisations with
the EM algorithm:

R> set.seed(1234)
R> winter.m28 <- stepFlexmix(winterActiv ~ 1, k = 2:8,
+ nrep = 10, model = FLXMCmvbinary(),
+ verbose = FALSE)

Figure 7.30 shows AIC, BIC and ICL curves for 2 to 8 segments, obtained by:

R> plot(winter.m28)

Figure 7.30 plots the number of market segments (components) along the x-
axis, and the values of the information criteria along the y-axis. Lower values
of information criteria are better. Inspecting the development of the values of
all three information criteria in Fig. 7.30 leads to the following conclusions: ICL
recommends 4 market segments (components); BIC recommends 6 segments, but
displays a major decrease only up to 5 segments; and AIC suggests at least 8 market
segments.

We choose the five-segment solution for closer inspection because it represents a
compromise between the recommendations made by BIC and ICL:

R> winter.m5 <- getModel(winter.m28, "5")
R> winter.m5

Call:
stepFlexmix(winterActiv ~ 1, model = FLXMCmvbinary(),
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k = 5, nrep = 10, verbose = FALSE)

Cluster sizes:
1 2 3 4 5

912 414 200 218 1217

convergence after 67 iterations

The command parameters(winter.m5) extracts the fitted probabilities of
the mixture model. Function propBarchart from package flexclust creates a
chart similar to the segment profile plot discussed in Step 6.

Figure 7.31 shows the resulting plot. We can specify how we want to label the
panels in the plot using the argument strip.prefix. In this example, we use the
term “Segment” instead of “Cluster”.

R> propBarchart(winterActiv, clusters(winter.m5),
+ alpha = 1, strip.prefix = "Segment ")

As can be seen, the results from the mixture of binary distributions are similar to
those from bagged clustering, but not identical. The two largest segments of tourists
(in this case segments 1 and 5) either engage in a range of activitivies including
alpine skiing, going for walks, relaxing, shopping and going to the pool/sauna, or are
primarily interested in alpine skiing. The health segment of tourists (using spas and
health facilities) re-emerges as segment 4. Arriving at market segments with similar
profiles when using these two distinctly different techniques, serves as validation
of the solution, and gives confidence that these market segments are not entirely
random.

7.3.2 Finite Mixtures of Regressions

Finite mixtures of distributions are similar to distance-based clustering methods
and – in many cases – result in similar solutions. Compared to hierarchical or
partitioning clustering methods, mixture models sometimes produce more useful,
and sometimes less useful solutions. Finite mixtures of regression models (e.g.,
Wedel and Kamakura 2000; Bijmolt et al. 2004; Grün and Leisch 2007; Grün
and Leisch 2008; Oppewal et al. 2010) offer a completely different type of market
segmentation analysis.

Finite mixture of regression models assume the existence of a dependent
target variable y that can be explained by a set of independent variables x.
The functional relationship between the dependent and independent variables is
considered different for different market segments. Figure 7.32 shows a simple
artificial data set we will use to illustrate how finite mixtures of regressions work.
The command data("themepark", package = "MSA") loads the data.
The command plot(pay ~ rides, data = themepark) plots the data.
Figure 7.32 shows the entrance fee consumers are willing to pay for a theme park



134 7 Step 5: Extracting Segments

pool/sauna
local events

tyrolean evenings
concerts
heurigen

theater/opera
museums

sight−seeing
shopping

going to discos/bars
going out in the evening

relaxing
excursions

organized excursions
going for walks

hiking
using health facilities

going to a spa
horseback riding

tennis
sleigh riding
ice−skating
ski touring

carving
snowboarding

cross−country skiing
alpine skiing

Segment 1: 912

0 20 40 60 80 100

Segment 2: 414

pool/sauna
local events

tyrolean evenings
concerts
heurigen

theater/opera
museums

sight−seeing
shopping

going to discos/bars
going out in the evening

relaxing
excursions

organized excursions
going for walks

hiking
using health facilities

going to a spa
horseback riding

tennis
sleigh riding
ice−skating
ski touring

carving
snowboarding

cross−country skiing
alpine skiing

Segment 3: 200 Segment 4: 218

pool/sauna
local events

tyrolean evenings
concerts
heurigen

theater/opera
museums

sight−seeing
shopping

going to discos/bars
going out in the evening

relaxing
excursions

organized excursions
going for walks

hiking
using health facilities

going to a spa
horseback riding

tennis
sleigh riding
ice−skating
ski touring

carving
snowboarding

cross−country skiing
alpine skiing

0 20 40 60 80 100

Segment 5: 1217

Fig. 7.31 Bar chart of segment-specific probabilities of the mixture of binary distributions fitted
to the winter vacation activities data set
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Fig. 7.32 Artificial theme
park data set
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in dependence of the number of rides available in the theme park. As can be seen
in Fig. 7.32, two market segments are present in this data: the willingness to pay
of the top segment increases linearly with the number of rides available. Members
of this segment think that each ride is worth a certain fixed amount of money. The
bottom segment does not share this view. Rather, members of this market segment
are not willing to pay much money at all until a certain minimum threshold of rides
is offered by a theme park. But their willingness to pay increases substantially if
a theme park offers a large number of rides. Irrespective of the precise number of
rides on offer in the theme park, the willingness to pay of members of the second
segment is always lower than the willingness to pay of the first segment.

The artificial data set was generated using the following two linear regression
models for the two segments:

segment 1: y = x + ε,

segment 2: y = 0.0125x2 + ε,

where x is the number of rides, y is the willingness to pay, and ε is normally
distributed random noise with standard deviation σ = 2. In addition, y was ensured
to be non-negative.

A linear regression model with the number of rides and the squared number of
rides as regressors can be specified with the formula interface in R using:

R> pay ~ rides + I(rides^2)

Package flexmix allows fitting a finite mixture of two linear regression models.
Because mixtures of regression models are the default in package flexmix, no
model needs to be specified. The default model = FLXMRglm() is used.
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Package flexmix allows calculating mixtures of linear regression models, as well
as mixtures of generalised linear models (GLM) for logistic or Poisson regression.
The following R command executes 10 runs of the EM algorithm with random
initialisations. Only the correct number of segments k = 2 is used here, but selecting
the number of segments using AIC, BIC or ICL works exactly like in the binary data
example in Sect. 7.3.1.2.

R> library("flexmix")
R> set.seed(1234)
R> park.f1 <- stepFlexmix(pay ~ rides + I(rides^2),
+ data = themepark, k = 2, nrep = 10, verbose = FALSE)
R> park.f1

Call:
stepFlexmix(pay ~ rides + I(rides^2), data = themepark,

k = 2, nrep = 10, verbose = FALSE)

Cluster sizes:
1 2

119 201

convergence after 20 iterations

The model formula pay ~ rides + I(rides^2) indicates that the number
of rides and the squared number of rides are regressors. The same model formula
specification can be used for a standard linear model fitted using function lm(). The
only difference is that – in this example – two regression models are fitted simulta-
neously, and consumer (observation) membership to market segments (components)
is unknown.

To assess to which market segments the mixture model assigns observations to,
observations are plotted in a scatter plot colouring them by segment membership

Fig. 7.33 Scatter plot with
observations coloured by
segment membership from a
two-segment mixture of
linear regression models for
the artificial theme park data
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(see Fig. 7.33). Function curve() defines the true regression functions, and adds
them to the plot using:

R> plot(pay ~ rides,data = themepark, col = clusters(park.f1),
+ xlab = "number of rides", ylab = "willingness to pay")
R> seg1 <- function(x) x
R> seg2 <- function(x) 0.0125 * x^2

R> curve(seg1, from = 0, to = 50, add = TRUE)
R> curve(seg2, from = 0, to = 50, add = TRUE)

The parameters estimated by the model are:

R> parameters(park.f1)

Comp.1 Comp.2
coef.(Intercept) 1.60901610 0.3171846123
coef.rides -0.11508969 0.9905130420
coef.I(rides^2) 0.01439438 0.0001851942
sigma 2.06263293 1.9899121188

Each segment has one regression coefficient for the intercept, for the linear term
for the number of rides, and for the quadratic term for the number of rides; three
estimates in total. The noise standard deviation sigma requires one additional
estimate.

Fitting mixtures with the EM algorithm is as prone to label switching as any
partitioning clustering method. Segment 1 and segment 2 in the description of
the data generating process above now re-emerge as segment 2 and segment 1,
respectively. This is obvious from the below summary of the fitted regression
coefficients:

R> summary(refit(park.f1))

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6090161 0.6614587 2.4325 0.01499 *
rides -0.1150897 0.0563449 -2.0426 0.04109 *
I(rides^2) 0.0143943 0.0010734 13.4104 < 2e-16 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.31718461 0.48268972 0.6571 0.5111
rides 0.99051304 0.04256232 23.2721 <2e-16 ***
I(rides^2) 0.00018516 0.00080704 0.2294 0.8185
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We use the function refit() here because we want to see standard errors for
the estimates. The EM algorithm generates point estimates, but does not indicate
standard errors (the uncertainty of estimates) because it does not require this
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information to obtain the point estimates. refit() takes the solution obtained with
the EM algorithm, and uses a general purpose optimiser to obtain the uncertainty
information.

The summary provides information separately for the two segments (referred to
as Comp.1 and Comp.2). For each segment, we can see a summary table of the
regression coefficients. Each coefficient is shown in one row. Column 1 contains
the point estimate, column 2 the standard error, column 3 the test statistic of a z-
test with the null hypothesis that the regression coefficient is equal to zero, and
column 4 the corresponding p-value for this test. < 2e-16 indicates a p-value
smaller than 2 · 10−16. Asterisks indicate if the null hypothesis would be rejected at
the significance level of 0.001 (***), 0.01 (**), 0.05 (*), and 0.1 (.).

Looking at the summary table, we see that all regression coefficients should be
included in the model for segment 1 (Comp.1) because the p-values are all smaller
than 0.05. For the second market segment (Comp.2) only the regression coefficient
of the linear term (rides) needs to be included. This interpretation reflects correctly
the nature of the artificial data set, except for label switching (segment 1 is Comp.2
and segment 2 is Comp.1).

Example: Australian Travel Motives

We illustrate finite mixtures of regressions using the Australian travel motives
data set. We use the metric variables moral obligation score, NEP score, and
environmental behaviour on vacation score. We extract these variables from the data
set, and remove observations with missing values using:

R> data("vacmot", package = "flexclust")
R> envir <- vacmotdesc[, c("Obligation", "NEP",
+ "Vacation.Behaviour")]
R> envir <- na.omit(envir)
R> envir[, c("Obligation", "NEP")] <-
+ scale(envir[, c("Obligation", "NEP")])

We standardise the independent variables (moral obligation and NEP score) to have
a mean of zero and a variance of one. We do this to improve interpretability and
allow visualisation of effects in Fig. 7.34. The environmental behavioural score can
be assumed to be influenced by the moral obligation respondents feel, and their
attitudes towards the environment as captured by the NEP score.

We fit a single linear regression using:

R> envir.lm <- lm(Vacation.Behaviour ~ Obligation + NEP,
+ data = envir)
R> summary(envir.lm)

Call:
lm(formula = Vacation.Behaviour ~ Obligation + NEP,

data = envir)

Residuals:
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Fig. 7.34 Scatter plot with observations coloured by segment membership together with the
segment-specific regression lines from a two-segment mixture of linear regressions fitted to the
Australian vacation motives data set

Min 1Q Median 3Q Max
-1.60356 -0.36512 -0.04501 0.34991 2.87038
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.96280 0.01821 162.680 < 2e-16 ***
Obligation 0.32357 0.01944 16.640 < 2e-16 ***
NEP 0.06599 0.01944 3.394 0.000718 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5687 on 972 degrees
of freedom

Multiple R-squared: 0.2775, Adjusted R-squared: 0.276
F-statistic: 186.7 on 2 and 972 DF, p-value: < 2.2e-16

Results indicate that an increase in either moral obligation or the NEP score
increases the score for environmental behaviour on vacation. But the predictive
performance is modest with an R2 value of 0.28. The R2 value lies between zero and
one, and indicates how much of the variance in the dependent variable is explained
by the model; how close the predicted values are to the observed ones.

The association between vacation behaviour score and moral obligation and
NEP score can be different for different groups of consumers. A mixture of linear
regression models helps us investigate whether this is the case:

R> set.seed(1234)
R> envir.m15 <- stepFlexmix(Vacation.Behaviour ~ .,
+ data = envir, k = 1:4, nrep = 10, verbose = FALSE,
+ control = list(iter.max = 1000))
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We increase the maximum number of iterations for the EM algorithm to 1000
using control = list(iter.max = 1000) to ensure convergence of the
EM algorithm for all number of segments.

The best model is selected using the BIC:

R> envir.m2 <- getModel(envir.m15)
R> envir.m2

Call:
stepFlexmix(Vacation.Behaviour ~ ., data = envir,

control = list(iter.max = 1000), k = 2, nrep = 10,
verbose = FALSE)

Cluster sizes:
1 2

928 47

convergence after 180 iterations

We select a mixture with two segments. The table of segment memberships indicates
that the second segment is rather small.

R> summary(refit(envir.m2))

$Comp.1
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.944634 0.032669 90.1342 < 2e-16 ***
Obligation 0.418934 0.030217 13.8641 < 2e-16 ***
NEP 0.053489 0.027023 1.9794 0.04778 *
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.023214 0.139161 21.7246 <2e-16 ***
Obligation 0.018619 0.145845 0.1277 0.8984
NEP 0.082207 0.105744 0.7774 0.4369
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard errors for the fitted segment-specific parameters indicate that the asso-
ciations between the dependent and independent variables are stronger for segment 1
than for the complete data set. This means that the predictive performance of the
model is better for segment 1 than for the complete data set. For segment 2, neither
moral obligation, nor NEP score allow predicting the environmental behaviour on
vacation.

Scatter plots visualise the data together with the segmentation solution implied
by the fitted model. Data points have different colours to indicate segment member-
ships. We add the segment-specific regression lines under the assumption that the
other covariate has its average value of 0 (see Fig. 7.34):
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R> par(mfrow = c(1, 2))
R> plot(Vacation.Behaviour ~ Obligation, data = envir,
+ pch = 20, col = clusters(envir.m2))
R> abline(parameters(envir.m2)[1:2, 1], col = 1, lwd = 2)
R> abline(parameters(envir.m2)[1:2, 2], col = 2, lwd = 2)
R> plot(Vacation.Behaviour ~ NEP, data = envir, pch = 20,
+ col = clusters(envir.m2))
R> abline(parameters(envir.m2)[c(1, 3), 1], col = 1, lwd = 2)
R> abline(parameters(envir.m2)[c(1, 3), 2], col = 2, lwd = 2)

We see in the left plot in Fig. 7.34 that the regression line for segment 1 (pink)
has a steep slope. This means that there is a strong association between vacation
behaviour and moral obligation. The regression line for segment 2 (green) is nearly
horizontal, indicating no association. The right plot shows the association between
vacation behaviour and NEP score. Here, neither of the market segments display a
substantial association.

7.3.3 Extensions and Variations

Finite mixture models are more complicated than distance-based methods. The
additional complexity makes finite mixture models very flexible. It allows using
any statistical model to describe a market segment. As a consequence, finite mixture
models can accommodate a wide range of different data characteristics: for metric
data we can use mixtures of normal distributions, for binary data we can use
mixtures of binary distributions. For nominal variables, we can use mixtures of
multinomial distributions or multinomial logit models (see Sect. 9.4.2). For ordinal
variables, several models can be used as the basis of mixtures (Agresti 2013).
Ordinal variables are tricky because they are susceptible to containing response
styles. To address this problem, we can use mixture models disentangling response
style effects from content-specific responses while extracting market segments
(Grün and Dolnicar 2016). In combination with conjoint analysis, mixture models
allow to account for differences in preferences (Frühwirth-Schnatter et al. 2004).

An ongoing conversation in the segmentation literature (e.g. Wedel and
Kamakura 2000) is whether differences between consumers should be modelled
using a continuous distribution or through modelling distinct, well-separated
market segments. An extension to mixture models can reconcile these positions
by acknowledging that distinct segments exist, while members of the same segment
can still display variation. This extension is referred to as mixture of mixed-effects
models or heterogeneity model (Verbeke and Lesaffre 1996). It is used in the
marketing and business context to model demand (Allenby et al. 1998).

If the data set contains repeated observations over time, mixture models can
cluster the time series, and extract groups of similar consumers (for an overview
using discrete data see Frühwirth-Schnatter 2011). Alternatively, segments can be
extracted on the basis of switching behaviour of consumers between groups over
time using Markov chains. This family of models is also referred to as dynamic
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latent change models, and can be used to track changes in brand choice and buying
decisions over time. In this case, the different brands correspond to the groups for
each time point. Poulsen (1990) uses a finite mixture of Markov chains with two
components to track new triers of a continuously available brand (A) over a one
year period of time. The two segments differ both in the probability to buy brand
A for the first time, and the probability to continue to do so afterwards. Similarly,
Bockenholt and Langeheine (1996) model recurrent choices with a latent Markov
model. Because several alternative brands are investigated, a multinomial choice
model is formulated. Ramaswamy (1997) generalises this for the situation that new
brands are introduced to an existing market such that the set of available choices
changes over time. The application is on panel survey data for laundry detergents.
Brangule-Vlagsma et al. (2002) also use a Markov switching model, but they use
it to model changes in customer value systems, which in turn influence buying
decisions.

Mixture models also allow to simultaneously include segmentation and descrip-
tor variables. Segmentation variables are used for grouping, and are included in the
segment-specific model as usual. Descriptor variables are used to model differences
in segment sizes, assuming that segments differ in their composition with respect
to the descriptor variables. If, for example, consumers in the segment interested in
high-end mobile phones in the artificial mobile phone data set tend to be older and
have a higher income, this is equivalent to the segment of consumers interested
in high-end mobile phones being larger for older consumers and those with a
higher income. The descriptor variables included to model the segment sizes are
called concomitant variables (Dayton and Macready 1988). In package flexmix,
concomitant variables can be included using the argument concomitant.

7.4 Algorithms with Integrated Variable Selection

Most algorithms focus only on extracting segments from data. These algorithms
assume that each of the segmentation variables makes a contribution to determining
the segmentation solution. But this is not always the case. Sometimes, segmentation
variables were not carefully selected, and contain redundant or noisy variables. Pre-
processing methods can identify them. For example, the filtering approach proposed
by Steinley and Brusco (2008a) assesses the clusterability of single variables, and
only includes variables above a certain threshold as segmentation variables. This
approach outperforms a range of alternative variable selection methods (Steinley
and Brusco 2008b), but requires metric variables. Variable selection for binary data
is more challenging because single variables are not informative for clustering,
making it impossible to pre-screen or pre-filter variables one by one.

When the segmentation variables are binary, and redundant or noisy variables
can not be identified and removed during data pre-processing in Step 4, suitable
segmentation variables need to be identified during segment extraction. A number
of algorithms extract segments while – simultaneously – selecting suitable segmen-
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tation variables. We present two such algorithms for binary segmentation variables:
biclustering and the variable selection procedure for clustering binary data (VSBD)
proposed by Brusco (2004). At the end of this section, we discuss an approach
called factor-cluster analysis. In this two-step approach, segmentation variables are
compressed into factors before segment extraction.

7.4.1 Biclustering Algorithms

Biclustering simultaneously clusters both consumers and variables. Biclustering
algorithms exist for any kind of data, including metric and binary. This section
focuses on the binary case where these algorithms aim at extracting market segments
containing consumers who all have a value of 1 for a group of variables. These
groups of consumers and variables together then form the bicluster.

The concept of biclustering is not new. Hartigan (1972) proposes several patterns
for direct clustering of a data matrix. However, possibly due to the lack of available
software, uptake of algorithms such as biclustering, co-clustering, or two-mode
clustering was minimal. This changed with the advent of modern genetic and
proteomic data. Genetic data is characterised by the large numbers of genes, which
serve as variables for the grouping task. Humans, for example, have approximately
22,300 genes, which is more than a chicken with 16,700, but less than a grape
with 30,400 (Pertea and Salzberg 2010). Traditional clustering algorithms are not
useful in this context because many genes have no function, and most cell tasks
are controlled by only a very small number of genes. As a consequence, getting rid
of noisy variables is critically important. Biclustering experienced a big revival to
address these challenges (e.g., Madeira and Oliveira 2004; Prelic et al. 2006; Kasim
et al. 2017).

Several popular biclustering algorithms exist; in particular they differ in how a
bicluster is defined. In the simplest case, a bicluster is defined for binary data as a
set of observations with values of 1 for a subset of variables, see Fig. 7.35. Each row
corresponds to a consumer, each column to a segmentation variable (in the example
below: vacation activity). The market segmentation task is to identify tourists who
all undertake a subset of all possible activities. In Fig. 7.35 an A marks a tourist
that undertakes a specific vacation activity. An asterisk indicates that a tourist may
or may not undertake this specific vacation activity. The challenge is to find large
groups of tourists who have as many activities in common as possible.

The biclustering algorithm which extracts these biclusters follows a sequence of
steps. The starting point is a data matrix where each row represents one consumer
and each column represents a binary segmentation variable:

Step 1 First, rearrange rows (consumers) and columns (segmentation variables) of
the data matrix in a way to create a rectangle with identical entries of 1s at
the top left of the data matrix. The aim is for this rectangle to be as large as
possible.
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Fig. 7.35 Biclustering with constant pattern

Step 2 Second, assign the observations (consumers) falling into this rectangle to
one bicluster, as illustrated by the grey shading in Fig. 7.35. The segmenta-
tion variables defining the rectangle are active variables (A) for this bicluster.

Step 3 Remove from the data matrix the rows containing the consumers who have
been assigned to the first bicluster. Once removed, repeat the procedure from
step 1 until no more biclusters of sufficient size can be located.

The algorithm designed to solve this task has control parameters – like minimum
number of observations and minimum number of variables – that are necessary to
form a bicluster of sufficient size.

This biclustering method has been proposed by Kaiser (2011) referring to it as
repeated Bimax algorithm because step 1 can be solved with the Bimax algorithm
proposed by Prelic et al. (2006). The Bimax algorithm is computationally very
efficient, and allows to identify the largest rectangle corresponding to the global
optimum, rather than returning a local optimum as other segment extraction algo-
rithms do. Among the traditional market segmentation approaches, only standard
hierarchical clustering implementations determine the globally best merge or split
in each step, and therefore generate the same results across repetitions.

Biclustering is not one single very specific algorithm; rather it is a term
describing a family of algorithms differing with respect to the properties of data they
can accommodate, the extent of similarity between members of market segments
required, and whether individual consumers can be assigned to only one or multiple
market segments. A comprehensive overview of biclustering algorithms is provided
by Madeira and Oliveira (2004), Kaiser and Leisch (2008) and Kaiser (2011).
Different algorithms search for different patterns in biclusters. An example of such
an alternative pattern – the constant column pattern – is shown in Fig. 7.36. Such
a pattern could be used to identify consumers with identical socio-demographics,
for example: all female (column with A’s), aged 20–29 (column with B’s), living in
Europe (column with C’s), and having a high school degree (column with D’s). The
same pattern could also be used to create a commonsense/data-driven segmentation
where initially large groups of consumers with the same value in several socio-
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Fig. 7.36 Biclustering with constant column pattern

demographic variables are identified. Then, among those consumers, an interesting
subsegment is extracted based on the vacation activity profile.

Biclustering is particularly useful in market segmentation applications with many
segmentation variables. Standard market segmentation techniques risk arriving at
suboptimal groupings of consumers in such situations. Biclustering also has a
number of other advantages:

No data transformation: Typically, situations where the number of variables is too
high are addressed by pre-processing data. Pre-processing approaches such as
principal components analysis – combined with selecting only the first few
components – reduce the number of segmentation variables by transforming
the data. Any data transformation changes the information in the segmentation
variables, thus risking that segmentation results are biased because they are not
based on the original data. Biclustering does not transform data. Instead, original
variables which do not display any systematic patterns relevant for grouping
consumers are ignored.

Ability to capture niche markets: Because biclustering searches for identical pat-
terns displayed by groups of consumers with respect to groups of variables, it is
well suited for identifying niche markets. If a manager is specifically interested in
niche markets, the control arguments for the biclustering algorithm should be set
such that a high number of matches is required. This approach leads to smaller
segments containing members who are very similar to one other. If the matching
requirement is relaxed, larger and less homogeneous segments emerge.

Biclustering methods, however, do not group all consumers. Rather, they select
groups of similar consumers, and leave ungrouped consumers who do not fit into
any of the groups.

Example: Australian Vacation Activities

Imagine that a tourist destination wants to identify segments of tourists engaging in
similar vacation activities. The data available is similar to that used in the bagged
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clustering example, but this time it is binary information for 1003 adult Australian
tourists about whether (coded 1) or not (coded 0) they engaged in each of 45
vacation activities during their last domestic vacation. Compared to the Austrian
winter vacation activities data set, the number of segmentation variables is nearly
twice as high, but the sample size is much smaller; only about one third of the size
in the Austrian winter vacation activities data set. This sample size relative to the
number of segmentation variables used is insufficient for segment extraction using
most algorithms (Dolnicar et al. 2014). A detailed description of the data set is
provided in Appendix C.3 and in Dolnicar et al. (2012). The fact that the list of
vacation activities is so long complicates market segmentation analysis.

The repeated Bimax algorithm is implemented as method BCrepBimax in the
R package biclust (Kaiser and Leisch 2008). The Bimax algorithm is available as
method BCBimax. The bicluster solution for this data with method BCrepBimax,
a minimum of minc = 2 activities (columns) and minr = 50 observations
(rows) per cluster can be obtained by:

R> library("biclust")
R> data("ausActiv", package="MSA")
R> ausact.bic <- biclust(x = ausActiv,
+ method = BCrepBimax,
+ minc = 2, minr = 50, number = 100, maxc = 100)

The value of 100 for the maximum number of biclusters (number) and maximum
number of columns (maxc) in each cluster effectively means that no limit is set for
both arguments.

We save the result to the hard drive. This allows loading the result from there,
and avoiding re-computation when re-using this segmentation solution later.

R> save(ausact.bic, file = "ausact-bic.RData")

We visualise results using the bicluster membership plot generated by function
biclustmember(), see Fig. 7.37:

R> biclustmember(x = ausActiv, bicResult = ausact.bic)

Each column in Fig. 7.37 represents one market segment. In total, 12 market
segments are identified. Each row represents one of the vacation activities. Cells
that are empty indicate that these variables are not useful to characterise this
segment as an activity frequently undertaken by segment members. For example:
the entire block of variables between THEATRE and SKIING can be ignored in terms
of the interpretation of potential market segments because these activities do not
characterise any of the market segments. Cells containing two dark outer boxes
indicate that members of the segment in that particular row are very similar to
one another with respect to their high engagement in that very vacation activity.
For example, members of market segment 1 have in common that they like to
visit industrial attractions (INDUSTRIAL). Members of segments 3 and 7 have in
common that they like to visit museums (MUSEUM). Members of all segments
except segments 7 and 12 share their interest in relaxation during their vacations
(RELAXING).
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Fig. 7.37 Bicluster membership plot for the Australian vacation activities data set

Finally, the biclustering plot contains one more critical piece of information: how
distinctly different members of one market segment are from the average tourist with
respect to one specific vacation activity. This information is indicated by the shading
of the box in the middle. The lighter that shading, the less does the total sample of
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tourists engage in that vacation activity. The stronger the contrast between the two
outer boxes and the inner box, the more distinct the market segment with respect
to that vacation activity. For example, members of both segments 3 and 7 like to
go to museums, but they differ strongly in this activity from the average tourist.
Or, looking at segment 2: members of this segment relax, eat in reasonably priced
restaurants, shop, go sightseeing, and go to markets, and on scenic walks. None
of those vacation activities make them distinctly different from the average tourist.
However, members of segment 2 also visit friends, do BBQs, go swimming, and
enjoy the beach. These activities are not commonly shared among all tourists, and
therefore describe segment 2 specifically.

Note that the segments presented here are slightly different from those reported
in Dolnicar et al. (2012). The reason for this deviation is that the algorithm used
and the corresponding R functions have been improved since the original analysis.
The differences are minor, the variable characteristics for each one of the market
segments are nearly identical.

7.4.2 Variable Selection Procedure for Clustering Binary Data
(VSBD)

Brusco (2004) proposed a variable selection procedure for clustering binary data
sets. His VSBD method is based on the k-means algorithm as clustering method,
and assumes that not all variables available are relevant to obtain a good clustering
solution. In particular, the method assumes the presence of masking variables.
They need to be identified and removed from the set of segmentation variables.
Removing irrelevant variables helps to identify the correct segment structure, and
eases interpretation.

The procedure first identifies the best small subset of variables to extract seg-
ments. Because the procedure is based on the k-means algorithm, the performance
criterion used to assess a specific subset of variables is the within-cluster sum-of-
squares (the sum of squared Euclidean distances between each observation and their
segment representative). This is the criterion minimised by the k-means algorithm.
After having identified this subset, the procedure adds additional variables one
by one. The variable added is the one leading to the smallest increase in the
within-cluster sum-of-squares criterion. The procedure stops when the increase in
within-cluster sum-of-squares reaches a threshold. The number of segments k has
to be specified in advance. Brusco (2004) recommends calculating the Ratkowsky
and Lance index (Ratkowsky and Lance 1978, see also Sect. 7.5.1) for the complete
data with all variables to select the number of segments.

The algorithm works as follows:

Step 1 Select only a subset of observations with size φ ∈ (0, 1] times the size of
the original data set. Brusco (2004) suggests to use φ = 1 if the original
data set contains less than 500 observations, 0.2 ≤ φ ≤ 0.3 if the number
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of observations is between 500 and 2000 and φ = 0.1 if the number of
observations is at least 2000.

Step 2 For a given number of variables V , perform an exhaustive search for the
set of V variables that leads to the smallest within-cluster sum-of-squares
criterion. The value for V needs to be selected small for the exhaustive
search to be computationally feasible. Brusco (2004) suggests using V = 4,
but smaller or larger values may be required depending on the number of
clusters k, and the number of variables p. The higher the number of clusters,
the larger V should be to capture the more complex clustering structure.
The higher p, the smaller V needs to be to make the exhaustive search
computationally feasible.

Step 3 Among the remaining variables, determine the variable leading to the
smallest increase in the within-cluster sum-of-squares value if added to the
set of segmentation variables.

Step 4 Add this variable if the increase in within-cluster sum-of-squares is smaller
than the threshold. The threshold is δ times the number of observations in
the subset divided by 4. δ needs to be in [0, 1]. Brusco (2004) suggests a
default δ value of 0.5.

Brusco (2004) suggests 500 random initialisations in step 2, and 5000 random
initialisations in step 3 for each run of the k-means algorithm. This recommendation
is based on the use of the Forgy/Lloyd algorithm (Forgy 1965; Lloyd 1982). Using
the more efficient Hartigan-Wong algorithm (Hartigan and Wong 1979) allows
us to reduce the number of random initialisations. In the example below we use
50 random initialisations in step 2, and 100 random initialisations in step 3. The
Hartigan-Wong algorithm is used by default by function kmeans in R.

Example: Australian Travel Motives

We illustrate the VSBD algorithm using the Australian travel motives data set:

R> data("vacmot", package = "flexclust")

We apply the algorithm to the complete data set when clustering the data set into
6 groups (centers = 6). The default settings with φ = 1 (phi) and V = 4
(initial.variables) are used together with nstart1 = 50, the number
of random initialisations in step 2, and nstart2 = 100, the number of random
initialisations in step 3. The maximum number of variables (max.variables)
is the number of available variables (default), and the stopping criterion is set to
δ = 0.5 (delta = 0.5).

R> set.seed(1234)
R> library("MSA")
R> vacmot.sv <- vsbd(vacmot, centers = 6, delta = 0.5)

Executing the command can take some time because the algorithm is computation-
ally expensive due to the exhaustive search of the best subset of four variables.
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Fig. 7.38 Bar chart of cluster means obtained for the Australian travel motives data set after
selecting variables with the VSBD algorithm

The VSBD procedure selects the following variables:

R> colnames(vacmot)[vacmot.sv]

[1] "rest and relax"
[2] "realise creativity"
[3] "health and beauty"
[4] "cosiness/familiar atmosphere"
[5] "do sports"
[6] "everything organised"

The original data set contained 20 variables. The VSBD algorithm selected only
6 variables. Using these variables, the final solution – together with the plot in
Fig. 7.38 – results from:

R> library("flexclust")
R> vacmot.vsbd <- stepcclust(vacmot[, vacmot.sv], k = 6,
+ nrep = 10)
R> barchart(vacmot.vsbd)

The segmentation solution contains segments caring or not caring about rest
and relaxation; the percentage of agreement with this motive within segments is
either close to 100% or to 0% (segment 2). In addition, respondents in segment 3
agree that doing sports is a motive for them, while members of segment 4 want
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everything organised. For members of segment 5 cosiness and a familiar atmosphere
are important. To members of segment 6 the largest number of motives applies;
they are the only ones caring about creativity and health and beauty. This result
indicates that using the variable selection procedure generates a solution that is easy
to interpret because only a small set of variables serve as segmentation variables,
but each of them differentiates well between segments.

7.4.3 Variable Reduction: Factor-Cluster Analysis

The term factor-cluster analysis refers to a two-step procedure of data-driven market
segmentation analysis. In the first step, segmentation variables are factor analysed.
The raw data, the original segmentation variables, are then discarded. In the second
step, the factor scores resulting from the factor analysis are used to extract market
segments.

Sometimes this approach is conceptually legitimate. For example, if the empirical
data results from a validated psychological test battery designed specifically to
contain a number of variables which load onto factors, like IQ tests. In IQ tests,
a number of items assess the general knowledge of a person. In this case a
conceptual argument can be put forward that it is indeed legitimate to replace the
original variables with the factor score for general knowledge. However, the factor
scores should either be determined simultaneously when extracting the groups (for
example using a model-based approach based on factor analyzers; McLachlan et al.
2003) or be provided separately and not determined in a data-driven way from the
data where the presence of groups is suspected.

Validated psychological test batteries rarely serve as segmentation variables.
More common is the case where factor-cluster analysis is used because the original
number of segmentation variables is too high. According to the results from
simulation studies by Dolnicar et al. (2014, 2016), a rule of thumb is that the number
of consumers in a data set (sample size) should be at least 100 times the number of
segmentation variables. This is not always easy to achieve, given that two thirds of
applied market segmentation studies reviewed in Dolnicar (2002b) use between 10
and 22 variables. For 22 segmentation variables, the sample size should be at least
2200. Yet, most consumer data sets underlying the market segmentation analyses
investigated in Dolnicar (2002a) contain fewer than 1000 consumers.

Running factor-cluster analysis to deal with the problem of having too many
segmentation variables in view of their sample size lacks conceptual legitimisation
and comes at a substantial cost:

Factor analysing data leads to a substantial loss of information. To illustrate
this, we factor analyse all the segmentation variables used in this book, and
report the number of extracted factors and the percentage of explained variance.
We apply principal components analysis to the correlation matrix, and retain
principal components with eigenvalues larger than 1, using the so-called Kaiser
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criterion (Kaiser 1960). The reasoning for the Kaiser criterion is to keep only
principal components that represent more information content than an average
original variable.

The risk aversion data set (see Appendix C.1) contains six variables. When
factor analysed, 1 factor is extracted, explaining 47% of the variability in the
data. When using factor scores for segment extraction, 53% of the information is
lost before segment extraction.

The Austrian winter vacation activities data set (see Appendix C.2) contains
27 variables. When factor analysed, 9 factors are extracted, explaining 51% of the
variability in the data. If factor-cluster analysis is used, 49% of the information
contained in the segmentation variables is lost before segment extraction.

The Australian vacation activities data set (see Appendix C.3) contains 45
variables. When factor analysed, 8 factors are extracted, explaining 50% of the
variability in the data. In this case, half of the information contained in the raw
data is sacrificed when segments are extracted using factor-cluster analysis.

Finally, the Australian travel motives data set (see Appendix C.4) contains
20 variables. When factor analysed, 7 factors are extracted, explaining 54% of
the variability in the data. This means that discarding the original segmentation
variables, and extracting segments on the basis of factor scores instead uses only
54% of the information collected from consumers.

Factor analysis transforms data. As a consequence of using a subset of resulting
factors only, segments are extracted from a modified version of the consumer
data, not the consumer data itself. Arabie and Hubert (1994) argue that factor-
cluster analysis is an outmoded and statistically insupportable practice because
data is transformed and, as a consequence, the nature of the data is changed
before segment extraction. Similarly, Milligan (1996) concludes from experi-
mental studies that market segments (clusters) derived from the factor score space
do not represent market segments (clusters) derived from the raw segmentation
variables well. Milligan recommends extracting segments from the space in
which segments are postulated to exist. Typically this is the space of the original
consumer data, the original segmentation variables.

Factors-cluster results are more difficult to interpret. Instead of obtaining the
results for the original segmentation variables which directly reflect information
about consumers contained in the data set, factor-cluster results need to be
interpreted in factor space. Segment profiling using segment profile plots is
easy when original consumer information is used. This is not the case when
factors are the basis of profiling. Factors contain partial information from a range
of variables, and therefore have no concrete meaning, making the translation
process from segments to practical recommendations for the marketing mix
when targeting a certain segment very difficult. Imagine, for example, a
factor which represents the segmentation variables RELAXING AT THE BEACH,
WINDSURFING, KITESURFING, and JETSKIING. If this factor is important for
a market segment, should more jetski rentals be opened? Or should they not in
order to facilitate relaxation at the beach?
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An excellent conclusion of the above issues is offered by Sheppard (1996, p. 57):
Cluster analysis on raw item scores, as opposed to factor scores, may produce more
accurate or detailed segmentation as it preserves a greater degree of the original
data. Sheppard (1996) discourages the use of factor-cluster analysis for market
segmentation purposes, suggesting instead that the method may be useful for the
purpose of developing an instrument for the entire population where homogeneity
(not heterogeneity) among consumers is assumed.

In addition to the conceptual problems outlined above, empirical evidence
suggests that factor-cluster analysis does not outperform cluster analysis using raw
data. Using a series of artificial data sets of known structure, Dolnicar and Grün
(2008) show that – even in cases where the artificial data was generated following
a factor-analytic model, thus giving factor analysis an unfair advantage – factor-
cluster analysis failed to outperform clustering of raw data in terms of identifying
the correct market segment structure contained in the data.

7.5 Data Structure Analysis

Extracting market segments is inherently exploratory, irrespective of the extraction
algorithm used. Validation in the traditional sense, where a clear optimality criterion
is targeted, is therefore not possible. Ideally, validation would mean calculating
different segmentation solutions, choosing different segments, targeting them,
and then comparing which leads to the most profit, or most success in mission
achievement. This is clearly not possible in reality because one organisation cannot
run multiple segmentation strategies simultaneously just for the sake of determining
which performs best.

As a consequence, the term validation in the context of market segmentation is
typically used in the sense of assessing reliability or stability of solutions across
repeated calculations (Choffrey and Lilien 1980; Doyle and Saunders 1985) after
slightly modifying the data (Funkhouser 1983; Jurowski and Reich 2000; Calantone
and Sawyer 1978; Hoek et al. 1996), or the algorithm (Esslemont and Ward 1989;
Hoek et al. 1996). This approach is fundamentally different from validation using
an external validation criterion. Throughout this book, we refer to this approach as
stability-based data structure analysis.

Data structure analysis provides valuable insights into the properties of the
data. These insights guide subsequent methodological decisions. Most importantly,
stability-based data structure analysis provides an indication of whether natural,
distinct, and well-separated market segments exist in the data or not. If they do,
they can be revealed easily. If they do not, users and data analysts need to explore a
large number of alternative solutions to identify the most useful segment(s) for the
organisation.

If there is structure in the data, be it cluster structure or structure of a different
kind, data structure analysis can also help to choose a suitable number of segments
to extract.
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We discuss four different approaches to data structure analysis: cluster indices,
gorge plots, global stability analysis, and segment level stability analysis.

7.5.1 Cluster Indices

Because market segmentation analysis is exploratory, data analysts need guidance
to make some of the most critical decisions, such as selecting the number of market
segments to extract. So-called cluster indices represent the most common approach
to obtaining such guidance. Cluster indices provide insight into particular aspects
of the market segmentation solution. Which kind of insight, depends on the nature
of the cluster index used. Generally, two groups of cluster indices are distinguished:
internal cluster indices and external cluster indices.

Internal cluster indices are calculated on the basis of one single market seg-
mentation solution, and use information contained in this segmentation solution
to offer guidance. An example for an internal cluster index is the sum of all
distances between pairs of segment members. The lower this number, the more
similar members of the same segment are. Segments containing similar members
are attractive to users.

External cluster indices cannot be computed on the basis of one single market
segmentation solution only. Rather, they require another segmentation as additional
input. The external cluster index measures the similarity between two segmentation
solutions. If the correct market segmentation is known, the correct assignment
of members to segments serves as the additional input. The correct segment
memberships, however, are only known when artificially generated data is being
segmented. When working with consumer data, there is no such thing as a correct
assignment of members to segments. In such cases, the market segmentation
analysis can be repeated, and the solution resulting from the second calculation
can be used as additional input for calculating the external cluster index. A good
outcome is if repeated calculations lead to similar market segments because this
indicates that market segments are extracted in a stable way. The most commonly
used measures of similarity of two market segmentation solutions are the Jaccard
index, the Rand index and the adjusted Rand index. They are discussed in detail
below.

7.5.1.1 Internal Cluster Indices

Internal cluster indices use a single segmentation solution as a starting point.
Solutions could result from hierarchical, partitioning or model-based clustering
methods. Internal cluster indices ask one of two questions or consider their
combination: (1) how compact is each of the market segments? and (2) how well-
separated are different market segments? To answer these questions, the notion of
a distance measure between observations or groups of observations is required. In
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addition, many of the internal cluster indices also require a segment representative
or centroid as well as a representative for the complete data set.

A very simple internal cluster index measuring compactness of clusters results
from calculating the sum of distances between each segment member and their seg-
ment representative. Then the sum of within-cluster distances Wk for a segmentation
solution with k segments is calculated using the following formula where we denote
the set of observations assigned to segment number h by Sh and their segment
representative by ch:

Wk =
k∑

h=1

∑
x∈Sh

d(x, ch).

In the case of the k-means algorithm, the sum of within-cluster distances Wk

decreases monotonically with increasing numbers of segments k extracted from the
data (if the global optimum for each number of segments is found; if the algorithm
is stuck in a local optimum, this may not be the case).

A simple graph commonly used to select the number of market segments for
k-means clustering based on this internal cluster index is the scree plot. The scree
plot visualises the sum of within-cluster distances Wk for segmentation solutions
containing different numbers of segments k. Ideally, an elbow appears in the scree
plot. An elbow results if there is a point (number of segments) in the plot where
the differences in sum of within-cluster distances Wk show large decreases before
this point and only small decreases after this point. The scree plot for the artificial
mobile phone data set (first introduced in Sect. 7.2.3.1 and visualised in Fig. 7.9) is
given in Fig. 7.12. This data set contains three distinct market segments. In the scree
plot a distinct elbow is visible because the within-cluster distances have distinct
drops up to three segments and only small decreases after this point, thus correctly
guiding the data analyst towards extracting three market segments. In consumer
data, elbows are not so easy to find in scree plots, as can be seen in Fig. 7.13 for the
tourist risk taking data set, and in Fig. A.2 for the fast food data set. In both these
scree plots the sum of within-cluster distances Wk slowly drops as the number of
segments increases. No distinct elbow offers guidance to the data analyst. This is
not an unusual situation when working with consumer data.

A slight variation of the internal cluster index of the sum of within-cluster
distances Wk is the Ball-Hall index Wk/k. This index was proposed by Ball and Hall
(1965) with the aim of correcting for the monotonous decrease of the internal cluster
index with increasing numbers of market segments. The Ball-Hall index Wk/k

achieves this by dividing the sum of within-cluster distances Wk by the number
of segments k.

The internal cluster indices discussed so far focus on assessing the aspect of
similarity (or homogeneity) of consumers who are members of the same segment,
and thus the compactness of the segments. Dissimilarity is equally interesting.
An optimal market segmentation solution contains market segments that are very
different from one another, and contain very similar consumers. This idea is
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mathematically captured by another internal cluster index based on the weighted
distances between centroids (cluster centres, segment representative) Bk:

Bk =
k∑

h=1

nhd(ch, c̄)

where nh = |Sh| is the number of consumers in segment Sh, and c̄ is the centroid of
the entire consumer data set (when squared Euclidean distance is used this centroid
is equivalent to the mean value across all consumers; when Manhattan distance is
used it is equivalent to the median).

A combination of the two aspects of compactness and separation is mathemati-
cally captured by other internal cluster indices which relate the sum of within-cluster
distances Wk to the weighted distances between centroids Bk . If natural market
segments exist in the data, Wk should be small and Bk should be large. Relating
these two values can be very insightful in terms of guiding the data analyst to choose
a suitable number of segments. Wk and Bk can be combined in different ways. Each
of these alternative approaches represents a different internal cluster index.

The Ratkowsky and Lance index (Ratkowsky and Lance 1978) is recommended
by Brusco (2004) for use with the VSBD procedure for variable selection (see
Sect. 7.4.2). The Ratkowsky and Lance index is based on the squared Euclidean
distance, and uses the average value of the observations within a segment as
centroid. The index is calculated by first determining, for each variable, the sum of
squares between the segments divided by the total sum of squares for this variable.
These ratios are then averaged, and divided by the square root of the number of
segments. The number of segments with the maximum Ratkowsky and Lance index
value is selected.

Many other internal cluster indices have been proposed in the literature since
Ball and Hall (1965). The seminal paper by Milligan and Cooper (1985) compares
a large number of indices in a series of simulation experiments using artificial data.
The best performing index in the simulation study by Milligan and Cooper (1985)
is the one proposed by Calinski and Harabasz (1974):

CHk = Bk/(k − 1)

Wk/(n − k)
,

where n is equal to the number of consumers in the data set. The recommended
number of segments has the highest value of CHk .

Many internal cluster indices are available in R. Function cluster.stats()
in package fpc (Hennig 2015) automatically returns a set of internal cluster indices.
Package clusterSim (Walesiak and Dudek 2016) allows to request individual
internal cluster indices. A very comprehensive list of 30 internal indices is available
in package NbClust (Charrad et al. 2014). For objects returned by functions in
package flexclust, the Calinski-Harabasz index can be computed using function
chIndex().
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Calculating internal cluster indices is valuable as it comes at no cost to the data
analyst, yet may reveal interesting aspects of market segmentation solutions. It is
possible, however, given that consumer data typically do not contain natural market
segments, that internal cluster indices fail to provide much guidance to the data
analyst on the best number of segments to extract. In such situations, external cluster
indices and global and segment-specific stability analysis are particularly useful.

7.5.1.2 External Cluster Indices

External cluster indices evaluate a market segmentation solution using additional
external information; they cannot be calculated using only the information contained
in one market segmentation solution. A range of different additional pieces of
information can be used. The true segment structure – if known – is the most
valuable additional piece of information. But the true segment structure of the
data is typically only known for artificially generated data. The true segment
structure of consumer data is never known. When working with consumer data,
the market segmentation solution obtained using a repeated calculation can be used
as additional, external information. The repeated calculation could use a different
clustering algorithm on the same data; or it could apply the same algorithm to a
variation of the original data, as discussed in detail in Sect. 7.5.3.

A problem when comparing two segmentation solutions is that the labels of the
segments are arbitrary. This problem of invariance of solutions when labels are
permuted is referred to as label switching (Redner and Walker 1984). One way
around the problem of label switching is to focus on whether pairs of consumers
are assigned to the same segments repeatedly (irrespective of segment labels), rather
than focusing on the segments individual consumers are assigned to. Selecting any
two consumers, the following four situations can occur when comparing two market
segmentation solutions P1 and P2:

• a: Both consumers are assigned to the same segment twice.
• b: The two consumers are in the same segment in P1, but not in P2.
• c: The two consumers are in the same segment in P2, but not in P1.
• d: The two consumers are assigned to different market segments twice.

To differentiate those four cases, it is not necessary to know the segment labels.
These cases are invariant to specific labels assigned to segments. Across the entire
data set containing n consumers, n(n − 1)/2 pairs of consumers can be selected.
Let a, b, c and d represent the number of pairs where each of the four situations
outlined above applies. Thus a + b + c + d = n(n − 1)/2. If the two segmentation
solutions are very similar, a and d will be large and b and c will be small. The index
proposed by Jaccard (1912) is based on this observation, but uses only a, b and c

while dropping d:
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J = a

a + b + c
.

Jaccard did not propose this index for market segmentation analysis. Rather, he was
interested in comparing similarities of certain alpine regions in relation to plant
species found. But the mathematical problem is the same. The Jaccard index takes
values in [0, 1]. A value of J = 0 indicates that the two market segmentation
solutions are completely different. A value of J = 1 means that the two market
segmentation solutions are identical.

Rand (1971) proposed a similar index based on all four values a, b, c and d:

R = a + d

a + b + c + d
.

The Rand index also takes values in [0, 1]; the index values have the same
interpretation as those for the Jaccard index, but the Rand index includes d.

Both the Jaccard index and the Rand index share the problem that the absolute
values (ranging between 0 and 1) are difficult to interpret because minimum values
depend on the size of the market segments contained in the solution. If, for example,
one market segmentation solution contains two segments: segment 1 with 80% of
the data, and segment 2 with 20% of the data. And a second market segmentation
solution also results in an 80:20 split, but half of the members of the small segment
were members of the large segment in the first segmentation solution, one would
expect a similarity measure of these two segmentation solutions to indicate low
values. But because – in each of the two solutions – the large segment contains so
many consumers, 60% of them will still be allocated to the same large segment,
leading to high Rand and Jaccard index values. Because – in this case – at least
60% of the data are in the large segment for both segmentation solutions, neither the
value for the Jaccard index, nor the value for the Rand index can ever be 0.

The values of both indices under random assignment to segments with their size
fixed depend on the sizes of the extracted market segments. To solve this problem,
Hubert and Arabie (1985) propose a general correction for agreement by chance
given segment sizes. This correction can be applied to any external cluster index.
The expected index value assuming independence is the value the index takes on
average when segment sizes are fixed, but segment membership is assigned to the
observations completely at random to obtain each of the two segmentation solutions.
The proposed correction has the form

index − expected index

maximum index − expected index

such that a value of 0 indicates the level of agreement expected by chance given the
segment sizes, while a value of 1 indicates total agreement. The result of applying
the general correction proposed by Hubert and Arabie (1985) to the Rand index is
the so-called adjusted Rand index.
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In R, function comPart() from package flexclust computes the Jaccard index,
the Rand index and the adjusted Rand index. The adjusted Rand index is critically
important to the resampling-based data structure analysis approach recommended
in Sects. 7.5.3 and 7.5.4.

7.5.2 Gorge Plots

A simple method to assess how well segments are separated, is to look at the
distances of each consumer to all segment respresentatives. Let dih be the distance
between consumer i and segment representative (centroid, cluster centre) h. Then

sih = e−d
γ
ih

∑k
l=1 e−d

γ
il

can be interpreted as the similarity of consumer i to the representative of segment
h, with hyper parameter γ controlling how differences in distance translate into
differences in similarity. These similarities are between 0 and 1, and sum to 1 for
each consumer i over all segment representatives h, h = 1, . . . , k.

For partitioning methods, segment representatives and distances between con-
sumers and segment representatives are directly available. For model-based meth-
ods, we use the probability of a consumer i being in segment h given the consumer
data, and the fitted mixture model to assess similarities. In the mixture of normal
distributions case, these probabilities are close to the similarities obtained with
Euclidean distance and γ = 2 for k-means clustering. Below we use γ = 1 because
it shows more details, and led to better results in simulations on artificial data. The
parameter can be specified by the user in the R implementation.

Similarity values can be visualised using gorge plots, silhouette plots
(Rousseeuw 1987), or shadow plots (Leisch 2010). We illustrate the use of gorge
plots using the three artificial data sets introduced in Table 2.3. The plots in the
middle column of Fig. 7.39 show the gorge plots for the three-segment solutions
extracted using k-means partitioning clustering for these data sets. Each gorge
plot contains histograms of the similarity values sih separately for each segment.
The x-axis plots similarity values. The y-axis plots the frequency with which each
similarity value occurs. If the similarity values are the result of distance-based
segment extraction methods, high similarity values indicate that a consumer is
very close to the centroid (the segment representative) of the market segment. Low
similarity values indicate that the consumer is far away from the centroid. If the
similarity values are the result of model-based segment extraction methods, high
similarity values indicate that a consumer has a high probability of being a member
of the market segment. Low similarity values indicate low probability of segment
membership.
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If natural, well-separated market segments are present in the data, we expect the
gorge plot to contain many very low and many very high values. This is why this
plot is referred to as gorge plot. Optimally, it takes the shape of a gorge with a peak
to the left and a peak to the right.

Figure 7.39 shows prototypical gorge plots for the three-segment solutions
extracted from the data sets used to illustrate the three concepts of market seg-
mentation (see also Table 2.3): natural (top row of Fig. 7.39), reproducible (middle
row) and constructive segmentation (bottom row). Looking at the natural clustering
case with three clearly separated segments: the gorge plot shows a close to perfect
gorge, pointing to the fact that most consumers are either close to their segment
representative or far away from the representatives of other market segments. The
gorge is much less distinct for the reproducible and the constructive clustering cases
where many consumers sit in the middle of the plot, indicating that they are neither
very close to their segment representative, nor very far away from the segment
representatives of other clusters.

Figure 7.39 only contains gorge plots for the three-segment solutions. For a real
market segmentation analysis, gorge plots have to be generated and inspected for
every number of segments. Producing and inspecting a large number of gorge plots
is a tedious process, and has the disadvantage of not accounting for randomness in
the sample used. These disadvantages are overcome by stability analysis, which can
be conducted at the global or segment level.

7.5.3 Global Stability Analysis

An alternative approach to data structure analysis that can be used for both distance-
and model-based segment extraction techniques is based on resampling methods.
Resampling methods offer insight into the stability of a market segmentation
solution across repeated calculations. To assess the global stability of any given seg-
mentation solution, several new data sets are generated using resampling methods,
and a number of segmentation solutions are extracted.

Then the stability of the segmentation solutions across repeated calculations is
compared. The solution which can best be replicated is chosen. One such resampling
approach is described in detail in this section. Others have been proposed by
Breckenridge (1989), Dudoit and Fridlyand (2002), Grün and Leisch (2004), Lange
et al. (2004), Tibshirani and Walther (2005), Gana Dresen et al. (2008), and Maitra
et al. (2012).

To understand the value of resampling methods for market segmentation analysis,
it is critical to accept that consumer data rarely contain distinct, well-separated
market segments like those in the artificial mobile phone data set. In the worst case,
consumer data can be totally unstructured. Unfortunately, the structure of any given
empirical data set is not known in advance.

Resampling methods – combined with many repeated calculations using the
same or different algorithms – provide critical insight into the structure of the
data. It is helpful, before using resampling methods, to develop a systematics of
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data structures that might be discovered, and discuss the implications of those data
structures on the way market segmentation analysis is conducted.

Conceptually, consumer data can fall into one of three categories: rarely,
naturally existing, distinct, and well-separated market segments exist. If natural
segments exist in the data, these are easy to identify with most extraction methods.
The resulting segments can safely be used by the organisation as the basis of long-
term strategic planning, and the development of a customised marketing mix.

A second possibility is that data is entirely unstructured, making it impossible to
reproduce any market segmentation solution across repeated calculations. In this
worst case scenario, the data analyst must inform the user of the segmentation
solution of this fact because it has major implications on how segments are
extracted. If data is truly unstructured, and an organisation wishes to pursue a market
segmentation strategy, managerially useful market segments have to be constructed.
If the segmentation is constructive, the role of the data analyst is to offer potentially
interesting segmentation solutions to the user, and assist them in determining which
of the artificially created segments is most useful to them.

Of course, there is always a middle option between the worst case and the best
case scenario. Consumer data can lack distinct, well-separated natural clusters,
while not being entirely unstructured. In this case, the existing structure can be
leveraged to extract artificially created segments that re-emerge across repeated
calculations. This case is referred to as reproducible segmentation.

Global stability analysis helps determine which of the concepts applies to any
given data set (Dolnicar and Leisch 2010). Global stability analysis acknowledges
that both the sample of consumers, and the algorithm used in data-driven segmen-
tation introduce randomness into the analysis. Therefore, conducting one single
computation to extract market segments generates nothing more than one of many
possible solutions.

The problem of sample randomness has been discussed in early work on
market segmentation. Haley (1985), who is credited as being the father of benefit
segmentation, recommends addressing the problem by dividing the sample of
respondents into subsamples, and extracting market segments independently for
each of the subsamples. Then, segmentation variables are correlated across segments
from different solutions to identify reproducible segments. Haley (1985) notes that
this approach is also useful in informing the decision how many segments to extract
from the data, although he acknowledges that the final choice as to the number of
segments rests heavily on the judgement of the researchers making the decision
(p. 224).

The increase in computational power since Haley’s recommendation makes
available more efficient new approaches to achieve the same aim. Dolnicar and
Leisch (2010) recommend using bootstrapping techniques. Bootstrapping generates
a number of new data sets by drawing observations with replacement from
the original data. These new data sets can then be used to compute replicate
segmentation solutions for different numbers of segments. Computing the similarity
between the resulting solutions for the same number of clusters provides insight into
whether natural segments exist in the data (in which case all replications will lead to
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essentially the same solution), whether reproducible segments exist (in which case
similar segments will emerge, indicating that there is some data structure, but no
cluster structure), or whether segments are being constructed artificially (in which
case replications of segment extraction will lead to different results every time).

In addition, the results from global stability analysis assist in determining the
most suitable number of segments to extract from the data. Numbers of segments
that allow the segmentation solution in its entirety to be reproduced in a stable
manner across repeated calculations are more attractive than numbers of segments
leading to different segmentation solutions across replications.

Dolnicar and Leisch (2010) recommend the following steps:

1. Draw b pairs of bootstrap samples (2b bootstrap samples in total) from the
sample of consumers, including as many cases as there are consumers in the
original data set (b = 100 bootstrap sample pairs works well).

2. For each of the 2b bootstrap samples, extract 2, 3, . . . , k market segments using
the algorithm of choice (for example, a partitioning clustering algorithm or a
finite mixture model). The maximum number of segments k needs to be specified.

3. For each pair of bootstrap samples b and number of segments k, compute the
adjusted Rand index (Hubert and Arabie 1985) or another external cluster index
(see Sect. 7.5.1) to evaluate how similar the two segmentation solutions are. This
results in b adjusted Rand indices (or other external cluster index values) for each
number of segments.

4. Create and inspect boxplots to assess the global reproducibility of the segmenta-
tion solutions. For the adjusted Rand index, many replications close to 1 indicate
the existence of reproducible clusters, while many replications close to 0 indicate
the artificial construction of clusters.

5. Select a segmentation solution, and describe resulting segments. Report on the
nature of the segments (natural, reproducible, or constructive).

We first illustrate the procedure using the artificial mobile phone data set
containing three distinct, well-separated natural segments. The following com-
mand fully automates the bootstrapping procedure, and can distribute calcula-
tions to enable parallel processing. The simple artificial example below takes
approximately 80 seconds on an Intel Xeon E5 2.4GHz CPU, but only 5 seconds
when running 40 R processes in parallel using the same CPU. There are some
fixed communication overheads to start the 40 child processes and collect their
results, hence the time needed is more than the theoretical value of 80/40 =
2 seconds. For more complex examples with higher-dimensional and larger data
sets, the communication overhead is much smaller in relation to the actual com-
puting time. Details on distributing computational tasks are provided on the
help page for function bootFlexclust() which can be accessed in R using
help("bootFlexclust"). The following command applies the bootstrap
procedure for k = 2 to 9 segments, using function cclust as segmentation
algorithm with nrep = 10 random restarts:

R> set.seed(1234)
R> PF3.b29 <- bootFlexclust(PF3, k = 2:9,FUN = "cclust",
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+ nrep = 10)
R> summary(PF3.b29)

Call:
bootFlexclust(x = PF3, k = 2:9,FUN = "cclust",nrep = 10)

Summary of Rand Indices:
2 3 4 5

Min. :0.89 Min. :1 Min. :0.60 Min. :0.45
1st Qu.:0.94 1st Qu.:1 1st Qu.:0.61 1st Qu.:0.62
Median :0.97 Median :1 Median :0.80 Median :0.66
Mean :0.96 Mean :1 Mean :0.75 Mean :0.69
3rd Qu.:0.99 3rd Qu.:1 3rd Qu.:0.85 3rd Qu.:0.76
Max. :1.00 Max. :1 Max. :1.00 Max. :0.99

6 7 8
Min. :0.55 Min. :0.52 Min. :0.50
1st Qu.:0.65 1st Qu.:0.68 1st Qu.:0.69
Median :0.70 Median :0.72 Median :0.73
Mean :0.73 Mean :0.73 Mean :0.72
3rd Qu.:0.80 3rd Qu.:0.78 3rd Qu.:0.76
Max. :0.97 Max. :0.93 Max. :0.93

9
Min. :0.50
1st Qu.:0.65
Median :0.70
Mean :0.72
3rd Qu.:0.75
Max. :0.96

A parallel boxplot of the adjusted Rand indices is shown in the top right panel of
Fig. 7.39. The boxplot can be obtained by:

R> boxplot(PF3.b29, ylim = c(0.2, 1),
+ xlab = "number of segments",
+ ylab = "adjusted Rand index")

As can be seen from both the numeric output and the global stability boxplot in
the top right corner of Fig. 7.39 for the artificial mobile phone data set: using the
correct number of three market segments always results in the same partition. All
adjusted Rand indices are equal to 1 for three segments. Using fewer or more
segments decreases the global stability of the segmentation solution in its entirety.
This happens because the three natural segments either have to be forced into two
clusters, or because the three natural segments have to be split up to generate more
than three segments. Both the merger and the split is artificial because the resulting
segments do not reflect the actual data structure. As a consequence, the results are
not stable. The global stability boxplot indicates that, in this case, there are three
natural clusters in the data. Of course – for the simple two-dimensional artificial
mobile phone data set – this can easily be inferred from the top left corner in
Fig. 7.39. But such a simple visual inspection is not possible for higher-dimensional
data.
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Looking at the global stability boxplots for the reproducible and constructive
segmentation cases in Fig. 7.39 makes it obvious that no single best solution exists.
One could argue that the two-segment solution for the elliptic data in the middle
row is very stable, but two market segments need to be interpreted with care as they
often reflect nothing more than a split of respondents in high and low response or
behavioural patterns. Such high and low patterns are not very useful for subsequent
marketing action.

For higher-dimensional data – where it is not possible to simply plot the data
to determine its structure – it is unavoidable to conduct stability analysis to gain
insight into the likely conceptual nature of the market segmentation solution. The
study by Ernst and Dolnicar (2018) – which aimed at deriving a rough estimate
of how frequently natural, reproducible and constructive segmentation is possible
in empirical data – offered the following guidelines for assessing global stability
boxplots based on the inspection of a wide range of empirical data sets:

• Indicative of natural segments are global stability boxplots with high stability
and low variance of the overall market segmentation solution for at least a limited
range of numbers of segments, and a distinct drop in global stability for all other
numbers of segments.

• Indicative of reproducible segmentation are global stability boxplots – which
starting from a reasonable high stability – show a gradual decline in the
global stability of the market segmentation solution with increasing numbers of
segments.

• Indicative of constructive segmentation are stability boxplots which display near-
constant low stability across the overall market segmentation solutions for all
numbers of segments.

Example: Tourist Risk Taking

We illustrate global stability analysis using the data on risk taking behaviours by
tourists.

R> data("risk", package = "MSA")
R> set.seed(1234)
R> risk.b29 <- bootFlexclust(risk, k = 2:9,
+ FUN = "cclust", nrep = 10)

As can be seen in the global stability boxplot in Fig. 7.40, the two- and the
four-segment solutions display high levels of global stability compared to the
other numbers of segments. The two-segment solution splits consumers in low and
high risk takers. The four-segment solution is more profiled and may therefore
contain a useful target segment for an organisation. It contains one market segment
characterised by taking recreational risks, but not health risks; and a second segment
that takes health, financial and safety risks, but not recreational, career or social
risks. The first of those two may well represent an attractive target segment for



166 7 Step 5: Extracting Segments

Fig. 7.40 Global stability
boxplot using k-means
clustering for 2-9 segments
for the tourist risk taking
data set
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a tourism destination specialising in action packed adventure activities, such as
bungee jumping, skydiving or paragliding.

For data analysts preferring graphical user interfaces to the command line, the
complete bootstrapping procedure for global segment level stability analysis is
integrated into the R Commander (Fox 2017) point-and-click interface to R in the
extension package RcmdrPlugin.BCA (Putler and Krider 2012).

The stability analysis presented in this section assesses the global stability of
the entire segmentation solution. In case of the four-segment solution it assesses the
stable recovery of all four segments. This is a very useful approach to learn about the
segmentation concept that needs to be followed. It also provides valuable guidance
for selecting the number of segments to extract. However, global stability does not
provide information about the stability of each one of the segments individually
in the four-segment solution. Segment level stability is important information for
an organisation because, after all, the organisation will never target a complete
segmentation solution. Rather, it will target one segment or a small number of
segments contained in a market segmentation solution. An approach to assessing
segment level stability is presented next.

7.5.4 Segment Level Stability Analysis

Choosing the globally best segmentation solution does not necessarily mean that
this particular segmentation solution contains the single best market segment.
Relying on global stability analysis could lead to selecting a segmentation solution
with suitable global stability, but without a single highly stable segment. It is
recommendable, therefore, to assess not only global stability of alternative mar-
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ket segmentation solutions, but also segment level stability of market segments
contained in those solutions to protect against discarding solutions containing
interesting individual segments from being prematurely discarded. After all, most
organisations only need one single target segment.

7.5.4.1 Segment Level Stability Within Solutions (SLSW )

Dolnicar and Leisch (2017) propose to assess segmentation solutions based on an
approach that determines stability separately for each segment, rather than for the
entire market segmentation solution. This prevents an overall bad market segmenta-
tion solution (containing one suitable market segment) from being discarded. Many
organisations want to only target one segment; one suitable market segment is all
they need to secure their survival and competitive advantage.

The criterion of segment level stability within solutions (SLSW ) is similar to
the concept of global stability (see Sect. 7.5.3). The difference is that stability is
computed at segment level, allowing the detection of one highly stable segment
(for example a potentially attractive niche market) in a segmentation solution where
several or even all other segments are unstable.

Segment level stability within solutions (SLSW ) measures how often a market
segment with the same characteristics is identified across a number of repeated
calculations of segmentation solutions with the same number of segments. It is
calculated by drawing several bootstrap samples, calculating segmentation solutions
independently for each of those bootstrap samples, and then determining the
maximum agreement across all repeated calculations using the method proposed
by Hennig (2007). Details are provided in Leisch (2015) and Dolnicar and Leisch
(2017).

Hennig (2007) recommends the following steps:

1. Compute a partition of the data (a market segmentation solution) extracting k

segments S1, . . . ,Sk using the algorithm of choice (for example, a partitioning
clustering algorithm or a finite mixture model).

2. Draw b bootstrap samples from the sample of consumers including as many cases
as there are consumers in the original data set (b = 100 bootstrap samples works
well).

3. Cluster all b bootstrap samples into k segments. Based on these segmentation
solutions, assign the observations in the original data set to segments Si

1, . . . ,S
i
k

for i = 1, . . . , b.
4. For each bootstrap segment Si

1, . . . ,S
i
k , compute the maximum agreement with

the original segments S1, . . . ,Sk as measured by the Jaccard index:

si
h = max

1≤h′≤k

|Sh ∩ Si
h′ |

|Sh ∪ Si
h′ |

, 1 ≤ h ≤ k.
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The Jaccard index is the ratio between the number of observations contained in
both segments, and the number of observations contained in at least one of the
two segments.

5. Create and inspect boxplots of the si
h values across bootstrap samples to assess

the segment level stability within solutions (SLSW ). Segments with higher
segment level stability within solutions (SLSW ) are more attractive.

To demonstrate the procedure, consider the artificial mobile phone data set from
Sect. 7.2.3. Three distinct and well-separated segments are known to exist in this
data because the data was artificially generated. If – in the process of data-driven
market segmentation – three segments are extracted, the correct segments emerge,
and segment level stability within solutions (SLSW ) is very high. If the data are
clustered into more than three segments, one of the larger natural segments is split
up. This split is not stable, manifesting in a low segment level stability within
solutions (SLSW ) for at least some segments. In the following, we inspect segment
level stability within solutions for the six-segment solution.

To illustrate this with the artificial mobile phone data set, the data first needs
to be loaded. We then cluster the data into three to eight segments. We will also
use this data set to illustrate the methods in Sect. 7.5.4.2. At that point we will
need all segmentation solutions from three to eight segments, and we will need
all segments to be consistently labelled across segmentation solutions. Consistent
labelling is achieved using function relabel. Finally we save the three- and six-
cluster solutions into individual objects:

R> library("flexclust")
R> set.seed(1234)
R> PF3 <- priceFeature(500, which = "3clust")
R> PF3.k38 <- stepcclust(PF3, k = 3:8, nrep = 10)
R> PF3.k38 <- relabel(PF3.k38)
R> PF3.k3 <- PF3.k38[["3"]]
R> PF3.k6 <- PF3.k38[["6"]]

Figure 7.41 shows the segmentation solutions for three and six segments.
Assessing the global stability of the two segmentation solutions (as discussed in
Sect. 7.5.3) reveals that the three-segment solution is much more stable than the six-
segment solution. This is evident from inspecting the top right hand plot of Fig. 7.39:
if three segments are extracted, the same segmentation solution is obtained for each
bootstrap sample; stability values are always equal to 1, and the box in the boxplot
is a horizontal line. Stability values are lower and more variable if six segments are
extracted.

To assess segment level stability within solutions (SLSW ), we use the following
R commands:

R> PF3.r3 <- slswFlexclust(PF3, PF3.k3)
R> PF3.r6 <- slswFlexclust(PF3, PF3.k6)

R function slswFlexclust() from package flexclust takes as input the orig-
inal data PF3 to create bootstrap samples. Then, segment level stability within
solutions (SLSW ) is calculated for the three-segment solution (PF3.k3) and
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Fig. 7.41 Artificial mobile phone data set with three and six segments extracted
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Fig. 7.42 Segment level stability within solutions (SLSW ) plot for the artificial mobile phone data
set with three and six segments extracted

the six-segment solution (PF3.k6). slswFlexclust implements the stepwise
procedure described above slightly differently. slswFlexclust draws pairs of
bootstrap samples, and returns the average agreement measured by the average
Jaccard index for each pair.

We obtain boxplots showing the segment level stability within solutions (SLSW )
(Fig. 7.42) using plot(PF3.r3) and plot(PF3.r6). As can be seen, all three
segments contained in the three-segment solution have the maximal stability of 1.
The boxes in Fig. 7.42 therefore do not look like boxes at all. Rather, they present as
thick horizontal lines at value 1. For the artificially generated mobile phone data set
this is not surprising; the data set contain three distinct and well-separated segments.
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Looking at the segment level stability within solutions (SLSW ) for the six-
segment solution on the right side of Fig. 7.42 indicates that only segment 6 in
this solution is very stable. The other segments are created by randomly splitting
up the two market segments not interested in high-end mobile phones. The fact that
market segments not interested in expensive mobile phones with many features are
not extracted in a stable way is irrelevant to a manufacturer of premium mobile
phones. Such a manufacturer is only interested in the correct identification of the
high-end segment because this is the segment that will be targeted. This one segment
may be all that such a mobile phone manufacturer needs to survive and maximise
competitive advantage.

This insight is only possible if segment level stability within solutions (SLSW )
is assessed. If the segmentation solution would have only been chosen based on
the inspection of the global stability boxplot in Fig. 7.39, the six-segment solution
would have been discarded.

For two-dimensional data (like the mobile phone data set), data structure – and
with it the correctness of a market segmentation solution – is seen by simply taking
a quick look at a scatter plot of the actual data. Typical consumer data, however, is
not two-dimensional; it is multi-dimensional. Each segmentation variable represents
one dimension. The Australian vacation activities data set used in Sect. 7.4.1, for
example, contains 45 segmentation variables. The data space, therefore, is 45-
dimensional, and cannot be plotted in the same way as the simple mobile phone
data set. Analysing data structure thoroughly when extracting market segments is
therefore critically important.

Example: Australian Travel Motives

To illustrate the use of segment level stability within solutions (SLSW ) on real
consumer data, we use the data containing 20 travel motives of 1000 Australian
residents presented in Step 4 (see Appendix C.4). We load the data set (available in
package flexclust) into R using:

R> library("flexclust")
R> data("vacmot", package = "flexclust")

When the data was segmented for the first time (in Dolnicar and Leisch 2008), sev-
eral clustering algorithms and numbers of clusters were tried. The data set does not
contain natural segments. As a consequence, the clustering algorithm will impose
structure on the segments extracted from the data. Selecting a suitable algorithm
is therefore important. The neural gas algorithm (Martinetz and Schulten 1994)
delivered the most interesting segmentation solution for six clusters. Unfortunately
the seed used for the random number generator has been lost in the decade since the
first analysis, hence the result presented here deviates slightly from that reported
in Dolnicar and Leisch (2008). Nevertheless, all six segments re-emerge in the
new partition, but with different segment numbering, and slightly different centroid
values and segment sizes.
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Fig. 7.43 Segment level
stability within solutions
(SLSW ) plot of the
six-segment solution for the
Australian travel motives data
set
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We obtain a series of segmentation solutions ranging from three to eight segments
by using neural gas clustering (argument method = "neuralgas" with nrep
= 20 random restarts):

R> set.seed(1234)
R> vacmot.k38 <- stepcclust(vacmot, k = 3:8,
+ method = "neuralgas", nrep = 20, save.data = TRUE,
+ verbose = FALSE)
R> vacmot.k38 <- relabel(vacmot.k38)

Because these segmentation solutions will be reused as examples in Steps 5 and 7,
we integrate the original data set into the cluster object by setting save.data =
TRUE. In addition, verbose = FALSE avoids printing of progress information
of the calculations to the console. Finally, we save the entire series of segmentation
solutions to the hard drive:

R> vacmot.k6 <- vacmot.k38[["6"]]
R> save(vacmot.k38, vacmot.k6,
+ file = "vacmot-clusters.RData")

Next, we assess segment level stability within solutions (SLSW ) for the six-segment
solution. In addition to the data set vacmot, and the fitted partition vacmot.k6,
we need to specify that the neural gas method of function cclust() is used:

R> vacmot.r6 <- slswFlexclust(vacmot, vacmot.k6,
+ method = "neuralgas", FUN = "cclust")

Figure 7.43 shows the resulting boxplot. Segments with the highest segment level
stability within solutions (SLSW ) are segments 1, 5 and 6, followed by 2 and 4.
Segments 1 and 5 will be identified as likely response style segments in Step 6. This
means that the pattern of responses by members of these segments may be caused
by the way they interact with the answer format offered to them in the survey, rather
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than reflecting their responses to the content. Segment 6 – which is not suspicious
in terms of response style bias – is also very stable, and displays an interesting
profile (discussed in Step 6). Making segment 6 even more interesting is the
fact that members display characteristic descriptor variables (discussed in Step 7).
Segment 3 represents tourists interested in the lifestyle of the local people, caring
about unspoilt nature, wishing to maintain unspoilt surroundings, and wanting to
intensely experience nature. They do not want entertainment facilities, and they
have no desire for luxury or to be spoilt. Only segment 3 emerges as being very
unstable when inspecting the segment level stabilities provided in Fig. 7.43. The
reason for this high level of instability will become obvious in the next section
where we gain insight into the stability of segments across solutions with different
numbers of segments.

7.5.4.2 Segment Level Stability Across Solutions (SLSA)

The second criterion of stability at segment level proposed by Dolnicar and Leisch
(2017) is referred to as segment level stability across solutions (SLSA). The purpose
of this criterion is to determine the re-occurrence of a market segment across market
segmentation solutions containing different numbers of segments. High values
of segment level stability across solutions (SLSA) serve as indicators of market
segments occurring naturally in the data, rather than being artificially created.
Natural segments are more attractive to organisations because they actually exist,
and no managerial judgement is needed in the artificial construction of segments.

Let P1, . . . ,Pm be a series of m partitions (market segmentation solutions) with
kmin, kmin + 1, kmin + 2, . . . , kmax segments, where m = kmax − kmin + 1. The
minimum and maximum number of segments of interest (kmin and kmax) have to
be specified by the user of the market segmentation analysis in collaboration with
the data analyst.

Segment level stability across solutions (SLSA), can be calculated in combination
with any algorithm which extracts segments. However, for hierarchical clustering,
segment level stability across solutions will reflect the fact that a sequence of nested
partitions is created. If partitioning methods (k-means, k-medians, neural gas, . . . )
or finite mixture models are used, segmentation solutions are determined separately
for each number of segments k. A common problem with these methods, however,
is that the segment labels are random and depend on the random initialisation of the
extraction algorithm (for example the segment representatives which are randomly
drawn from the data at the start). To be able to compare market segmentation
solutions, it is necessary to identify which segments in each of the solutions with
neighbouring numbers of segments (Pi , Pi+1) are similar to each other and assign
consistent labels. The difference in number of segments complicates this task. A
way around this problem is to first sort the segments in P1 using any heuristic, then
renumber P2 such that segments that are similar to segments in P1 get suitable
numbers assigned as labels, etc.

Based on this idea, Dolnicar and Leisch (2017) propose an algorithm to renumber
series of partitions (segmentation solutions), which is implemented in function
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Fig. 7.44 Segment level stability across solutions (SLSA) plot for the artificial mobile phone data
set for three to eight segments

relabel() in package flexclust. This function was used on pages 168 and 171 to
renumber segmentation solutions. Once segments are suitably labelled, a segment
level stability across solutions (SLSA) plot can be created.

We use the artificial mobile phone data set to illustrate the usefulness of segment
level stability across solutions (SLSA) as guidance for the data analyst. We create the
segment level stability across solutions (SLSA) plot in Fig. 7.44 using the command
slsaplot(PF3.k38) from package flexclust. This plot shows the development
of each segment across segmentation solutions with different numbers of segments.

Each column in the plot represents a segmentation solution with a specific
number of segments. The number of segments extracted increases from left to
right. The column on the far left represents the segmentation solution with three
segments. The column on the far right represents the segmentation solution with
eight segments. The lines between segments indicate movements of segment
members between segments. Thick lines between two segments indicate that many
segment members are retained (despite the number of segments increasing). Thick
lines represent stubborn market segments, market segments which re-occur across
segmentation solutions, and therefore are more likely to represent natural segments.
Segments which have many lines coming in from the left and branching into many
lines to their right, suffer from changing segment membership across calculations
with different numbers of segments. Such segments are more likely to be artificially
created during the segment extraction process.

For the artificial mobile phone data set containing three distinct market segments,
the segment level stability across solutions (SLSA) plot offers the following
insights: segment 3 in the three-segment solution remains totally unchanged across
segmentation solutions with different numbers of segments. Segment 3 is the high-
end mobile phone market segment. Segments 1 and 2 in the three-segment solution
are split up into more and more subsegments as the number of market segments in
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the segmentation solution increases. The segment level stability across solutions
(SLSA) plot confirms what is seen to happen in the right chart in Fig. 7.41: if
more than three segments are extracted from the mobile phone data set, the high-
end segment continues to be identified correctly. The other two (larger) segments
gradually get subdivided.

So far all interpretations of segment level stability across solutions (SLSA) were
based on visualisations only. The measure of entropy (Shannon 1948) can be used
as a numeric indicator of segment level stability across solutions (SLSA). Let pj

be the percentage of consumers segment Si
l (segment l) in partition (segmentation

solution) Pi recruits from each segment Si−1
j in partition (segmentation solution)

Pi−1, with j = 1, . . . , ki−1. One extreme case is if one value pj∗ is equal to 1
and all others are equal to 0. In this case segment Si

l recruits all its members from
segment Si−1

j∗ in the smaller segmentation solution; it is identical in both solutions
and maximally stable. The other extreme case is that the pj ’s are all the same, that
is, pj = 1/ki−1 for j = 1, . . . , ki−1. The new segment Si

l recruits an equal share
of consumers from each segment in the smaller segmentation solution; the segment
has minimal stability.

Entropy is defined as −∑
pj log pj and measures the uncertainty in a distribu-

tion. Maximum entropy is obtained for the uniform distribution with pj = 1/k;
the entropy is then −∑

(1/k) log(1/k) = log(k). The minimum entropy is 0 and
obtained if one pj is equal to 1. Numerical stability SLSA(Si

l ) of segment l in the
segmentation solution with ki segments is defined by

SLSA(Si
l ) = 1 −

∑ki−1
j=1 pj log pj

log(ki−1)
.

A value of 0 indicates minimal stability and 1 indicates maximal stability.
The numeric segment level stability across solutions (SLSA) values for each

segment in each segmentation solution is used in Fig. 7.44 to colour the nodes
and edges. In Fig. 7.44, green is uniform across the plot because all new segments
are created by splitting an existing segment into two. Each segment in the larger
segmentation solution only has one single parent in the smaller partition, hence low
entropy and high stability.

Example: Australian Travel Motives

Figure 7.45 contains the segment level stability across solutions (SLSA) plot for the
Australian travel motives data set. The segmentation solutions were saved for later
re-use on page 171, and the plot results from slsaplot(vacmot.k38).

The numeric segment level stability across solution (SLSA) values for each
segment in each segmentation solution used to colour nodes and edges indicate that
the segments in the top and bottom rows do not change much from left to right. The
corresponding nodes and edges are all solid green. The only exception is the jump
from four to five segments, where some members are recruited from other segments



7.5 Data Structure Analysis 175

1

2

3

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

Fig. 7.45 Segment level stability across solutions (SLSA) plot for the Australian travel motives
data set for three to eight segments

by segment 5 in the five-segment solution. The opposite is true for segment 3 in
the six-segment solution. Segment 3 recruits its members almost uniformly from
segments 1, 2 and 3 in the five-segment solution; the corresponding node and edges
are all light grey.

From Fig. 7.45 the segment labelled segment 1 in each segmentation solution
emerges as the segment with the highest average segment level stability across
solutions (SLSA) value over all segmentation solutions. However – upon inspection
of the profile of this particular segment (Fig. 8.2) – it becomes clear that it may
represent (at least partially) a response style segment. Response bias is displayed by
survey respondents who have a tendency to use certain response options, irrespective
of the question asked. But an average high segment level stability across solutions
(SLSA) value driven by a response style does not make a market segment attractive
as a potential target segment. The segment with the second highest segment level
stability across solutions (SLSA) value in Fig. 7.45 is segment 6 in the six-segment
solution. This particular segment hardly changes at all between the six- and the
eight-segment solutions. Note that, in the eight-segment solution, segment 6 is
renamed segment 8. Looking at the segment profile plot in Fig. 8.2, it can be seen
that members of this segment are tourists interested in the lifestyle of locals, and
caring deeply about nature.

From Fig. 7.45 it also becomes obvious why segment 3 in the six-segment
solution demonstrates low segment level stability within solution (SLSW ). Seg-
ment 3 emerges as an entirely new segment in the six-segment solution by
recruiting members from several segments contained in the five-segment solution.
Then, segment 3 immediately disappears again in the seven-segment solution by
distributing its members across half of the segments in the seven-segment solution.
It is safe to conclude that segment 3 is not a natural segment. Rather, it represents
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a grouping of consumers the algorithm was forced to extract because we asked for
six segments.

Two key conclusions can be drawn from the segment level stability across
solutions (SLSA) plot in Fig. 7.45: seriously consider segment 6 in the six-segment
solution as a potential target segment because it shows all signs of a naturally
existing market segment. Do not consider targeting segment 3. It is an artefact of
the analysis.

7.6 Step 5 Checklist

Task
Who is

responsible? Completed?

Pre-select the extraction methods that can be used given the 
properties of your data.

Use those suitable extraction methods to group consumers. 

Conduct global stability analyses and segment level stability analyses 
in search of promising segmentation solutions and promising 
segments.

Select from all available solutions a set of market segments which 
seem to be promising in terms of segment-level stability.

Assess those remaining segments using the knock-out criteria you 
have defined in Step 2. 

Pass on the remaining set of market segments to Step 6 for detailed 
profiling.
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