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Chapter 15
Beyond Channel Activity: Protein-Protein 
Interactions Involving Viroporins

Janet To and Jaume Torres

�The Viroporins and Channel Activity Inhibition

The field of viroporin research has its origins in the observation that virus-infected 
cells show increased membrane permeability (Carrasco 1995). More than two 
decades later, viroporins have been confirmed in several viral families, e.g., 
Orthomyxoviridae (AM2, PB1-F2, BM2), Flaviviridae (p7), Coronaviridae (E, 3a, 
4a), Paramyxoviridae (SH), Picornaviridae (2B/2  BC, 3A), Togaviridae (6  K), 
Retroviridae (Vpr, Vpu, p13), Reoviridae (NSP4 and p10), Polyomaviridae (agno-
protein, VP2-VP4), Papillomaviridae (E5), or Rhabdoviridae (α1). Currently, 
detailed structural information is limited to only a handful of viroporins (vide infra), 
although these constitute useful templates for the probably hundreds of other 
unknown viroporins yet to be discovered in reservoir hosts (Anthony et al. 2013).

In most cases, viral attenuation is not only achieved by deletion of the viroporin 
gene but also simply when their channel activity is suppressed. Indeed, various spe-
cific pathogenic roles of viroporin channel activity have been discovered, and 
attempts have been made to modulate this channel activity, especially that of influ-
enza A virus M2 (IAV M2, or AM2) protein, the first discovered and the best char-
acterized viroporin. In general, however, the road to rational design and discovery 
of viroporin small-molecule inhibitors has not been successful [see To et al. (2016) 
for a recent review]. In fact, amantadine and rimantadine are at present the only 
licensed antiviral drugs that target a viroporin, i.e., IAV M2. However, most circu-
lating strains of IAV are Amtresistant (Deyde et  al. 2007; Hayden and De Jong 
2011), and neither drug is currently being used in humans.

J. To · J. Torres (*) 
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
e-mail: janetto@ntu.edu.sg; jtorres@ntu.edu.sg

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8456-0_15&domain=pdf
https://doi.org/10.1007/978-981-10-8456-0_15
mailto:janetto@ntu.edu.sg
mailto:jtorres@ntu.edu.sg


330

�Protein-Protein Interactions (PPIs) Involving Viroporins

Viroporins are involved in many protein-protein interactions (PPIs) that may be also 
susceptible to therapeutic intervention [see recent reviews (Fischer et  al. 2014; 
Nieva and Carrasco 2015)]. Both intraviral and virus-host interactions, in the form 
of a myriad of perturbations, can provide important insights into the mechanisms 
involved in the viral infectious cycle. Also, understanding these PPI networks may 
aid the design of new antivirals. These strategies depend on both detailed structural 
and mechanistic information and on the availability of therapeutically relevant tar-
gets. In this sense, the initial focused approach to identify viroporin binders is being 
complemented with genome-wide interactome studies adapted to viral infections 
using high-throughput technologies, providing a dramatic boost in the search for 
possible PPIs [see de Chassey et al. (2014) for a recent review].

Useful methods to obtain leads for PPIs involving viroporins include yeast two-
hybrid (Y2H) screens, e.g., the genome-wide virus-host PPI screen of HCV was 
performed almost 10 years ago using a construction of a viral ORFeome and Y2H 
technology (De Chassey et al. 2008), identifying hundreds of PPIs involving viral 
and host proteins, 13 of which involving p7 and proteins expressed in the liver. 
Other Y2H screens have included IAV M2 virus-virus and virus-host interactions 
(Shapira et al. 2009), or intraviral PPIs in the coronavirus responsible for severe 
acute respiratory syndrome (SARS-CoV) (von Brunn et al. 2007). However, this 
method does not measure interactions between proteins in the context of the infected 
cell, is biased against membrane proteins, and cannot study protein complexes that 
are weakly or transiently associated. The bias against membrane proteins can be 
compensated using the split-ubiquitin-based yeast two-hybrid screen, e.g., in a 
screen to search for binders of the small hydrophobic (SH) protein of the respiratory 
syncytial virus (RSV) (Li et al. 2015).

More suitable methods detect interactions in the context of the infected cell, 
using a combination of affinity purification with mass spectrometry, e.g., Wang 
et al. (2017), although the method has also low sensitivity. Other methods are based 
on microarrays of deposited purified proteins (Zhu et al. 2001) and protein comple-
mentation assay (PCA) (Tarassov et al. 2008). Lastly, an approach that combines 
on-chip in vitro protein synthesis with an in situ microfluidic affinity assay can 
detect even weak or transient interactions (Gerber et al. 2009), although host-virus 
PPIs using this method so far has only been tested for M protein in RSV (Kipper 
et al. 2015).

From these studies, it is apparent that viroporins, and viral proteins in general, 
tend to show preference for key host proteins that have a high number of direct 
interacting partners. Also, interactions may be simultaneous with many cellular pro-
teins, making use of intrinsically disordered protein regions enriched for short linear 
motifs, e.g., PDZ-binding motifs (Hagai et al. 2014; Meyniel-Schicklin et al. 2012), 
to compensate for their small proteomes.
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�The Influenza A Virus Matrix Protein 2 (IAV M2 or AM2)

Influenza viruses belong to the Orthomyxoviridae family of segmented, negative-
sense, enveloped RNA viruses. The seasonal flu caused by the influenza A virus 
(IAV) is known for causing pandemics with high mortality rates (Hay et al. 2001; 
Neumann et al. 2009), although its close relative influenza B accounts for half of the 
influenza disease in recent years (www.cdc.gov). Generally, influenza virions are 
spherical in shape ranging from 80 to 120 nm in diameter, although filamentous 
forms may also occur (Lamb and Choppin 1983). The viral envelope contains three 
transmembrane proteins, hemagglutinin (HA), neuraminidase (NA), and matrix 
protein 2 (M2), on the outside and a layer of matrix protein (M1) just underneath the 
membrane that contains cholesterol-enriched lipid rafts. M1 forms an internal coat 
that encloses the viral ribonucleoproteins (vRNPs), i.e., the negative-strand viral 
RNA (vRNA) and nucleoprotein (NP), with small amounts of the nuclear export 
protein (NEP) and three polymerase (3P) proteins (PA, PB1, and PB2) that form the 
viral RNA polymerase complex (Fields et al. 2013).

�M2 Viroporin

The viroporin M2 in IAV is a homotetrameric channel (Sakaguchi et al. 1997). Each 
M2 monomer is a 97-amino acid protein comprising an N-terminal ectodomain (24 
aa), an α-helical transmembrane domain (TMD,  19 aa), and a highly conserved 
cytoplasmic tail (CT) domain (54 aa) that is a hotspot for interactions with both 
viral and host proteins during the IAV life cycle. The latter may therefore constitute 
an attractive drug target for the development of IAV antivirals. M2 has a pH-acti-
vated proton channel activity which is required to complete the uncoating process 
during virus entry. Upon virus internalization via endocytosis, M2 selectively con-
ducts protons from acidified endosomes into the viral interior. This acidification of 
virion triggers the dissociation of the M1 protein from the vRNP complex, thereby 
enabling the transport of vRNPs into the nucleus for replication of viral genetic 
material (Helenius 1992). For some IAV subtypes, the M2 proton channel raises the 
pH of the trans-Golgi network (TGN) to protect the viral HA from premature low-
pH conformational change during its transport to the cell surface (Takeuchi and 
Lamb 1994). The channel activity of IAV M2 has been found to be sufficient for the 
activation of the NLRP3 inflammasome in influenza-infected cells (Ichinohe et al. 
2010). Presently, there are more than ten structures of both wild-type and drug-
resistant mutant M2 channels in the Protein Data Bank [see review in Gu et  al. 
(2013)].
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�M1-M2 Interaction

Early works suggested a role for IAV M1-M2 interaction in virus budding and con-
trol of virion morphology (filamentous versus spherical). Interaction between M1 
with the M2 cytoplasmic tail was first suggested from the analysis of escape mutants 
(Zebedee and Lamb 1989). Further work revealed a physical interaction between 
M1 and the M2 cytoplasmic tail at the site of virus budding, to facilitate virus 
assembly by promoting the recruitment and packaging of viral proteins and viral 
genome (McCown and Pekosz 2006; Chen et al. 2008). The cytoplasmic tail of M2 
contains an amphipathic α-helix (residues 45–62) (Schnell and Chou 2008) that can 
modulate membrane curvature in a cholesterol-dependent manner. This feature of 
M2 has been proposed to be implicated in (i) modification of local membrane cur-
vature during virus budding to provide a stabilized scaffold for M1 polymerization 
and virus filament formation and (ii) alteration of membrane curvature at the neck 
of budding virions to facilitate membrane scission and virion release (Rossman and 
Lamb 2011).

�Host Interactions

In addition to intraviral interactions, a number of interactions of M2 with host pro-
teins have been described to modulate autophagy, membrane trafficking, host 
defense, and virus budding. For example, IAV M2 has been reported to arrest 
autophagy (Gannagé et al. 2009; Beale et al. 2014), a cellular degradation pathway 
mediated by autophagosomes which delivers cytoplasmic materials to the lysosome 
that is regulated by autophagy-related genes (Atg). This process involves (i) target 
engulfment by an isolation crescent membrane (phagophore) to form the autopha-
gosome and (ii) autophagosome-lysosome fusion and degradation of the intra-
autophagosomal contents (Fig. 15.1a). IAV subverts this machinery by blocking this 
fusion, resulting in increased apoptosis of IAV-infected cells. In IAV-infected A549 
human lung epithelial cells, M2 coimmunoprecipitates with Atg6/Beclin-1 through 
interaction with M2 residues 1–60 (Gannagé et al. 2009). Atg6/Beclin1 is part of a 
complex that regulates autophagosome generation and degradation and is a com-
mon target of other viruses for the subversion of autophagy, e.g., herpesviruses and 
the human immunodeficiency virus (HIV) [reviewed in Münz (2011)].

The C-terminal tail of M2 has also been implicated in the binding to LC3, a pro-
tein that normally localizes to autophagosomal membranes (Sou et  al. 2006) to 
recruit autophagy receptors carrying substrates destined for autophagic degradation. 
These receptors typically contain an LC3-interacting region (LIR), with consensus 
LIR motif W/FxxI/L/V. In IAV-infected cells, the localization of LC3 changes from 
the cytoplasm and autophagosomal membranes to the plasma membrane (Beale 
et al. 2014), a change mediated by a putative LIR motif (residues 91–94, FVSI) 
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present in the cytoplasmic tail of M2 (Fig. 15.1b). Binding of LC3 to the LIR motif 
of M2 has been confirmed by LUMIER binding assays (Barrios-Rodiles et al. 2005) 
and GFP pull-down experiments.

The M2-LC3 interaction is also a factor in the budding of IAV, which, depending 
on the viral strain and host cell type, can produce either spheres or filaments 
(Bourmakina and García-Sastre 2003), with the latter requiring extensive mem-
brane resources. Cells infected with a filamentous budding IAV strain carrying 
mutations in the M2 LIR motif that abolished M2-LC3 interactions produced fewer 
filaments than cells infected with wild-type IAV, suggesting that hijacking of LC3 
by M2 may assist in the delivery of LC3-conjugated membranes to the cell surface 
to facilitate IAV budding (Beale et al. 2014).

The cytoplasmic domain of IAV M2 has been reported to bind caveolin-1 (Cav-
1) (Zou et al. 2009), a raft-residing cholesterol-binding protein implicated in the life 
cycle of viruses that buds from lipid rafts, such as HIV, RSV, and rotavirus. Most 
Cav-1-associated proteins contain an aromatic-rich caveolin-binding motif (CBM), 
a consensus sequence of aromatic residues separated by a specific spacing (Couet 
et al. 1997). The M2-Cav-1 interaction has been confirmed by pull-down and coim-
munoprecipitation assays, with the putative CBM in M2 proposed to reside in the 
cytoplasmic, juxtamembrane region of the M2 tail (Sun et al. 2010). This interaction 
suggests that Cav-1 may modulate virus budding, possibly through the trafficking of 
M2 to the plasma membrane.

A yeast two-hybrid screening effort identified the transport protein particle com-
plex 6A (TRAPPC6A) and also its N-internal deleted isoform, TRAPPC6AΔ, as 
binders to the last six amino acids at the C-terminal end of IAV M2, with highly 
conserved Leu96 located at the extremity of M2 being indispensable in mediating 
the interaction (Zhu et  al. 2017). TRAPP complexes are multi-subunit tethering 

Fig. 15.1  IAV M2 may subvert autophagy by (a) interaction with Atg6/Beclin-1 to block autopha-
gosome maturation, triggering apoptosis [adapted from Rossman and Lamb (2009)] and (b) inter-
action with LC3 through an M2 LIR motif (FVSI) that hijacks LC3 to the plasma membrane 
[adapted from Beale et al. (2014)]
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complexes involved in intracellular membrane trafficking pathways, and 
TRAPPC6AΔ may be a regulator of M2 transport to the cell surface.

A yeast two-hybrid assay combined with mutagenesis identified the binding of 
both AM2 and BM2 to the C-terminal domain 1 (CTD1) of Hsp40 (Guan et  al. 
2010), a molecular chaperone that can regulate the critical PKR signaling pathway 
against viral infection. Hsp40 associates with the PKR inhibitor, P58IPK. Binding 
studies suggest that M2 also binds to P58IPK, possibly forming a stable complex with 
both Hsp40 and P58IPK (Guan et al. 2010), which would enhance PKR autophos-
phorylation and activation to inhibit host protein synthesis.

Results from another yeast two-hybrid screen using the M2 cytoplasmic tail as a 
bait have identified the human cell cycle regulator cyclin D3 as a binder, and their 
interaction has been confirmed in infected cells by immunoprecipitation assays (Fan 
et al. 2017). Using siRNA-mediated knockdown of cyclin D3 expression, the study 
proposed that cyclin D3 is a negative modulator of IAV infection, competing with 
M1 for binding to M2 in transfected cells and therefore disrupting the important 
M1-M2 interaction in the context of an IAV infection. On the other hand, IAV may 
antagonize cyclin D3 activity by (i) relocating cyclin D3 from the nucleus 
(Fig. 15.2a) to the cytosol (Fig. 15.2b) to facilitate virus replication by promoting 
cell cycle arrest and (ii) targeting cyclin D3 for cytosolic proteasomal degradation 
to prevent its interference with M1-M2 binding (Fig. 15.2b). Cyclin D3 has been 
also reported to be a target of SARS-CoV viroporin 3a (Yuan et al. 2007)

A recent study has identified M2 as a putative viral antagonist of BST-2 (bone 
marrow stromal cell antigen 2, also known as tetherin, CD317) (Hu et al. 2017), a 
protein that may restrict the release of infectious IAV (Mangeat et al. 2012). BST-2 
can inhibit the release of a wide range of enveloped viruses by tethering budding 
virions to the cell surface [reviewed in le Tortorec et al. (2011)], e.g., in HIV-1, in 
that case antagonized by its viroporin Vpu (Neil et al. 2008). However, the role of 
BST-2 in limiting IAV release has been disputed (Watanabe et al. 2011), perhaps 
due to IAV strain-specific susceptibility to BST-2 restriction. This interaction was 
confirmed by orthogonal assays, and using chimeric and truncated M2, the regions 

Fig. 15.2  Proposed activity of cyclin D3 in IAV budding. (a) In normal cells, cyclin D3 is local-
ized to the nucleus where it regulates cell cycle; (b) during IAV infection, cyclin D3 interacts with 
viral M2 to disrupt M1-M2 binding; (c) in the absence of cyclin D3, more infectious progeny virus 
particles are released [adapted from Fan et al. (2017)]
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involved in BST-2 downregulation were proposed to be within the M2 extracellular 
and TMDs.

Another report, using a Y2H screening with M2 cytoplasmic tail as bait,  
discovered the binding to annexin A6 (AnxA6) (Ma et al. 2012), a Ca2+-regulated 
membrane-binding protein that controls intracellular cholesterol homeostasis, and 
regulates membrane fusion and vesicle formation in endocytic and exocytic path-
ways (Raynal and Pollard 1994). This interaction has been verified by coimmuno-
precipitation assays and colocalization studies in infected cells (Ma et al. 2012). 
Modulation of AnxA6 expression led to corresponding variations in production of 
infectious IAV, suggesting that AnxA6 is a negative modulator of IAV infection (Ma 
et al. 2012), as it may impair IAV budding and the release of progeny virus.

A Y2H screen also identified Na+/K+ ATPase β1 subunit (ATP1B1) as binder to 
the M2 cytoplasmic domain (Mi et al. 2010). SARS-CoV E viroporin and the human 
papillomavirus E5 viroporin have also been found to bind the host Na+/K+ ATPase 
α1 subunit (Nieto-Torres et  al. 2011) and vacuolar H+ ATPase (Andresson et  al. 
1995), respectively.

�PB1-F2 Viroporin

Another protein in IAV, PB1-F2 (Chen et al. 2001), has the hallmarks of a viroporin: 
it is ~90 residues long, it forms oligomers, and it has been shown to form a nonse-
lective ion channel in planar lipid bilayers and microsomes (Henkel et al. 2010). 
PB1-F2 is known to induce apoptosis in host immune cells (Chen et al. 2001) via 
interaction with two mitochondrial proteins, ANT3 and VDAC1, resulting in the 
loss of mitochondria membrane potential (Varga et al. 2012), although its localiza-
tion and pro-apoptotic behavior is strain and cell type specific (Varga and Palese 
2011). In addition, PB1-F2 from pathogenic strains of IAV can be incorporated into 
the phagolysosomal compartment to activate the NLRP3 inflammasome, resulting 
in IL-1β secretion and causing severe pathophysiology (McAuley et al. 2013). Also, 
binding of PB1-F2 of PR8 to MAVS, a RIG-I-like receptor (RLR) signaling adaptor 
anchoring to mitochondria, led to antagonism activity on interferon production 
(Varga et al. 2012). Despite these data, the precise role of PB1-F2 in modulation of 
IAV-induced immunopathogenesis is still unknown.

�IAV Protein Interactome

Many more IAV host-virus PPIs have been detected recently using affinity purifica-
tion coupled with mass spectrometry in the context of infected cells. For example, 
the interactome of 11 viral proteins of influenza PR8 IAV and another 3 strains was 
analyzed (Wang et al. 2017), confirming that M2 protein is one of the major nodes 

15  Beyond Channel Activity: Protein-Protein Interactions Involving Viroporins



336

connecting host proteins with roles in immunity and regulation of viral infection. 
Almost 100 interactions of host with M2 protein were detected, and ~30 were 
common to at least three of the strains (Fig. 15.3).

�The Hepatitis C Virus p7 Protein (HCV-p7)

The hepatitis C virus (HCV) is an enveloped positive-strand RNA virus member of 
the Flaviviridae family (genus Hepacivirus) that has chronically infected 170 mil-
lion people worldwide, causing human liver disease. Hepatitis C is divided into six 
genotypes, with genotype 1 being the most common and most difficult to treat. 
Treatment against HCV infection involves drugs targeting both viral and host 
proteins, e.g., drugs that target NS3/4A protease, the NS5A protein, or the NS5B 
RNA-dependent RNA polymerase (RdRP). However, the rapid turnover of HCV 
replication (Neumann et al. 1998) and the error-prone activity of the HCV RNA 
polymerase lead to a rapid formation of “quasi-species” and therefore resistance to 
antivirals.

Fig. 15.3  Maps of the IAV intraviral and virus-host protein interactome. (a) Result from a Y2H 
study to identify direct binary contacts among the ten major viral proteins of the PR8 strain (Shapira 
et al. 2009). This study also detected nine interactions between IAV M2 and host proteins, among 
them RNA-binding proteins, transcription factors, or proteins involved in signaling pathways, or to 
detect intraviral PPIs; (b) close-up of high-confidence candidate-interacting proteins (HCIPs) 
associated with multiple IAV strains when M2 was used as bait. Indicated are links to other viral 
proteins (NP, PB1, and PB2) [adapted from Wang et al. (2017)]
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HCV encodes a single polyprotein of ~3000 amino acids that is cleaved by cel-
lular and viral proteases into ten different proteins: three structural proteins (core, 
E1, and E2) and seven nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, 
and NS5B). The structural proteins Core (C), E1, and E2 are located in the N-terminal 
region and form the viral particle (Moradpour and Penin 2013), whereas NS3 to 
NS5B are involved in the replication of the viral genome. p7 and NS2 are dispens-
able for RNA replication but are critical for virion morphogenesis, which requires 
both structural and nonstructural proteins (Appel et al. 2008; Steinmann et al. 2007), 
although the latter are not packaged in viral particles.

HCV replication takes place in double-membrane vesicles (DMVs), while viral 
assembly sites (AS) have been suggested to be specialized detergent-resistant mem-
branes (DRMs) in the ER or in mitochondria-associated ER membranes rich in 
cholesterol and sphingolipids (Shanmugam et al. 2015). The core protein concen-
trates at cytosolic lipid droplets (cLDs) close to the ER-located assembly site and 
is eventually linked to the vRNA replication site in specialized ER-derived 
structures.

During HCV assembly, one of the first steps is the interaction of cLD-bound core 
protein and NS5A (Appel et al. 2008). NS2, probably in complex with p7, interacts 
with the NS3-4A enzyme, and this retrieves the viral core protein from cLDs into 
the nascent virus particles [reviewed in Lindenbach and Rice (2013)]. Virus parti-
cles transit through the secretory pathway, where they are protected from exposure 
to low pH by p7, which neutralizes intracellular compartments (Wozniak et  al. 
2010). More recently, a genetic interaction has been observed between p7 and NS5B 
proteins, which were found to cooperate to promote virion infectivity by decreasing 
sphingomyelin content in the virion (Aligeti et al. 2015).

p7 Viroporin  The viroporin p7 is produced when E2-p7-NS2 is cleaved by a signal 
peptidase at the ER (Lin et al. 1994; Mizushima et al. 1994). p7 is a 63-residue-long 
protein that has two α-helical TMDs and is found mainly at the ER membrane. As 
mentioned above, p7 is essential for virus particle assembly and release (Steinmann 
et al. 2007) and for productive HCV propagation in vivo (Sakai et al. 2003), but not 
necessary for RNA replication. The bovine viral diarrhea virus (BVDV) and the 
hepacivirus GB virus B (GBV-B), HCV’s closest relatives, also have a p7 protein 
crucial for virus replication.

p7 has channel activity with low cation selectivity (Griffin et al. 2003; Ouyang 
et al. 2013). p7 has been reported to permeabilize membranes to protons, preventing 
the acidification of intracellular vesicles (Wozniak et al. 2010), an activity that has 
been confirmed in vitro using a liposome-based assay (Gan et al. 2014).

The structural model for p7 is that of an α-helical hairpin with two α-helical 
TMDs kinked in the middle (Cook et al. 2010), or a sequence divided into three 
helical segments (Ouyang et al. 2013) where the N-terminal half of the polypeptide 
would face the lumen of the channel and the C-terminal helix, p7(27–63), faces the 
lipid environment. The channel is formed by either six or seven monomers (Luik 
et al. 2009; Montserret et al. 2010).
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�p7-NS2 Interaction

Early genetic analyses suggested that p7 interacts with NS2, a polytopic membrane 
protein containing three N-terminal TMDs that is essential in the assembly process 
of the HCV particle (Jirasko et al. 2008). Mutation of residues in one protein to 
induce the emergence of complementary mutations in the other was used to identify 
the interaction network of NS2 protein with p7, E1 and E2, and NS3 proteins 
(Jirasko et al. 2010). Similar conclusions were reached in studies involving chime-
ric constructs with different genotypes (Pietschmann et al. 2006) which showed that 
virus release was most efficient when the N-terminal TMD of NS2 was from the 
same isolate as the core-to-p7 region. In a similar study, adaptive mutations in E1, 
p7, NS2, and NS3 were detected that were essential for virus assembly and/or 
release, again suggesting genetic interactions between these proteins (Yi et  al. 
2007).

Physical interaction between p7 and NS2 was observed during pull-down assays 
and mutagenesis (Ma et  al. 2011), which suggested that p7 may regulate NS2-
mediated complexes that are crucial for production of infectious HCV particles. 
Coimmunoprecipitation and FRET assays also supported a physical interaction 
between p7 and NS2 (Popescu et al. 2011), suggesting a complex between p7, NS2, 
and E2 mediated by transmembrane interactions. These interactions were proposed 
to be required to localize NS proteins and the core-containing cLDs to sites of virus 
assembly. Overall, these studies demonstrated that NS2, together with p7 protein, 
plays a central organizing role in HCV particle assembly by bringing together viral 
structural and nonstructural proteins. Although the exact mechanism linking nucleo-
capsid assembly with envelope acquisition is unknown, p7 and NS2 have been pro-
posed to play a critical role in the migration of core protein and E1-E2 heterodimers 
to the virion assembly site (Vieyres et al. 2014).

Another role, in immune evasion, has been identified recently for p7 (Qi et al. 
2017). Indeed, HCV acts against the host immune system by downregulating inter-
feron (IFN) production, blocking IFN signaling transduction, and impairing IFN-
stimulated gene (ISG) expression. But even when ISGs are expressed, most ISGs 
have been reported to be ineffective when overexpressed in virus-infected cells due 
to unknown mechanisms (Schoggins et  al. 2011). By constructing a library of 
mutant HCVs with a 15-nt insertion, p7 was identified as an immune evasion pro-
tein that suppresses the antiviral IFN function, forming a complex with the host 
interferon-inducible protein 6–16 (IFI6–16) that has been verified by coimmuno-
precipitation. It was proposed that while IFI6–16 acts to stabilize the mitochondrial 
membrane potential, p7 counteracts by depolarizing the mitochondrial potential, 
likely through its ion channel activity. Overall, the findings suggest that p7  
antagonizes the antiviral responses of IFN by inhibiting the antiviral function  
of IFI6–16.
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�HCV Protein Interactome

A proteome-wide virus-host PPI screen of HCV was performed almost 10 years ago 
using a construction of a viral ORFeome and Y2H technology (De Chassey et al. 
2008). In that study, 314 PPIs were identified involving viral and host proteins, 13 
of which involving p7 and proteins expressed in the liver (Fig. 15.4), although these 
were not confirmed by orthogonal methods. A latter study combined mass spec-
trometry and functional genomics (Germain et al. 2014), but p7 was not included in 
the screen.

The interaction network between the ten HCV proteins has been investigated 
using a flow-cytometry-based FRET assay in living cells. In this study, p7 was 
found to bind NS2, Core, E1, and E2 (Hagen et al. 2014) (Fig. 15.5a). In 2016, a 
computational coevolution analysis of HCV attempted to reconstruct the PPI net-
work of the HCV at the residue resolution (Champeimont et al. 2016). Coevolving 
residues were identified to predict PPIs for further experimental identification of 
HCV protein complexes (Fig.  15.5b). One of these interactions was p7-NS2  
(see Fig. 15.5c).

Fig. 15.4  Graphical representation of the HCV virus-host (V-H) human interaction network (red 
lines) with black and red nodes representing viral and human proteins, respectively. Blue lines 
represent H-H interactions (adapted from De Chassey et al. (2008))
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�Coronavirus Viroporins

Coronaviruses (CoV) are vertebrate pathogens which cause human respiratory dis-
eases that typically affect the respiratory tract and gut. CoVs belong to the family 
Coronaviridae, subfamily Coronavirinae, and are distributed into four genera α, β, 
γ, and δ (Enjuanes et al. 2000). While α-CoVs and β-CoVs circulate in mammalian 
hosts, γ-CoVs and δ-CoVs mainly infect birds. For example, β-CoVs include the 
murine hepatitis virus (MHV), whereas γ-CoVs include the avian infectious bron-
chitis virus (IBV). The first coronavirus was isolated in 1937 (IBV), whereas the 
first human coronavirus (HCoV) was identified in the 1960s. In humans, disease 
caused by coronaviruses ranges from mild to really severe, e.g., the recent severe 
acute respiratory syndrome (SARS) and the Middle East respiratory syndrome 
(MERS).

SARS-CoV appeared in 2002 causing ~10,000 human infections, with a 10% 
mortality rate (Holmes 2003). MERS coronavirus (MERS-CoV) emerged about 
10 years later, and to date (as of July 2017) almost 2040 cases of infection and 712 
deaths have been confirmed (http://www.who.int/emergencies/mers-cov/en/), i.e., a 
mortality of ~35%. Currently, no effective licensed prevention nor treatment exists 
against coronavirus infection (Lou et al. 2014), although live attenuated vaccines 
and fusion inhibitors are promising strategies.

CoVs have nonsegmented, exceptionally long genomes (up to 32 kb). One third 
of the genome hosts the ORFs for structural proteins, i.e., spike (S), envelope (E), 
membrane (M), and nucleoprotein (N). This part of the genome also encodes other 
so-called “accessory” proteins, which vary in number and sequence even among 
CoVs belonging to the same lineage (Enjuanes et  al. 2008), e.g., from one in 
HCoV-NL63 to eight in SARS-CoV.  The remaining two thirds of the genome 
encode nonstructural genes, with open reading frames ORF1a and ORF1b that pro-
duce polyproteins pp1a and pp1ab. These are then processed into 16 nonstructural 

Fig. 15.5  (a) Network of reported intraviral HCV PPIs determined experimentally [adapted from 
Hagen et  al. (2014)] compared to (b) coevolution links of HCV proteins (Champeimont et  al. 
2016), where blue lines correspond to coevolving links not experimentally reported; (c) predicted 
p7-NS2 interaction between F14 of NS2 and I19 in TM1 of p7 (red line), compared to experimen-
tally reported interactions based on NMR (Cook et  al. 2013) between NS2  A12 and V15 and 
W48 in p7 TM2 (green lines) [adapted from Champeimont et al. (2016)]
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proteins (nsp1 to 16); see Su et  al. (2016) for recent general overview of  
coronaviruses and Forni et al. (2017) for the molecular evolution of HCoVs. In the 
case of SARS-CoV, the genome is predicted to encode 14 functional open reading 
frames, leading to the expression of up to 30 structural and nonstructural protein 
products.

�E Viroporin

The E proteins are 76–109 amino acids long with one TMD (Torres et al. 2006; Li 
et al. 2014a; To et al. 2017), a short lumenal N-terminus and a longer cytoplasmic 
C-terminal tail (Nieto-Torres et al. 2011) which in SARS E protein tends to form 
β-structure in isolation, but it is mainly helical in the context of a full length protein 
(Li et al. 2014a). E proteins are localized particularly in the endoplasmic reticulum-
Golgi intermediate compartment (ERGIC), where virus morphogenesis and bud-
ding occurs. E protein forms homopentameric channels with poor ion selectivity 
(Verdia-Baguena et al. 2012). Only the TMD of SARS-CoV E (E-TM) has been 
characterized in some detail, in lipid membranes (Torres et al. 2006) and in DPC 
micelles (Pervushin et al. 2009).

SARS-CoV E protein is a virulence factor critical for viral pathogenesis, as 
SARS-CoV lacking the E gene (rSARS-CoV-∆E) is attenuated in vivo (DeDiego 
et al. 2007). Mutations N15A and V25F abolish channel activity in vitro (Torres 
et al. 2007) and led to attenuation when introduced in a recombinant SARS-CoV 
(Nieto-Torres et al. 2014). The latter authors showed that channel activity is impor-
tant for inflammasome activation and elevated production of the pro-inflammatory 
cytokine IL-1β. SARS-CoV E also regulates host stress response and apoptosis 
(DeDiego et al. 2011) and improves viral fitness. The importance of the E protein in 
coronavirus pathogenesis has led to the development of live attenuated vaccines 
based on E-deleted, E-truncated, or E-mutated virions, e.g., Regla-Nava et  al. 
(2015). In general, E protein plays important roles in coronavirus assembly and 
morphogenesis, although E protein is not necessary to obtain infectious SARS-CoV 
(DeDiego et al. 2008).

�E-M Interaction

E protein is a known binder of M protein, the most abundant protein component of 
the virion and the membrane protein responsible for its shape. M protein has three 
predicted TMDs and a large C-terminal extramembrane domain exposed to the 
cytoplasm or the interior of the virion. It is this domain that forms contacts with the 
C-terminal tail of the E protein, although TMD interactions are also likely (Lim and 
Liu 2001; Hogue and Machamer 2008). These interactions occur at the ERGIC, the 
budding compartment of the host cell. Since M-M interactions are major drivers of 
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viral envelope formation, these contacts are likely to be important for particle 
assembly. The E-M interaction has long been reported in infectious bronchitis virus 
(IBV) and mouse hepatitis virus (MHV) by coimmunoprecipitation in virus-infected 
or virus-transfected cells (Corse and Machamer 2003; Lim and Liu 2001; Maeda 
et al. 1999) and was proposed to be crucial for the formation of virus-like particles 
(VLPs) and virions. In SARS-CoV, coexpression of M and E in a baculovirus 
expression system was sufficient for the assembly of VLPs (Ho et al. 2004). The 
deletion of the E gene (∆E) in the murine coronavirus, the mouse hepatitis virus 
(MHV), produced revertants where the M gene appeared to have been duplicated, 
creating new variants of M protein that lacked most of its C-terminal cytoplasmic 
tail (Kuo and Masters 2010). These results suggested a role for E proteins in “dis-
persing or de-aggregating” M protein during packaging.

Other CoV Viroporins  Although the most studied viroporin in CoVs is the enve-
lope (E) protein, other viroporins have been found in an accessory gene present in 
all CoVs, between the S and E gene loci. In SARS-CoV (SARS-ORF3a) and in 
HCoV-229E (229E–ORF4a), these proteins form ion channels (Zhang et al. 2014; 
Lu et al. 2006), whereas HCoV-NL63-ORF3 has also been proposed to be a viropo-
rin (Zhang et  al. 2015). In HCoV-OC43, this genomic segment encodes ORF5, 
which has been reported to facilitate virion morphogenesis (Zhang et al. 2015). The 
latter has only a single TMD, in contrast with SARS-CoV ORF3a, HCoV-229E 
ORF4a, and HCoV-NL63 ORF3.

3a Viroporin  SARS-CoV 3a protein is a 274-amino-acid-long protein with three 
TMDs and forms homotetrameric complexes that have ion channel activity (Lu 
et al. 2006). 3a protein has a cysteine-rich domain (residues 127–133) responsible 
for homo- and hetero-dimerization (Lu et al. 2006). In addition to a Yxx domain and 
a diacidic domain, it has a C-terminal domain (Tan et al. 2006). The C-terminal 
domain has RNA-binding activity (Sharma et al. 2007). Protein 3a is suggested to 
play a structural role in the SARS-CoV life cycle, since it interacts with S, E, and M 
proteins (Tan et al. 2004) and it is incorporated into newly packaged matured SARS-
CoV virions (Shen et al. 2005; Ito et al. 2005). Also, it regulates various cellular 
responses of host cells, e.g., the upregulation of fibrinogen gene expression (Tan 
et al. 2005), and the increase of IL-8 and NF-B promoter activities (Kanzawa et al. 
2006), possibly through its RNA-binding activity (Sharma et al. 2007). SARS-CoV 
3a protein induces caspase-dependent apoptosis both in vivo and in vitro (Wong 
et al. 2005).

�Intraviral Interactions

Two yeast-two-hybrid (Y2H) studies have been conducted to study intraviral SARS-
CoV protein interactions (von Brunn et al. 2007; Pan et al. 2008), although only a 
few of these interactions have been verified. Von Brunn et al. (von Brunn et al. 2007) 
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reported interactions of E protein with the nonstructural proteins nsp1, nsp8, and 
nsp11, as well as with the accessory proteins ORF3b, ORF7b, and ORF9b, whereas 
ORF3a interacted with M and S. However, not all these interactions were confirmed 
by coimmunoprecipitation in mammalian cells. Overall, however, only 13% of the 
intraviral SARS interactions known at that time were identified. This is likely due to 
the bias of Y2H against membrane proteins, which prevents the transfer of expressed 
prey and/or bait fusion proteins to the nucleus to activate transcription. Pan et al. 
(Pan et al. 2008) also reported a genome-wide analysis of intraviral PPIs in SARS-
CoV replication, using a mammalian two-hybrid system screen, although only two 
interactions of E and 3a were found here. In comparison with a similar screen in 
yeast, native posttranslational modifications and folding should be present, but the 
two methods share a similar limitation in terms of bias against membrane proteins.

Later, a tandem affinity purification (TAP) study coupled to mass spectrometry 
(Álvarez et al. 2010), using dual-tagged SARS-CoV E protein in infected cells as 
bait, identified viral proteins nsp3, S, and M and host proteins dynein heavy chain, 
fatty acid synthase, aminopeptidase puromycin sensitive, phosphofructokinase 
platelet, tubulin alpha and beta, actin beta, transmembrane protein 43, and lactate 
dehydrogenase A as binders. Nsp3 is the largest nonstructural protein of SARS-
CoV (1922 amino acids) which is proposed to act as a replication/transcription scaf-
folding protein (Imbert et  al. 2008). Interaction with nsp3 was confirmed by 
coimmunoprecipitation and was localized to one of the nsp3 seven domains, i.e., the 
N-terminal acidic domain (nsp3a), that has a ubiquitin-like fold (Serrano et  al. 
2007). Colocalization of E and nsp3 in the cytoplasm of the infected cell suggested 
nsp3 may bring E protein into the vicinity of the replication/transcription complex.

The PLpro domain of nsp3 has deubiquitinating activity (Lindner et al. 2005) 
and might act to protect the viral replication complex from proteasomal degradation 
via deubiquitination. The authors proposed that E-nsp3 interaction could control 
ubiquitination of E protein during infection. Interaction between nsp3a and SARS-
CoV E was shown to involve residues in the C-terminal domain of the latter (Li 
et al. 2014a).

�Host Interactions

More recently, two Y2H studies searched for host interacting partners using the 
C-terminal tail of SARS-CoV E as a bait (Teoh et al. 2010; Jimenez-Guardeño et al. 
2014). The first of these reported the protein associated with Caenorhabditis ele-
gans lin-7 protein 1 (PALS1) as a binder (Teoh et  al. 2010). PALS1 is a tight 
junction-associated protein and part of a complex that maintains epithelial cell 
polarity (Fig. 15.6). Alterations of lung epithelia integrity were consistent with E 
protein hijacking PALS1 to the ERGIC/Golgi region. The E-PALS1 interaction is 
mediated by (i) a Postsynaptic density protein-95/Discs Large/Zonula occludens-1 
(PDZ) domain present in PALS1 and (ii) the last four C-terminal residues of E protein 
which represent a putative type II PDZ-binding motif (PBM) (Harris and Lim 2001). 
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PDZ domains are ~80–90 amino acids long and typically bind the C-terminal tails 
of proteins, although internal binding sites have also been reported [reviewed in Ye 
and Zhang (2013)]. They are usually found in signaling proteins that alter signaling 
pathways, with over 250 nonredundant PDZ domains being recognized in the 
human proteome (Wang et al. 2010).

The C-terminal tail of SARS-CoV E protein, which includes the proposed PBM, 
forms a random coil secondary structure (Li et al. 2014a) in a variety of environ-
ments. However, PBMs usually fold as β-strands (Ye and Zhang 2013), which sug-
gests that a β-structure conformation may be induced by target binding. Another 
similar Y2H study that used the same bait described a similar PDZ domain-
containing binder, the syndecan-binding protein (syntenin) (Jimenez-Guardeño 
et al. 2014). Syntenin is a scaffolding protein that can initiate a signaling cascade 
resulting in the phosphorylation and activation of p38 mitogen-activated protein 
kinase (p38-MAPK), leading to expression of pro-inflammatory cytokines. The 
authors showed that the proposed C-terminal PBM in SARS-CoV E protein is a 
determinant of virulence. Since SARS-CoV-infected patients show an exacerbated 
inflammatory response that leads to epithelial and endothelial damage, edema, and 
acute respiratory distress syndrome (ARDS), the disruption of this pathway may 
have therapeutic implications. Overall, an involvement of this PBM in E protein in 
epithelial integrity and inflammatory responses is likely. Several other viruses, 
e.g., influenza A virus or human papillomavirus, have been described to enhance 

Fig. 15.6  Model of the potential consequences of SARS-CoV infection on polarity and intercel-
lular junctions formed by alveolar epithelial cells. (a) The inner surface of human lung alveolae is 
lined with a monolayer of polarized epithelial cells. Components of CRB and PAR polarity com-
plexes, including PALS1, are shown close to the apical domain. During infection, structural pro-
teins accumulate in the ERGIC compartment, where SARS-CoV E could bind to PALS1 to disrupt 
its trafficking to the tight junction; (b) disruption of the tight junction and virus dissemination 
[adapted from Teoh et al. (2010)]
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pathogenesis through viral proteins containing PBMs [reviewed in Javier and Rice 
(2011)], which probably constitute a common viral strategy.

CoV E proteins may also interact with, and modulate, host channels to support 
the virus life cycle. In Xenopus oocytes, it has been shown that coexpression of 
SARS-CoV E with human epithelial sodium transporter (ENaC) reduced amiloride-
sensitive current through PKC activation followed by reduction of ENaC surface 
levels (Ji et al. 2009). A similar direct or indirect inhibitory effect on other endoge-
nous channels was proposed from patch-clamp experiments using SARS-CoV 
E-transfected cells (Nieto-Torres et al. 2011). For IBV E, interaction with endoge-
nous channels or SNAREs has been suggested to justify the Golgi complex rear-
rangement in response to IBV E expression (Ruch and Machamer 2011), although 
this observation may also involve the IBV E channel itself. For example, ion homeo-
stasis at the Golgi could affect Na+/H+ exchangers that are critical for maintaining 
low luminal pH. Interactions of viroporins with Golgi channels or transporters are 
largely unexplored in the viroporins field, but notable cases have been already 
reported. For example, oncogenic protein E5 from papillomavirus (Wetherill et al. 
2012) is able to bind the 16 K subunit of the lumen-acidifying V-ATPase (Goldstein 
et al. 1991), preventing assembly of the pump and leading to alkalinization of the 
Golgi lumen (Schapiro et al. 2000).

�The Respiratory Syncytial Virus Small Hydrophobic  
Protein (RSV-SH)

Human respiratory syncytial virus (hRSV) belongs to the Paramyxoviridae family 
in the pneumovirus genus. This enveloped virus has a negative-sense single-strand 
RNA genome 15.2 kb long that encodes 10 sub-genomic mRNAs and 11 proteins 
(Fields et al. 2013). These 11 proteins include three membrane proteins accessible 
to the surface of the virion: the two that generate most RSV-neutralizing antibodies, 
fusion (F) and attachment (G), and the small hydrophobic (SH) protein.

RSV affects more than 30 million children below 5 years old and is the leading 
cause of bronchiolitis and pneumonia in infants and elderly (Dowell et al. 1996). 
Disease caused by RSV is responsible for 200,000 deaths worldwide which mostly 
occur in developing countries. hRSV exists as two antigenically distinct subgroups, 
A and B, both capable of inducing severe lower respiratory tract (LRT) disease in 
humans (Hall et al. 1990).

Although the virus was isolated more than half a century ago, no effective 
licensed treatment or vaccine is available for the general population, despite promis-
ing RSV vaccine candidates in clinical trials. Palivizumab is a humanized monoclo-
nal antibody (IgG) directed against the F protein that is recommended for infants 
<2 years old with high risk. However, it is not effective therapeutically and is only 
moderately effective at preventing infection. Since it costs $4500 per treatment 
course (Weiner et  al. 2011), its use is limited to a small fraction of patients 
worldwide. The only licensed drug for therapeutic use is a nucleoside analog which 
has limited efficacy.
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�SH Viroporin

The SH protein in hRSV is only 64 (subgroup A) or 65 (subgroup B) amino acids 
long, but its sequence is well conserved, especially the N-terminal extramembrane 
domain (Tapia et al. 2014). It has a single TM α-helical hydrophobic region, with 
C- (lumenal or extracellular) and N- terminal (cytoplasmic) extramembrane domains 
(Collins and Mottet 1993). The N-terminal cytoplasmic domain forms a short 
α-helix (residues 5–14) (Fig.  15.7a), almost coincident with a “10-residue” con-
served sequence between hRSV and MuV SH protein sequences. SH proteins in 
MuV, PIV5, and JPV have extremely short lumenal domains (nine, two, and ten 
residues, respectively) compared with their much longer N-terminal cytoplasmic 
domains, which are likely involved in PPIs. The C-terminal extramembrane domain 
forms an extended β-hairpin. In bicelles, the α-helix of the TMD extends up to resi-
due His-51 (Li et al. 2014b), resulting in both protonatable residues of SH protein, 
His-22, and His-51, oriented toward the lumen of the channel.

Fig. 15.7  Structural model of SH protein monomer. (a) Comparison of models of monomeric SH 
protein obtained in micelles (red) and in bicelles (blue), with residues prolonging the TM domain 
up to His-51 (Li et al. 2014b); (b) residues in SH involved in interaction with BAP31; N-terminal 
cytoplasmic helix of SH protein, with residues perturbed (red) after addition of BAP31 cytoplas-
mic domain to labeled SH protein in detergent micelles (Li et al. 2015)
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SH protein forms homo-oligomers (pentamers), and this oligomeric form is 
responsible for ion channel (IC) activity (Gan et al. 2012; Gan et al. 2008) that has 
poor ion selectivity. In infected cells, most SH protein accumulates at the mem-
branes of the Golgi complex, but it is also found in the ER or plasma membrane 
(Rixon et al. 2004). SH has potential glycosylation sites in both the C- and N-terminal 
domains (Collins et al. 1990). In infected cells, the SH protein of strain A2 accumu-
lates in four different forms (Olmsted and Collins 1989; Collins et al. 1984; Collins 
and Mottet 1993), but the most abundant is a full-length unglycosylated form. The 
G protein forms G-F and G-SH complexes, but direct interactions between SH and 
F have not been observed (Low et al. 2008).

SH and apoptosis. It has been proposed that SH protein blocks apoptosis through 
inhibition of the TNF-α pathway (Fuentes et al. 2007), but the mechanism of this 
inhibition is not clear. A similar anti-apoptotic effect of SH protein has been reported 
for other members of the Paramyxoviridae family that encode SH proteins, e.g., 
mumps virus (MuV) and the parainfluenza virus 5 (PIV5).

Incidentally, an anti-apoptotic effect has also been noted for other similar viral 
channels (viroporins), e.g., E5  in the human papillomavirus type 16 (HPV-16) 
(Kabsch et al. 2004), or the envelope (E) protein, a viroporin in the severe acute 
respiratory syndrome (SARS) virus (DeDiego et al. 2011).

�SH and the Inflammasome

SH protein is also involved in inflammasome regulation, but the mechanism involved 
is not known. Indeed, some authors have proposed that RSV SH has a role in regula-
tion of the NLRP3 inflammasome (Russell et al. 2015). The latter is “primed” after 
the recognition of viral genomic RNA (vRNA) by pattern recognition receptors 
(PRRs) and subsequent activation of NF-kB. This priming involves the expression 
of inflammasome components, e.g., NLRP3 and inactive procaspase-1 (Elliott and 
Sutterwala 2015). Various virus-induced damage-associated molecular patterns 
(DAMPs) induce the assembly and activation of the NLRP3 inflammasome. This 
leads to processing of procaspase-1 into active caspase-1, which in turn cleaves 
inactive pro-IL-1β into the mature form IL-1β. The latter is a potent pro-inflamma-
tory cytokine crucial in resolving infectious processes.

Various viruses can activate the inflammasome by disrupting ion homeostasis 
through the expression of viroporins. For example, influenza A virus (IAV) activates 
NLRP3 as a result of H+ or ion flux from Golgi mediated by the M2 channel 
(Ichinohe et al. 2010). The 2B protein in picornaviruses induce NLRP3 cytoplasmic 
relocalization and inflammasome activation in an intracellular Ca2+-mediated man-
ner (Ito et al. 2012), while a similar mechanism has been proposed for SARS-CoV 
E (Nieto-Torres et al. 2015). The latter triggered inflammation in the lungs of mice, 
leading to epithelial cell damage and death (Nieto-Torres et al. 2014), and this was 
correlated to high levels of mature IL-1β in the airways of infected animals.
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Similarly, RSV SH protein has been suggested to activate the NLRP3 inflamma-
some through its IC activity and ion leakage from the Golgi (Triantafilou et  al. 
2013), similar to the mechanism proposed for SARS-CoV E (Nieto-Torres et  al. 
2015). Another study (Russell et  al. 2015) proposed that IL-1β is overproduced 
when SH is absent from RSV. The study also showed attenuation in mice when 
infected with RSV ΔSH. That deletion of RSV SH leads to an increase in IL-1β is 
also supported by studies in bovine RSV (bRSV), where a ΔSH vaccine strain 
induced higher levels of IL-1β in the lungs of infected cattle (Taylor et al. 2014). 
Consistent with this, lung macrophages infected with RSV did not lead to increased 
IL-1β, although other pro-inflammatory cytokines were overexpressed (Ravi et al. 
2013). Overall, it has been proposed (Russell et al. 2015) that SH protein blocks 
IL-1β production, preventing the clearance of infected cells. Indeed, blockade of 
IL-1β prior to infection increased the viral load, supporting the idea that SH might 
enable immunomodulation. The interaction between SH and G protein has also 
been shown previously to have an immunomodulatory role (Polack et al. 2005).

Although in cell culture RSV ΔSH is still viable, grows to similar titer to wild-
type RSV, and still forms syncytia, SH-deleted RSV (RSV ΔSH) is significantly 
attenuated in a variety of hosts (Taylor et al. 2014; Bukreyev et al. 1997; Russell 
et  al. 2015). Indeed, in the last few years, one of the leading RSV LAVs have 
included, among other modifications, a deletion in the SH gene (Karron et al. 2005). 
The cause of attenuation is not known, although it may have to do with effective 
transmission of the virus (Bukreyev et al. 1997).

A transcriptome analysis comparing RSV with and without SH protein could 
help to decipher the role of SH during infection and the cause of attenuation in vivo 
and to associate these responses to specific SH domains or features.

�Host Interactions

Recently, a membrane-based yeast two-hybrid system (MbY2H) was used to iden-
tify a cellular binding partner of hRSV SH protein, the B-cell receptor-associated 
protein 31 (BAP31) (Li et al. 2015), in a human lung cDNA library. BAP31 is a 
membrane protein located at the ER that has an essential role in sorting newly syn-
thesized membrane proteins. Additionally, BAP31 has a cytoplasmic C-terminus 
with two coiled coils (Quistgaard et al. 2013), one of them containing a variant of 
the death effector domain (vDED) flanked by two caspase-8 cleavage sites. This 
domain is excised upon activation of caspase-8 to produce a fragment p20, known 
to function as a proapoptotic factor (Breckenridge et al. 2003). This interaction was 
confirmed using co-transfection, pull-down assay and immunofluorescence  
colocalization, and also using endogenous BAP31 and was localized to the first 
N-terminal 44 residues (Li et al. 2015). When 15N–labeled SH protein was titrated 
with cytoplasmic C-terminal domain of human BAP31, major shifts were observed 
at residues I6, I8, S12, and W15 (Fig. 15.7b). It can be hypothesized that this inter-
action could interfere with the interaction between BAP31 and caspase-8, blocking 
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the cleavage sites and preventing conversion to the pro-apoptotic form of BAP31, 
i.e., p20, thus delaying apoptosis. Incidentally, the viroporin E5 from the high-risk 
human papillomavirus HPV-16 and HPV-31 was also found to interact with BAP31, 
where it is similarly thought to regulate apoptosis in addition to its roles in immu-
nomodulation (Regan and Laimins 2008) (see below).

�Intraviral Interactions

The interaction between RSV SH and G proteins has been reported previously in 
infected cells (Low et al. 2008; Rixon et al. 2005), although its significance is not 
yet clear. F protein seems to be the main determinant of host cell specificity during 
virus entry, and both F and G proteins are able to bind heparin sulfate, the putative 
cell receptor for RSV (Kargel et  al. 2001). However, a tri-component complex 
between SH, G, and F proteins was not observed (Low et al. 2008). Both G and F 
proteins have one predicted TMD, and interaction with SH protein can be both 
through the TMDs or extramembrane domains of the latter.

Until now, all studies to determine the role of SH protein in RSV infection have 
used wild-type RSV and ∆SH RSV (SH gene deleted) and compared the effects of 
this deletion on various parameters in infected cells, or in animal models. The 
effects caused by transfection of SH protein in readouts that depend on, for 
example, inflammasome activation or apoptosis, have also been explored. However, 
comprehensive datasets that aim at elucidating the contribution of SH to virulence 
observed in vivo, and a rationale for the attenuation observed when SH is deleted, 
are lacking.

�The Human Immunodeficiency Virus Viral Protein U 
(HIV-1-Vpu)

The human immunodeficiency virus type 1 (HIV-1) is an enveloped virus that 
causes AIDS. It has a single-stranded, positive-sense RNA genome of 9.8 kb which 
encodes for nine genes: the structural genes gag, pol, and env, the regulatory genes 
tat and rev, and additional genes nef, vif, vpr, and vpu which encode for accessory 
proteins. One of these accessory proteins, the Vpu (viral protein U) (Cohen et al. 
1988), is an 81-residue small-membrane protein consisting of an N-terminal trans-
membrane helix and a C-terminal cytoplasmic domain which contains two helices 
linked by a flexible loop region [reviewed in Opella (2015)] (Fig. 15.8a). Vpu can 
oligomerize to form cation-selective channels in membranes, although the rationale 
for this channel activity is not well defined.

Vpu has two primary roles during HIV-1 infection: (i) enhancement of virion 
release (Terwilliger et al. 1989; Strebel et al. 1988) and (ii) degradation of host 
CD4 receptor (Willey et al. 1992). Absence of Vpu in infected cells correlates with 
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reduction of viral release and intracellular accumulation of HIV-1 viral proteins 
(Klimkait et  al. 1990). The host protein BST-2 is a restriction factor of HIV-1 
release, and its activity can be neutralized by Vpu (Neil et al. 2008; Van Damme 
et al. 2008).

Host Interactions  A number of host factors have been reported to bind Vpu, 
including the immunoreceptors major histocompatibility complex class I (MHC-I) 
(Kerkau et  al. 1997), CD1d (Moll et  al. 2010), NK-T-B-antigen (NTB-A) (Shah 
et al. 2010), poliovirus receptor (PVR) (Matusali et al. 2012) and human leukocyte 
antigen C (HLA-C) (Apps et  al. 2016), C-C chemokine receptor type 7 (CCR7) 
(Ramirez et al. 2014) and CD62L (Vassena et al. 2015), tetraspanins (Haller et al. 
2014; Lambelé et al. 2015), K+ channel TASK-1 (Hsu et al. 2004), metabolic trans-
porter, sodium-coupled neutral amino acid transporter 1 (SNAT1) (Matheson et al. 
2015), and the most recently reported intercellular adhesion molecule 1 (ICAM-I) 
(Sugden et al. 2017). However, the most important binders are CD4 and BST-2.

�Vpu-Mediated Degradation of CD4

The host CD4 is a cell surface receptor critical for HIV-1 entry into target cells by 
endocytosis, but its expression at the cell surface prevents the release of infectious 
virions from infected cells. To counteract this host defense mechanism, viral Vpu, 

Fig. 15.8  (a) Predicted secondary structure of Vpu showing N-terminal TMD (blue) and two 
α-helices of the cytoplasmic (CYTO) domain (red). Phosphorylated S52 and S56 are represented 
as circles (adapted from Dubé et  al. (2010)). (b) Solution NMR structure of VpuCYTO in DPC 
micelles (Protein Data Bank code: 2K7Y). Helix 1 (Ile39-Glu48) and helix 2 (Leu64-Arg70) are 
shown as ribbons. β-TrCP-binding DSGxxS motif is in blue. Side chains of phosphorylated serines 
are shown as balls and sticks. VpuCYTO residues showing substantial chemical shift changes upon 
addition of 1 mM CD4mut are in red (adapted from Singh et al. (2012)); (c) Vpu-mediated degra-
dation of CD4. Binding of Vpu to CD4 is mediated by the cytoplasmic helices and TM helices. 
Vpu has two conserved phosphoserines which constitute a binding motif for β-TrCP, leading to 
assembly of an E3 ubiquitin ligase (UbL) complex that results in CD4 ubiquitination and protea-
somal degradation (modified from Strebel (2014))
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Env, and Nef downmodulate CD4 surface expression [see review in Doms and 
Trono (2000)]. Vpu interacts with newly synthesized CD4 at the ER to mediate CD4 
degradation (Willey et al. 1992). Vpu-mediated degradation of CD4 requires physi-
cal interaction between the two proteins. In CD4, the interaction domain has been 
mapped to a specific motif (L414SEKKT419) and a membrane-proximal α-helix (Bour 
et al. 1995). For Vpu, residues in both cytoplasmic α-helices of Vpu experienced 
chemical shift perturbations upon CD4 binding (Fig.  15.8b) (Singh et  al. 2012), 
although involvement of the TMDs of both proteins has also been suggested 
(Magadán and Bonifacino 2012; Do et  al. 2013). However, the scrambling or 
replacement of the whole Vpu TMD appears to have no effect on Vpu-mediated 
degradation of CD4 (Willey et  al. 1994; Schubert et  al. 1996), whereas a single 
amino acid substitution at the TMD, W22 L, abolished CD4 degradation but did not 
disrupt the CD4-Vpu interaction (Magadán and Bonifacino 2012), suggesting that 
TM interactions between CD4 and Vpu may function beyond the expected role of 
stabilizing the protein complex for CD4 degradation.

Overall, it has been proposed that Vpu acts as an adapter protein to link CD4 to 
the host ubiquitin-proteasome machinery for degradation. This binding triggers the 
recruitment of the host beta-transducin repeat-containing protein (β-TrCP). A con-
served di-phosphoserine motif (D51SGxxS56) located within the loop region that 
connects the two cytoplasmic α-helices of Vpu is necessary for this process. 
Interaction of the phosphoserines in Vpu with the WD boxes of β-TrCP enables the 
formation of a CD4-Vpu-β-TrCP ternary complex (Margottin et al. 1998), bringing 
CD4 and other components of the SCFβ-TrCP E3 ubiquitin ligase complex (Skp1 and 
Cullin1) in close proximity to facilitate the trans-ubiquitination of the CD4 cyto-
solic tail (Binette et  al. 2007) on lysine and serine/threonine residues (Magadán 
et  al. 2010) and subsequently its transportation to the cytosol for degradation 
(Fig. 15.8c).

�Vpu-Mediated Antagonism of BST-2

Vpu enhances virus dissemination by antagonizing the host BST-2, a host restric-
tion factor with antiviral capabilities [reviewed in Simon et al. (2015)]. BST-2 is an 
interferon-inducible type II integral membrane protein located at the budding site of 
HIV-1. BST-2 has an N-terminal cytoplasmic domain, a TMD, followed by a coiled-
coil ectodomain and finally a C-terminal glycosyl-phosphatidylinositol (GPI) mem-
brane anchor. Its unusual topology enables it to tether virions by inserting, 
preferentially its GPI anchor, into the envelope of assembling virion particles, while 
itself remains embedded in its host cell membrane (Venkatesh and Bieniasz 2013; 
Neil et al. 2006).

It has been proposed that Vpu engages BST-2 through interaction between 
their respective TMDs, with involvement of Vpu’s A14, W22, and A18 (Vigan and 
Neil 2010) and BST-2’s I34, L37, and L41 (Kobayashi et al. 2011). An NMR study 
described an antiparallel interaction between Vpu and BST-2 TMDs in DHPC 
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micelles, in an orientation where A18 of Vpu faces L37 of BST-2 (Skasko et al. 
2012) (Fig.  15.9). The conserved residues within the Vpu membrane-proximal 
cytoplasmic hinge region (E28YRKIL33) have also been found to be important for 
Vpu-mediated BST-2 antagonism (Lukhele and Cohen 2017).

The mechanism of BST-2 neutralization by Vpu appears to be multifaceted and 
under debate, although the key mechanism appears to be the direct displacement of 
BST-2 from the virus assembly sites at the plasma membrane (McNatt et al. 2013). 
Accordingly, a C-terminal Trp residue at the Vpu cytoplasmic tail has been reported 
to contribute to this displacement of cell surface BST-2 (Lewinski et  al. 2015). 
Other proposed mechanisms have been proposed, e.g., Vpu can disrupt intracellular 
BST-2 trafficking by sequestering both newly synthesized and recycling BST-2 
within intracellular compartments such as the TGN (Dubé et al. 2010; Hauser et al. 
2010). This effectively blocks the resupply of BST-2 to the plasma membrane and 
thereby reduce BST-2 surface density (Dubé et al. 2011). Vpu-mediated BST-2 mis-
trafficking has been reported to involve the host clathrin-dependent membrane traf-
ficking pathways which are mediated by clathrin adaptor protein (AP) complexes 
(Kueck and Neil 2012; Lau et al. 2011). It was proposed that Vpu is able to hijack 
the clathrin-dependent trafficking machinery via a mimicked canonical acidic 
di-leucine sorting motif (E59xxxLV64) within its second cytoplasmic α-helix to 
recruit the AP complexes, forming a Vpu-BST-2-AP ternary complex (McNatt et al. 
2013; Jia et al. 2014; Kueck et al. 2015). In addition, the conserved di-phosphoserine 
motif (D51SGxxS56) in Vpu may also be required for this recruitment (Kueck et al. 
2015).

Fig. 15.9  Left, the spin label (MTSL) at the N-terminus of Vpu selectively decreased the intensity 
of C-terminal residues of BST-2, whereas the spin label at the N-terminus of BST-2 selectively 
decreased the intensity of C-terminal residues of Vpu; right, helical wheel diagrams of the BST-2 
and Vpu TMDs. The TMDs of BST-2 and Vpu are depicted in their anti parallel orientation 
(adapted from Skasko et al. (2012))
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A crystal structure of a VpuCYTO-BST-2CYTO fusion protein in complex with the 
AP1 core has been solved (Jia et al. 2014). In this model, the cytoplasmic domains 
of Vpu and BST-2 do not interact directly. Instead, Vpu seems to act as a chaperone 
to enhance binding of AP1 to BST-2. Stability of this complex is achieved by 
pair-wise binary interactions between Vpu and BST-2 TMDs and between Vpu and 
BST-2 cytoplasmic domains to several parts of AP1 (Fig. 15.10). Thereafter, the 
Vpu-BST-2 complex is thought to proceed through the clathrin-mediated trafficking 
pathway for β-TrCP-dependent ubiquitination of BST-2 before subsequent ESCRT-
mediated endo-lysosomal degradation.

Recently, it has been reported that Vpu may hijack the function of the host actin 
cross-linking regulator filamin A (FLNa) during its quest of BST-2 modulation 
(Dotson et al. 2016). Vpu may also exploit an LC3-associated noncanonical autoph-
agy pathway to restrict BST-2 (Madjo et al. 2016). The refinement of current mod-
els, together with the discovery of additional host and/or intraviral factors involved, 
will ultimately form a complete and accurate picture of Vpu-mediated BST-2 
antagonism.

�The Polyomavirus JC Agnoprotein

Polyomaviruses are small, non-enveloped DNA viruses with their closed circular 
genome packaged within an icosahedral viral capsid. Progressive multifocal leuko-
encephalopathy (PML), a deadly demyelinating disease of the brain, is attributed to 

Fig. 15.10  Schematics of Vpu hijacking of AP1 to target BST2. AP1 is colored by subunit (β1 in 
gray, γ in orange, μ1 in green, and σ1 in yellow). VpuCYTO (cyan) binds to the acidic di-leucine-
binding pocket of γ/σ1, and BST-2CYTO (magenta) binds to the tyrosine-binding pocket in μ1. 
Transmembrane helices are represented by cylinders (adapted from Jia et al. (2014))
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the human polyomavirus JCV (John Cunningham virus). JCV encodes for a small 
and highly basic protein called agnoprotein which has important regulatory roles in 
the JCV replication cycle. Besides JCV, the agnoprotein can also be found in other 
polyomaviruses including BK virus (BKV) and simian virus 40 (SV40) (Sariyer 
et al. 2011). The 71-residue agnoprotein has a central hydrophobic region which has 
been reported to form an amphipathic α-helix (Lys23-Phe39) (Coric et al. 2014). 
This helix is characteristically rich in Leu/Ile/Phe, which is required for protein 
stability and oligomerization (Saribas et al. 2013). A recently solved NMR structure 
in organic solvent has revealed a second α-helix, albeit minor, spanning residues 
Leu6-Lys13 (Fig. 15.11) (Coric et al. 2017).

Agnoprotein demonstrates several key features which are commonly shared 
among viroporins (Suzuki et al. 2010a; Suzuki et al. 2013; Suzuki et al. 2010b), e.g., 
it is a membrane protein that associates into homo-oligomers that increased mem-
brane permeability leading to influx of extracellular Ca2+ and enhancement of virus 
release. In addition, agnoprotein-deleted mutants have defective virion release and 
viral propagation.

Intraviral and Host Interactions  The JCV agnoprotein has been shown to inter-
act with a number of viral proteins: large T-antigen (LT-ag) (Safak et  al. 2001), 
small t-antigen (St-ag) (Sariyer et al. 2008), HIV-1 Tat (Kaniowska et al. 2006), and 
capsid protein VP1 (Suzuki et  al. 2012). It also interacts with cellular proteins, 
including the Y-box-binding factor 1 (YB-1) (Safak et al. 2002), tumor suppressor 
p53 (Darbinyan et al. 2002), tubulin (Endo et al. 2003), DNA damage repair protein 
Ku70 (Darbinyan et al. 2004), fasciculation and elongation protein zeta 1 (FEZ1) 
(Suzuki et al. 2005), heterochromatin protein 1 alpha (HP-1α) (Okada et al. 2005), 
protein phosphatase 2A (PP2A) (Sariyer et al. 2008), and the adaptor protein com-
plex 3 (AP3) δ subunit (Suzuki et al. 2013).

Fig. 15.11  NMR structure 
of agnoprotein contains 
two main α-helical 
structures (red) and two 
unstructured regions 
(yellow) [adapted from 
Coric et al. (2017)]
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One of the interesting host factors targeted by the JCV agnoprotein is the AP3 
(Suzuki et al. 2013). Interaction of agnoprotein with the δ subunit of AP3 (AP3D) 
appears to hijack the AP3-mediated intracellular vesicular trafficking to prevent the 
targeted lysosomal degradation of agnoprotein. This phenomenon is reminiscent of 
the special features of viroporins such as M2 and Vpu, which also manipulate host 
trafficking pathways. Agnoprotein is then allowed to be translocated to the plasma 
membrane to act as a viroporin and promote virion release (Suzuki et al. 2013). 
Alanine substitutions of two basic residues (Arg8 and Lys9) in the N-terminus of 
agnoprotein disrupt its viroporin activity (Suzuki et al. 2010a) and also disrupt bind-
ing to AP3D, ensuing its transport to the lysosomes and subsequent lysosomal deg-
radation (Fig. 15.12) (Suzuki et al. 2013). These basic residues are part of an ordered 
helical structure (Coric et al. 2017) and may constitute an important regulatory and/
or interaction motif.

�Rotavirus NSP4

Rotaviruses are members of the Reoviridae family of non-enveloped viruses which 
consist of segmented, double-stranded RNA genomes surrounded by multiple con-
centric protein capsids (Coombs 2006). Rotaviruses are a leading cause of severe 
viral gastroenteritis and dehydrating diarrhea in infants and young children, resulting 
in a high global child mortality rate of 215,000 in 2013 (in children <5 years old) 

Fig. 15.12  Involvement of AP-3 in membrane permeabilization and virion release involving WT 
(left) and mutant RK8AA (right) agnoprotein. Both WT and RK8AA form homo-oligomers as 
integral membrane proteins in cytoplasmic organelles. WT disrupts AP3-mediated vesicular traf-
ficking, is translocated to plasma membrane, and functions as a viroporin, resulting in the promo-
tion of virion release. In contrast, the RK8AA mutant fails to bind to AP3D and does not disrupt 
AP3-mediated vesicular trafficking and is transported to lysosomes and degraded. RK8AA agno-
protein cannot promote virion release and is defective in viral propagation [adapted from Suzuki 
et al. (2013)]
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(Tate et al. 2016). The rotavirus nonstructural protein 4 (NSP4) is a 175-amino-acid 
transmembrane ER glycoprotein and the first virus-encoded enterotoxin to be dis-
covered (Ball et al. 1996). Besides its primary ER localization, NSP4 can also be 
secreted as a soluble enterotoxin (Bugarc̀ić and Taylor 2006) or colocalize with the 
autophagy protein LC3  in cap-like structures that associate with viroplasms 
(Berkova et al. 2006).

NSP4 consists of three hydrophobic domains (H1, H2, and H3) followed by a 
long cytoplasmic region containing a coiled-coil domain (CCD) and a flexible tail 
region (Estes and Greenberg 2013) (Fig. 15.13). Notably, its distinctive functional 
domains include (i) an enterotoxic domain (ETD, residues 114–135), which can 
function as a diarrhea-inducing enterotoxin similar to the full-length protein in 
young mice (Ball et al. 1996), and (ii) a recently discovered viroporin domain (VPD, 
residues 47–90) which is made of a penta-lysine domain and the amphipathic helix 
H3 (Hyser et  al. 2010) and exhibits cation-selective channel activity in artificial 
lipid bilayers (Pham et al. 2017).

An alteration in cellular calcium homeostasis is critical for rotavirus replication 
and cytopathogenesis, and this has been correlated with the NSP4 viroporin [see 
review in Hyser and Estes (2015)]. Earlier studies reported that NSP4 colocalize 
with the autophagosome marker LC3 in “cap-like structures” associated with viro-
plasms (Berkova et  al. 2006), sparking interest of whether the host autophagy 
machinery is manipulated during rotavirus infection. Indeed, NSP4 appears to 
orchestrate a series of events which ultimately lead to host autophagy. NSP4 viropo-
rin activity at the ER can activate the ER calcium sensor stromal interaction mole-
cule 1 (STIM1), which triggers an activation of store-operated calcium entry 
(SOCE), which in turn facilitates Ca2+ influx through the plasma membrane (Hyser 
et al. 2013). This increase in intracellular Ca2+ activates the Ca2+/calmodulin-depen-
dent protein kinase kinase-β (CaMKK-β) to initiate autophagy (Anderson et  al. 
1999; Crawford et al. 2012). The autophagy membrane trafficking pathway is then 
hijacked by the virus to transport viral proteins from the ER to viroplasms for 
assembly of infectious virus (Crawford et al. 2012).

Fig. 15.13  Schematic representation of rotavirus NSP4 structural domains. H1, H2, and H3, 
hydrophobic domains 1, 2, and 3, respectively. NSP4 viroporin domain (residues 47–90) and 
enterotoxic domain (residues 114–135) are indicated. Putative binding sites of NSP4 interaction 
partners are also indicated
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�Intraviral and Host Interactions

Even before the discovery of its viroporin activity, NSP4 has been described to per-
form multiple functions through interacting with a number of viral and host factors, 
and the cytoplasmic region of NSP4 is an interaction hotspot. For instance, the 
NSP4 cytoplasmic CCD has been reported to be the binding site for the rotavirus 
spike protein VP4 (NSP4 aa112–148) (Au et  al. 1993), host extracellular matrix 
(ECM) proteins laminin-β3 and fibronectin (NSP4 aa87–145) (Boshuizen et  al. 
2004), caveolin-1 (Cav-1) (NSP4 aa114–135) (Parr et al. 2006; Ball et al. 2013), and 
the integrin I domains (NSP4 aa114–130) (Seo et al. 2008). In addition, the flexible 
region of the NSP4 cytoplasmic tail interacts with VP6 to serve as an intracellular 
receptor for the viral double-layered particles (DLPs) (NSP4 aa161–175) (Au et al. 
1989; Taylor et al. 1996) and can also bind microtubules (NSP4 aa120–175) (Xu 
et  al. 2000). NSP4 can also bind the host calnexin via the two N-linked high-
mannose oligosaccharide residues within the NSP4 H1 domain (Mirazimi et  al. 
1998). The putative binding sites for these interactions are summarized (Fig. 15.13).

While mechanistic and structural information on membrane insertion and oligo-
merization of the full-length NSP4 is still lacking, a topology model of NSP4 as a 
three-pass transmembrane protein has been proposed (Fig. 15.14). In addition, crys-
tal structures have revealed that the NSP4 CCD from two different rotavirus strains 
can form a tetramer and a pentamer, respectively (Bowman et  al. 2000; Chacko 
et al. 2011) and that the tetrameric NSP4 CCD, but not the pentameric form, can 
bind Ca2+ at its core. Later studies clarified that the oligomeric status of NSP4 CCD 
can be regulated by pH and Ca2+; at neutral pH it forms a tetramer that binds Ca2+, 

Fig. 15.14  Model of NSP4 as a three-pass transmembrane protein. Left: initial ER membrane 
insertion of NSP4 mediated by uncleaved signal sequence in H2 domain. Lysine residues interact 
with membrane phospholipid, promoting insertion of the viroporin domain (PD  +  AD) as an  
anti-parallel α-helical hairpin. Center: insertion of the viroporin domain generates a three-pass 
transmembrane topology. Right: NSP4 oligomerization around the amphipathic α-helix generates 
an aqueous pore for the passage of ER Ca2+ [adapted from Hyser et al. (2010)]
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but at low pH it forms a pentamer that does not bind Ca2+ (Sastri et al. 2014). While 
the NSP4 CCD appears to be an interaction hotspot, it remains to be revealed how 
environmental cues may influence its binding conformations and affinity with inter-
action partners. For instance, the CCD may act as a cytoplasmic pH/Ca2+ sensor that 
alters the NSP4 oligomeric state and conformation to regulate its binding to a cer-
tain interaction partner, or Ca2+ may even act as a cofactor for binding.

�Human Papillomavirus E5

Human papillomaviruses (HPVs) are double-stranded DNA viruses which are 
small, non-enveloped, and epitheliotropic. They are known to infect mucosal and 
cutaneous epithelia of the anogenital tract and the hands/feet regions. High-risk 
HPVs, mainly HPV-16 and HPV-18, are responsible for 70% of cervical cancers 
and precancerous cervical lesions. The HPV-16 E5 (16E5), a small hydrophobic 
oncoprotein, is a recent addition to the viroporin family as it exhibits ion channel 
activity in vitro (Wetherill et al. 2012). 16E5 is an 83-residue protein with three 
putative TMDs and an N-terminal luminal, C-terminal cytoplasmic topology 
(Krawczyk et al. 2010). 16E5 monomers oligomerize as homodimers or hexamers 
(Kell et al. 1994; Gieswein et al. 2003; Wetherill et al. 2012). 16E5 has roles in cel-
lular transformation, mitogenic signaling, immune evasion, intracellular protein 
trafficking, and apoptosis [reviewed in Müller et al. (2015)].

�Host Interactions

It has been reported that 16E5 forms a stable complex with the epidermal growth 
factor receptor (EGFR) in co-transfected cells (Hwang et  al. 1995) and with the 
16 K subunit of the vacuolar H+-ATPase (V-ATPase) (Conrad et al. 1993), although 
the 16E5 binding site with the latter is under debate (Adam et al. 2000; Rodríguez 
et al. 2000). The C-terminal domain of 16E5 has been reported to bind the nuclear 
transport receptor karyopherin β3 (KNβ3) (Krawczyk et  al. 2008) and the Ca2+/
phospholipid-/actin-binding protein calpactin I (Krawczyk et  al. 2011). Other 
reported interaction targets of 16E5 include the gap junction protein connexin 43 
(Oelze et al. 1995; Tomakidi et al. 2000), growth factor receptor ErbB4 (Chen et al. 
2007), zinc transporter ZnT-1 (Lazarczyk et al. 2008), transmembrane channel-like 
proteins EVER1 and EVER2 (Lazarczyk et al. 2008), the putative ER ion channel 
A4 (Kotnik Halavaty et al. 2014), and the Golgi-resident transmembrane protein 
YIPF4 (Müller et al. 2015).

Interactions between 16E5 and host proteins have been implicated in the modu-
lation of host defense. For instance, 16E5 can help HPV escape from immunesur-
veillance by downregulating expression of antigen-presenters at the host cell 
surface. 16E5 binds and retains MHC-I in the ER and Golgi to prevent its trafficking 
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to the cell surface, in an interaction involving two leucine pairs in the first TMD 
(TM1) of 16E5 and the heavy chain of MHC-I (Ashrafi et al. 2005; Cortese et al. 
2010; Ashrafi et al. 2006). The TM1 of 16E5 may also bind and cripple the function 
of the MHC-I chaperone, Bap31 (Ladasky et al. 2006; Regan and Laimins 2008; 
Cortese et  al. 2010). Intriguingly, a motif consisting of ten identical residues 
between the 16E5 TM1 and Bap31 TM3 has been discovered (Fig. 15.15) and could 
represent a case of molecular piracy used by 16E5 to displace Bap31 from MHC-
I. In addition, 16E5-mediated ER retention of MHC-I may also involve an interac-
tion with the ER chaperone calnexin, since surface downregulation of MHC-I is not 
observed in calnexin-deficient cells (Gruener et al. 2007). In the same study, a tri-
protein complex of 16E5, MHC-I, and calnexin could be obtained based on a coim-
munoprecipitation assay. The 16E5-calnexin interaction also reduced CD1d surface 
levels by retaining it in the ER and subsequently redirecting it for proteasomal deg-
radation (Miura et al. 2010).

�BPV E5: A Case Study

E5 also plays an important role in cell tumorigenic transformation. One associated 
cellular target of the bovine papillomavirus BPV-1 E5 is the platelet-derived growth 
factor β receptor (PDGFβR), a transmembrane receptor tyrosine kinase (Fig. 15.16, 
left). Under normal circumstances, the ligand PDGF binds to the extracellular 
domain of its receptor to induce receptor dimerization, leading to the autophos-
phorylation of tyrosine residues at the receptor intracellular domain, activation of 
their intrinsic tyrosine kinase activity, and subsequent signal transduction resulting 
in mitogenesis (Fig. 15.16, middle). While the BPV-1 E5 is not a natural ligand of 

Fig. 15.15  E5 and BAP31 topology. Top, topology of E5 and Bap31, with TMDs indicated; 
TM3 in BAP31 and TM1 in 16E5 share a similar motif [adapted from Cortese et al. (2010)]. The 
alignment of 16E5 TM1 and Bap31 TM3 showing the ten-residue identity which may be involved 
in interactions among 16E5, MHC-I and/or other associated proteins. Identical residues are in bold

15  Beyond Channel Activity: Protein-Protein Interactions Involving Viroporins



360

PDGFβR, it can constitutively activate its receptor tyrosine kinase activity 
(Fig. 15.16, right) (Drummond-Barbosa et al. 1995) and is therefore an oncoprotein 
that can lead to host cell transformation.

Coimmunoprecipitation experiments have shown that the E5-PDGFβR interac-
tion is stable and is important in E5-induced cell transformation (Petti and DiMaio 
1992; Goldstein et al. 1992). Deletion of the extracellular ligand-binding domain of 
PDGFβR did not prevent its cooperation with E5, demonstrating that E5 activation 
of PDGFβR is ligand independent (Drummond-Barbosa et al. 1995). Also, muta-
genesis and chimeric studies of PDGFβR have mapped the binding region to the 
TMD of the receptor (Cohen et al. 1993; Nappi et al. 2002). The interaction between 
E5 and PDGFβR is also highly specific, since cooperation was not observed between 
E5 and PDGFαR, a closely related receptor tyrosine kinase (Goldstein et al. 1994). 
Molecular dynamics experiments have proposed a model of the E5 dimer, where the 
Gln17 of monomer 1 and the Asp33 of monomer 2 are on the same face of the dimer 
that interacts with a molecule of PDGFβR (Surti et al. 1998). NMR studies of E5 
peptides in detergent micelles also favor E5 dimerization for complex formation 
with PDGFβR through its TMD (King et al. 2011).

Fig. 15.16  Model for E5-PDGFβR interaction. Left, monomer of inactive PDGFβR; middle, 
PDGFβR activation by PDGF binding in the extracellular domain, leading to receptor dimeriza-
tion, tyrosine phosphorylation in the intracellular domain, and recruitment of cellular signaling 
substrates (green and purple); right, PDGFβR activation by binding of a BPV-1 E5 dimer to the 
TMD of the receptor. Horizontal lines represent cell membrane, with the cytoplasm beneath 
[adapted from DiMaio and Petti (2013)]
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�Concluding Remarks

The interplay between the host cell responses and viral offensive mechanisms yields 
the final outcome of an infection. For efficient viral replication, the virus must be 
resourceful in harnessing or disabling the host cellular machinery. In recent years, 
the role of viroporins as essential players in viral pathogenesis has been established. 
However, in addition to disrupting cellular ion homeostasis by their channel activ-
ity, viroporins also interact with host factors and coordinate with other viral proteins 
in structural roles. The structural features of these complexes remain poorly under-
stood. Advances in this field will provide useful insights in the design of new 
antivirals.
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