
Chapter 2
Potential Energy Surface Mapping
of Charge Carriers in Ionic Conductors
Based on a Gaussian Process Model

Kazuaki Toyoura and Ichiro Takeuchi

Abstract The potential energy surface (PES) of a charge carrier in a host crystal is
an important concept to fundamentally understand ionic conduction. Such PES
evaluations, especially by density functional theory (DFT) calculations, generally
require vast computational costs. This chapter introduces a novel selective sampling
procedure to preferentially evaluate the partial PES characterizing ionic conduction.
This procedure is based on a machine learning method called the Gaussian process
(GP), which reduces computational costs for PES evaluations. During the sampling
procedure, a statistical model of the PES is constructed and sequentially updated to
identify the region of interest characterizing ionic conduction in configuration
space. Its efficacy is demonstrated using a model case of proton conduction in a
well-known proton-conducting oxide, barium zirconate (BaZrO3) with the cubic
perovskite structure. The proposed procedure efficiently evaluates the partial PES in
the region of interest that characterizes proton conduction in the host crystal lattice
of BaZrO3.
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2.1 Introduction

Atomic transport phenomena in solids such as atomic diffusion and ionic con-
duction are generally governed by thermally activated processes. Based on transi-
tion state theory (TST) [1–3], the mean frequency of an elementary process (ν) with
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a single saddle point state, a so-called an atomic or ionic jump, is approximated by
ν= ν0expð−ΔEmig ̸kBTÞ, where ν0 is the vibrational prefactor, kB is the Boltzmann
constant, T is the temperature, and ΔEmig is the potential barrier, i.e., the change in
the potential energy (PE) from the initial state to the saddle point state. ν0 is
typically a constant value in the range of 1012–1013 s−1 associated with a lattice
vibration [3–8]. Consequently, ΔEmig mainly determines the rate of an atomic jump
in a solid.

In general, atomic transfer is composed of several types of atomic jumps, which
form a complicated three-dimensional (3D) network in the crystal lattice. Therefore,
it is necessary to grasp the entire potential energy surface (PES) of a mobile atom or
ion. However, a theoretical PES evaluation, e.g., based on density functional theory
(DFT), generally requires huge computational costs, particularly in the case of a
host crystal with a low crystallographic symmetry. The nudged elastic band
(NEB) method [9, 10] is a well-established technique to avoid evaluating the entire
PES, in which only the minimum energy paths (MEPs) are focused on in the PES.
Because of its efficiency and versatility, the NEB method is used conventionally to
clarify the atomic-scale-picture and the kinetics of atomic transfer in crystals.

However, the NEB method has some practical limitations. First, the initial and
final states of all elementary paths in a crystal must be specified. That is, all local
energy minima in the crystal and all conceivable elementary paths between adjacent
local energy minima must be known in advance. As the crystallographic symmetry
of the host crystal decreases, the number of local energy minima and conceivable
elementary paths rapidly increase. Consequently, satisfying the requirements in the
NEB method is very difficult without a priori information on the entire PES. In
cases without a priori information, physical and chemical knowledge (e.g., ionic
radii, chemical bonding states, electrostatic interaction, and interstitial and bottle-
neck sizes) are generally used. However, a key elementary path determining the rate
of atomic diffusion or ionic conduction is sometimes missed in such an arbitrary
manner. In addition, the NEB method requires huge computational costs for
low-symmetry crystals, even if only the MEPs in the PES are evaluated. For
example, in our recent study on proton conduction in tin pyrophosphate (SnP2O7)
with space group of P21/C, we evaluated 143 possible elementary paths connecting
15 local energy minima by the NEB method [11]. An alternative method that is
both robust and efficient is desirable to analyze complicated atomic transfers con-
sisting of many elementary paths in a low-symmetry crystal.

This chapter introduces a novel selective sampling procedure for PES mapping
based on a machine learning technique [12]. This sampling procedure preferentially
evaluates a partial PES in the region of interest characterizing ionic conduction. The
region of interest is defined in two ways: (1) a low-PE region forming long-range
migration pathways throughout the crystal lattice in the PES and (2) a low-force
norm region (low-FN region), which includes all the local minima and saddle
points in the PES. It should be noted that other mathematically definable and
efficient choices could be considered as the region of interest. See the synthetic 2D
PES and FN surface (FNS) for the definitions of the region of interest (Fig. 2.1).
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The proposed sampling procedure has three key features. (1) A statistical model
of the PES or FNS is developed as a Gaussian process (GP) [13, 14]. The statistical
model is iteratively updated by repeatedly (i) sampling at a point where the pre-
dicted PE or FN is low and (ii) incorporating the newly calculated PE or FN value
at the sampled point. (2) The statistical PES or FNS model is used to identify the
subset of grid points at which the PEs or FNs are relatively low. Here a selection
criterion is introduced for this advanced purpose, because GP applications have
generally targeted the single global minimum or maximum point (not a subset).
(3) The procedure allows us to estimate how many points in the region of interest
remain unsampled, i.e., lets us know when sampling should be terminated.

These features are possible by exploiting an advantage of the GP that it provides
not only the predicted PE or FN value but also the uncertainty at each grid point.
Figure 2.2 illustrates selective sampling sequences using a one-dimensional syn-
thetic PES where nine grid points in the low-PE region should be selectively
sampled from all (50) points as an example. Roughly speaking, the grid point most
likely to be located in the low-PE region is sampled at each step based on the
predicted PEs (red solid curve) and the uncertainties (pale blue area). In the early
steps, the predicted PEs are uncertain with large discrepancies from the true PES
(black solid curve), resulting in selecting grid points with large uncertainties. As the
sampling proceeds, the predicted PE curve gradually approaches the true one and
the uncertainty decreases. Eventually, the grid points in the low-PE region are
selectively sampled in the latter steps.

The uncertainty in the GP model is useful also to determine when to terminate
sampling. The termination criterion should be determined based on the existence
probability of unsampled low-PE points, for which the information on the uncer-
tainty is indispensable. As a model case, herein the efficacy of the proposed pro-
cedure is demonstrated using proton conduction in a proton-conducting oxide,
barium zirconate (BaZrO3) [15–18].

Fig. 2.1 Synthetic two-dimensional (a) PES and (b) FNS of a charge carrier in a host crystal
lattice. Region of interest is defined as the low-PE region in the PES and the low-FN region in the
FNS
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2.2 Problem Setup

2.2.1 Entire Proton PES in BaZrO3

The entire PES of a proton in BaZrO3 evaluated using DFT calculations with
structural optimization is initially shown for the problem setup of the demonstration
study. Figure 2.3 shows the crystal structure of BaZrO3 [space group: Pm�3m (221)]
and its asymmetric unit satisfying 0 ≤ x, y, z ≤ 0.5, y ≤ x, and z ≤ y. x, y, and z

Fig. 2.2 Schematic illustration of the proposed selective sampling procedure in a
one-dimensional configuration space with synthetic data [12]. In each plot, the x- and y-axes
represent the configuration space and the PEs, respectively. Red area in plot (a) represents the
low-PE region. In this example, the goal is to efficiently identify and evaluate the PEs at the nine
points in the low-PE region. Plot (b) indicates the initialization step, where two points (filled red
squares) are randomly selected and their PEs are evaluated. Remaining 16 plots [plots (c) to plot
(r)] indicate steps 1–16 of the procedure
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denote the 3D fractional coordinates of a proton introduced into the host lattice. Ba,
Zr, and O ions occupy the 1a, 1b, and 3c sites, respectively, using the origin setting
shown in Fig. 2.3. A 40 × 40 × 40 grid is introduced in the unit cell (the grid
interval is nearly equal to 0.1 Å), which contains 64,000 grid points in total. Due to
the high crystallographic symmetry of BaZrO3, the asymmetric unit has only 1771
grid points. Among these points, three coincide with Ba, Zr, or O ion. Removing
these three points reduces the remaining grid points to 1768.

The DFT calculations for the PES (and FNS) evaluation of a proton in BaZrO3

are based on the projector augmented wave (PAW) method as implemented in the
VASP code [19–22]. The generalized gradient approximation (GGA) parameterized
by Perdew, Burke, and Ernzerhof is used for the exchange-correlation term [23].
The 5s, 5p, and 6s orbitals for Ba, 4s, 4p, 5s, and 4d for Zr, 2s and 2p for O, and
1s for H are treated as valence states. The supercell consisting of 3 × 3 × 3 unit
cells (135 atoms) is used with a 2 × 2 × 2 mesh for the k-point sampling. Only the
atomic positions in a limited region corresponding to the 2 × 2 × 2 unit cells
around the introduced proton are optimized with fixing all other atoms and the
proton. The atomic positions are optimized until the residual forces converge to less
than 0.02 eV/Å.

Figure 2.4a shows the calculated proton PES in the low-PE region below
0.3 eV. The blue regions around the O ions are the most stable proton sites and are
located ∼1 Å from the O ions. The OH distance is almost equivalent to that in
water, indicating that OH bond formation stabilizes the protons in BaZrO3. There
are four equivalent proton sites per O ion, which are connected by the low-PE
points around the O ions. The rotational path around the O ions consists of four
equivalent quarter-rotational paths, where the calculated potential barrier is
0.18 eV. On the other hand, the hopping path connecting adjacent rotational orbits
is located at the periphery of the edges of the ZrO6 octahedra. The calculated
potential barrier of the hopping path is 0.25 eV, which is higher than that of the
rotational path. The two kinds of paths form a three-dimensional proton-conducting
network throughout the crystal lattice. Consequently, protons exhibit a long-range

Fig. 2.3 Crystal structure
and the asymmetric unit of
BaZrO3 with the cubic
perovskite structure
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migration via repeated rotation and hopping, where the hopping path is the
rate-determining path in proton conduction.

2.2.2 Problem Statement

Figure 2.4(a) indicates that the partial PES of a proton in the low-PE region below
0.3 eV is necessary and sufficient to estimate the proton diffusivity and conductivity
in the crystal lattice of BaZrO3. In the low-PE region, there are 353 grid points to be
evaluated by DFT calculations, corresponding to the lowest 20% of the grid points.
Therefore, the first task is to selectively sample all the low-PE grid points as
efficiently as possible. Hereafter this is referred to task 1. Task 2 is based on the
force norm (FN) acting on a proton at each grid point. The FN is calculated along
with the PE by the DFT calculations. In this task, the region of interest is defined as
grid points with an FN below a threshold (i.e., 0.2 eV/Å in the present study),
denoted by blue spheres in Fig. 2.4(b). There are only 15 grid points in the low-FN
region in the asymmetric unit. The region of interest in task 2 is much smaller than
that in task 1, hopefully leading to more efficient sampling.

Prior to the detailed description of the proposed procedure in Sect. 2.3, this
problem is generalized and mathematically formulated using the identification of
the low-PE region as an example. There are N grid points, i=1, . . . ,N, in the
asymmetric unit of the host crystal lattice. The PE of a proton at grid point i is
denoted by Ei. Using the parameter 0 < α < 1, the low-PE region is defined as the
set of αN points where the PEs are lower than those at other (1−α)N points. The
goal is to identify all αN grid points in the low-PE region as efficiently as possible.

Fig. 2.4 (a) Calculated proton PES in the low PE region below 0.3 eV in reference to the most
stable point [12]. (b) Grid points at which the force norm acting on a proton is less than 0.2 eV/Å
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For simplicity, α is assumed to be prespecified. However, it can be adaptively
determined, as demonstrated in Sect. 2.4.3.

When θα represents the PE threshold of the low-PE region, the subsets of Pα and
Nα are defined as

Pα := fi∈ f1, . . . ,NgjEi < θαg ð2:1Þ

Nα := fi∈ f1, . . . ,NgjEi ≥ θαg. ð2:2Þ

The task is formally stated as the problem of identifying all points in Pα. Using
statistical terminology, the points in Pα and Nα are called “positive” and “negative”
points, respectively. Note that Pα, Nα, and θα are unknown unless the PEs at all grid
points are actually computed. During the sampling process, these quantities are
estimated based on the PEs at points sampled in the earlier steps. Our estimates of
positive and negative sets are denoted as P̂α and N̂α, respectively. The former
indicates the set of points at which the PEs have been sampled and computed in
earlier steps. The latter represents the set of points at which the PEs have yet to be
computed. The proposed selective sampling procedure can be interpreted as the
process of sequentially updating these two sets of points. Specifically, we begin at
P̂α =∅ and N̂α = f1, . . . ,Ng. The two sets are updated as

P̂α←P̂α ∪ fi′g, ð2:3Þ

N̂α←N̂α\fi′g, ð2:4Þ

where i′ is the sampled point in the step. When the termination criterion is satisfied,
P̂α has a high probability of containing all points in Pα. The estimated θα is also
defined as θ̂α. Section 2.3.3 shows how to estimate θα from the prespecified α. Note
that the θα estimation is unnecessary in task 2 because the FN threshold is directly
specified by the FN value.

2.3 GP-Based Selective Sampling Procedure

Here the proposed sampling procedure based on the GP is described using the
PES-based task (task 1) as an example. Specifically, the key features are explained
in the following subsections: the GP-based PE statistical model (Sect. 2.3.1), the
selection criterion of the next grid point (Sect. 2.3.2), the estimation of the PE
threshold (Sect. 2.3.3), and the criterion for sampling termination (Sect. 2.3.4). Note
that the threshold estimation (Sect. 2.3.3) is irrelevant to task 2 for the low-FN
identification.
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2.3.1 Gaussian Process Models

We adopt a GP model [13, 14] as the statistical model of the PES. Using a GP
model, the potential energy Ei is represented as

Ei ∼Nðμi, σ2i Þ, i=1, . . . ,N, ð2:5Þ

where N(μi, σi
2) denotes the normal distribution with mean μi and variance σi

2. A GP
model is a type of regression model. Consider a d-dimensional vector of descriptors
for each point, where the vector is denoted as χi ∈ℝd for i=1, . . . ,N. The mean
and variance of the PE at the ith point, which are given in Eqs. (2.8) and (2.9),
respectively, are represented as functions of χi. The GP model employs the
so-called kernel function k:ℝd ×ℝd →ℝ. For two different points indexed by i and
j, k(χi, χj) is roughly interpreted as the similarity between these two points. One of
the most commonly used kernel functions is the RBF kernel, which is given by

kðχ,χ′Þ= σ2f expð− χ−χ′
�� �� ̸2l2Þ, ð2:6Þ

where σf, l > 0 are tuning parameters, and ǁ ⋅ ǁ represents the L2 norm. Further-
more, for n points indexed by 1, …, n, let K∈ℝnn be the so-called kernel matrix
defined as

K :=
kðχ1,χ1Þ ⋯ kðχ1,χnÞ

⋮ ⋱ ⋮
kðχn,χ1Þ ⋯ kðχn,χnÞ

2
4

3
5. ð2:7Þ

For any point in the configuration space whose descriptor vector is represented
as χ∈ℝd, the GP model provides the predictive distribution of its PE in the form of
a normal distribution N½μðχÞ, σ2ðχÞ�. Here, the mean function μ:ℝd →ℝ is given as

μðχÞ :=κðχÞTK− 1E, ð2:8Þ

where κðχÞ := ½kðχ,χ1Þ, . . . , kðχ,χnÞ�T and E := ½E1, . . . ,En�, while the variance
function σ2:ℝd →ℝ is given as

σ2ðχÞ := kðχ,χÞ−κðχÞTK− 1κðχÞ. ð2:9Þ

At each step, the GP model of PES is fitted based on fðχi,EiÞgi∈ P̂α
, which is the

set of points whose PEs have already been computed by DFT calculations in earlier
steps.
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2.3.2 Selection Criterion

Given a GP model in the form of Eq. (2.5) for each point, the subsequent task is to
select the next point at which the PE is most likely to be lower than the estimated
threshold θ̂α. (The following subsection discusses how to estimate the threshold.)
For this task, some techniques developed in the context of Bayesian optimization
[24, 25], which are used to minimize or maximize an unknown function, can be
borrowed. There are two main options that can be adapted for our task in the
Bayesian optimization literature. The first is to select the point at which the
probability that the PE is lower than θ̂α is maximized. This is called the “probability
of improvement”, which is formulated as

i′ := argmax
i∈ N̂α

Φ½θ̂α; μðχiÞ, σ2ðχiÞ�, ð2:10Þ

where Φð ⋅ ; μ, σ2Þ is the cumulative distribution function of Nðμ, σ2Þ. The second
option is the “expected improvement”. Similarly, it is formulated as

i′ := arg min
i∈ N̂α

Z θ̂α

−∞
Eϕ½E; μðχiÞ, σ2ðχiÞ�dE, ð2:11Þ

where ϕð ⋅ ; μ, σ2Þ is the probability density function of Nðμ, σ2Þ. This study
employs the second option, although the performance difference between
Eqs. (2.10) and (2.11) is negligible in our experience.

2.3.3 PE Threshold

PE threshold θα should be estimated because it is unknown prior to evaluating the
entire PES. The contingency table (Table 2.1) is here considered to obtain an
estimate θ̂α of the threshold θα. TP, FP, FN, and TN denote the true positive, false
positive, false negative, and true negative, respectively. The notation # indicates the
event number. Note that the FN is not the “force norm” acting on a proton in this
context. The numbers for these four events can be rephrased as:

• #TP: The number of sampled points in the low-PE region.
• #FP: The number of sampled points in the high-PE region.

Table 2.1 Contingency table
defining TP, FP, FN, and TN

Pα Nα

P̂α #TPðθ̂αÞ #FPðθ̂αÞ
N̂α #FNðθ̂αÞ #TNðθ̂αÞ
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• #FN: The number of not-yet-sampled points in the low-PE region.
• #TN: The number of not-yet-sampled points in the high-PE region.

These four numbers depend on the estimated PE threshold θ̂α. Recalling the
equation of Pα ̸ðPα +NαÞ= α, the following relationship should be maintained

½#TPðθ̂αÞ+#FNðθ̂αÞ� ̸N = α. ð2:12Þ

Because Ei for i∈ P̂α is already evaluated, we simply obtain

#TPðθ̂αÞ= ∑
i∈ P̂α

IðEi < θ̂αÞ, ð2:13Þ

where I( ⋅ ) is the indicator function defined by I(z) = 1 if z is true and I(z) = 0 if z is
false. On the other hand, #FNðθ̂αÞ must be estimated based on the statistical model
Eq. (2.6) because Ei is unknown for i∈ N̂α

#FN(θ̂αÞ≈FN
∧ ðθ̂αÞ := ∑

i∈Nα

Φ½θ̂α; μðχiÞ, σ2ðχiÞ�. ð2:14Þ

The estimate of the threshold θ̂α is determined for each step so that it satisfies
Eq. (2.12) where the quantities on the left-hand side are given by Eqs. (2.13) and
(2.14).

2.3.4 Termination Criterion

When sampling is terminated, P̂α should ideally contain all the points in Pα, i.e.,
P̂α⊇Pα. As easily noted from the contingency table, this requirement can be
rewritten as #FNðθ̂αÞ=0. This indicates that the estimated false negative rate
(FNR) defined as

FbNR :=
# FN

∧ ðθ̂αÞ
#TPðθ̂αÞ+#FN

∧ ðθ̂αÞ
, ð2:15Þ

can assess the badness of the sampled points. FbNR in Eq. (2.15) can be interpreted
as the proportion of points where the PEs have yet to be evaluated. At each step,
#TPðθ̂αÞ is computed by Eq. (2.13) and #FNðθ̂αÞ is estimated by Eq. (2.14). Then,
the sampling is terminated if FbNR is close to zero (e.g., <10−6).
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2.4 Results of Selective Sampling

2.4.1 Low-PE Region Identification

The performances of several sampling procedures for α = 0.2 are compared in the
low-PE region identification problem. Specifically, the following six sampling
methods are assessed: (1) GP1(xyz), (2) GP2(xyz + 1st NNs), (3) GP3(xyz +
prePES), (4) random, (5) prePES, and (6) ideal. The first three are the proposed
GP-based selective sampling methods with different descriptors. In GP1, the 3D
coordinates (xi, yi, and zi) in the host crystal lattice are used as the descriptors of the
ith point (denoted as xyz). In GP2, the first nearest neighbor (1st NN) distances to
the Ba, Zr, and O atoms from each point are used as additional descriptors (denoted
as 1st NNs). In GP3, a preliminary PES (denoted as prePES) is used as an addi-
tional descriptor. The preliminary PES means a rough but quick approximation of
the PES obtained using less accurate but more efficient computational methods. For
prePES, the PE values at all N points obtained by single-point DFT calculations are
used. Random indicates naive random sampling, where a point is selected randomly
at each step. prePES denotes a selective sampling method based only on the pre-
liminary PES. Specifically, points are sequentially selected in ascending order of the
preliminary PEs obtained by single-point DFT calculations. Finally, ideal indicates
the ideal sampling method, which can only be realized when the actual PEs at all
the points are known in advance.

In GP1 to GP3, two points are randomly selected to initialize the GP model. The
average and the standard deviation over ten runs with different random seeds are
discussed. The tuning parameters of the GP models are set to σf = l = 0.5.
According to our preliminary experiments, the performances are insensitive to the
tuning parameter choices.

Figure 2.5 compares the efficiencies of the six sampling methods. The number of
points successfully sampled from the low-PE region (#TP) is plotted as a function
of the number of PE computations based on DFT (#TP + #FP). The results of the
three different GP-based sampling methods (GP1 to GP3) indicate the importance
of choosing the descriptors. Using the 3D coordinates (GP1) as the descriptors is
only slightly better than using the random method. On average, GP1 requires
1539.6 ± 31.2 DFT computations until all the points in the low-PE region are
identified. GP2 has an improved performance, suggesting that additional appro-
priate descriptors are generally advantageous. GP2 requires 1269.4 ± 100.3 DFT
computations to identify all the low-PE grid points. GP3 has a markedly enhanced
performance. GP3 requires only 394.1 ± 5.2 DFT computations, indicating that the
preliminary PES is a very helpful descriptor. On the other hand, prePES has a much
poorer performance and requires 1479 DFT computations. Thus, the preliminary
PES alone is insufficient to effectively identify the low-PE region. The importance
of the preliminary PES is discussed in more detail below.

Figure 2.6 demonstrates the differences between the sampling sequences of the
GP1, GP3, prePES, and ideal methods. GP1 erroneously selects many points in the
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high-PE region. In contrast, GP3 preferentially selects points in the low-PE region,
and only a small number of points are mistakenly selected from the high-PE region.
Although the prePES method preferentially selects points in the low-PE region, it
fails to identify all of them. Surprisingly, the sampling sequence of GP3 is almost
identical to that in the ideal sampling, despite the unknown low-PE region
beforehand. This indicates that the GP model in GP3 successfully estimates the PES
in the low-PE region.

Figure 2.5 indicates that the preliminary PES obtained by single-point DFT
calculations is highly valuable as a descriptor when it is used along with
three-dimensional coordinates (x, y, z) in GP modeling. However, using the pre-
liminary PES alone cannot identify the low-PE region in the prePES sampling. The
results are only slightly better than random. In the earlier steps, the sampling curve
of prePES almost overlaps with the ideal sampling curve, but it gradually deviates
as the sampling proceeds. Eventually, 1479 steps are necessary to find all points in
the low-PE region using prePES. This is 4.2-fold decline compared to the ideal
sampling case (353 points). The inefficiency of prePES is attributed to the rela-
tionship between the DFT calculations with and without structural optimization.

Figure 2.7 shows the rank correlation between the actual and preliminary PEs,
where the points with low PEs are located below the horizontal dotted line. The
prePES sampling method selects points in ascending order of the preliminary PEs,
meaning that the points are selected from left to right in Fig. 2.7(a). Therefore, most
of the N grid points (all points located in the shaded region) must be sampled to
select all the points in the low-PE region. On the other hand, in GP3 with xyz and
prePES as descriptors, the average number of sampling steps required to identify all
the points in the low-PE region is only 394.1, which is only a 1.1-fold increase
compared to the ideal sampling method.

Fig. 2.5 Efficiencies of the six sampling methods for α = 0.20 [12]. Number of grid points
successfully sampled from the low-PE region (#TP) is plotted versus the number of PE evaluations
by DFT (#TP + #FP)
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2.4.2 Low-FN Region Identification

The previous subsection demonstrates several types of sampling methods, which
use different descriptors to identify the low-PE region. GP3, which employs
descriptors of xyz and prePES, exhibits the best performance and is comparable to
ideal sampling. However, the region of interest (i.e., the low-PE region) comprises
20% of the configuration space. Thus, the computational cost can be reduced by
80% at most.

To further reduce computational costs, it is necessary to redefine a smaller region
of interest. The mean frequency of atomic or ionic jumps in a solid is determined
mainly by the change in PE from the initial point to the saddle point. As both of
these points can be mathematically defined as points with a zero gradient in the
PES, the region of interest can be redefined as the region where the force norm
(FN) acting on a proton is small. In this model case, the FN threshold is set to
0.2 eV/Å, which leads to 15 grid points in the low-FN region (See Fig. 2.4b).

Fig. 2.6 Selected grid points (gray dots) at 100, 200, 300, and 400 steps by the different sampling
methods in the model crystal lattice of BaZrO3 for α = 0.20 [12]. Yellow surface in each plot is
the isosurface corresponding to the PE threshold at α = 0.20
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The efficiencies of four sampling methods are compared for the low-FN region
identification problem: (1) GP4(xyz), (2) GP5(xyz + preFNS), (3) preFNS, and
(4) ideal. GP4(xyz) and GP5(xyz + preFNS) are GP-based selective sampling
procedures where the three-dimensional coordinates (x, y, z) and/or the preliminary
FNS (denoted as “preFNS”) are used as descriptors. The preliminary FNS is the FN
values at all N points computed by single-point DFT calculations, which should
have a higher contribution to the sampling performance. The preFNS method
indicates a selective sampling where the grid points are sequentially selected in the
ascending order of the preliminary FNs. The average and the standard deviation
over ten runs with different random seeds are discussed for GP4(xyz) and GP5
(xyz + preFNS). The tuning parameters of the GP models σf and l are optimized for
each method.

Figure 2.8 compares the performances of several sampling methods. The
GP-based sampling (GP4 and GP5) can selectively sample the grid points in the
low-FN region requiring 199.7 ± 68.6 and 116.0 ± 30.6 DFT computations to
identify all the low-FN grid points, respectively. Both methods show higher effi-
ciencies than that of PES-based GP3(xyz + prePES). These enhanced perfor-
mances are due to the smaller region of interest defined on the basis of the FNS.
Analogous to the preliminary PES, the preliminary FNS evaluated by single-point
DFT calculations is a valuable descriptor, which improves the sampling perfor-
mance in GP-based sampling. However, the naive sampling based on the preFNS
shows a much worse performance as it requires 955 DFT computations.

Figure 2.9 shows the rank correlation between the actual and preliminary FNs.
The open red circles denote the 15 grid points in the low-FN region. In the preFNS
sampling, the points are selected from left to right in the figure. Consequently,

Fig. 2.7 Rank correlation between the actual and the preliminary PEs [12]. Open circles and
crosses show the grid points in Pα and Nα, respectively. Blue and red symbols indicate sampled
points at 400 steps in (a) prePES and (b) GP4, respectively. GP4 method samples all the positive
points at 400 steps with a small number of False ositive points (i.e., sampled points not in the
low-PE region). In (b), there are no False Negative points
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all 955 points located in the shaded region must be sampled to select all positive
points. The difference in the rank depends on whether structural optimization is
performed, implying that the local structural relaxation around a proton in oxides is
important.

Although using the low-FN region as the region of interest improves the sampling
performance, the performance still deviates from that of ideal sampling. Figure 2.10
shows the step numbers where each of the low-FN grid points (Nos. 1–15)

Fig. 2.8 Efficiencies of the four FN-based samplings: GP4(xyz), GP5(xyz + preFNS), preFNS,
and ideal. Number of grid points successfully sampled from the low-FN region (#TP) is plotted
versus the number of FN computations by DFT (#TP + #FP). Green line is the result in GP5 using
the 16 lowest FN points in preFNS as the initial grid points

Fig. 2.9 Rank correlation
between the actual and the
preliminary FNs. Red open
circles and crosses show grid
points in Pα and Nα,
respectively. Blue and black
crosses denote False Positive
and True Negative points at
step 955 in the preFNS
sampling method,
respectively
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are sampled in ten runs of GP4 and GP5. Two grid points (Nos. 6 and 8) are
relatively difficult to sample, degrading the sampling performance. This is probably
because these points are isolated from the other low-FN points (Fig. 2.10c). Con-
sequently, the FNS statistical model cannot predict that these two points are likely
to be in the low-FN region.

To overcome this difficulty, information on the preliminary FNS is exploited not
only as a descriptor in the FNS statistical model. Specifically, the initial grid points
for the GP-based methods are not selected randomly, but in the ascending order of
the preliminary FNs. The green open diamonds in Fig. 2.10b show the results by
GP5 sampling using the 16 lowest FN points in the preFNS as the initial grid points.
The two grid points (Nos. 6 and 8) are sampled at step 2 and step 86, respectively,
resulting in 95 DFT computations to sample all low-FN points (See the green line in
Fig. 2.8). Thus, fully exploiting information about the preliminary FNS can
improve the sampling performance.

2.4.3 Practical Issues

Here two critical issues, which limit practicality, are discussed in the case of the
low-PE region identification (task 1): (1) when to terminate sampling and (2) how
to determine the PE threshold α.

The first issue is common in GP-based sampling methods. One practical
advantage of statistical models such as the GP model is that the number of

Fig. 2.10 Step numbers where each of the low-FN grid points is sampled in ten runs of (a) GP4
and (b) GP5 (red crosses). Green open diamonds in (b) are the results in GP5 using the 16 lowest
FN points in preFNS (bottom 1%) as the initial grid points. (c) Two most difficult grid points to
sample among the low-FN grid points (No. 6: black spheres, No. 8: white spheres)
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remaining points to be sampled can be estimated by estimating the FNR.
Figure 2.11 shows the profiles of the estimated FNR and threshold as functions of
the number of DFT computations in GP3. These plots indicate that the estimated
FNR almost coincides with the ground truth line. Additionally, the estimated
threshold converges to the true value as the sampling proceeds. These results
suggest that the estimated FNR should be a useful termination criterion.

Another practical issue is how to choose an appropriate α, which depends on the
focused system. In the case of proton conduction in an oxide, the low-PE region
should be defined such that a proton-conducting network exists throughout the
crystal lattice within the region. According to the actual PEs, the low-PE regions are
isolated when α < 0.15, but they are abruptly connected when α = 0.20. This
means that a proper α value should be around 0.20 in the present study. If such an
appropriate α value is initially unknown, the α value can be set in a stepwise
manner. To demonstrate this approach, the performance of GP3 is investigated as α
is increased from 0.05 to 0.20 in a stepwise manner (The results are shown in
Fig. 2.12). In this scenario, α is increased by 0.05 when the estimated FNR
becomes smaller than 10−6.

Figure 2.12(b) indicates that the convergence of the estimated FNR is slightly
slower than the ground truth FNR in the first step with α = 0.05. This is why more
than 250 DFT computations are required to ensure that all points in P0.05 are
successfully sampled. On the other hand, when α = 0.10, 0.15, or 0.20, the con-
vergences of the FNRs are almost as fast as the ground truth FNRs. It should be
noted that the true positive points abruptly increase when the α value is switched,
indicating that the positive points for higher α are sampled in earlier steps. Although
this stepwise strategy is less efficient than directly specifying α = 0.20, it is much
more efficient than the prePES and random sampling methods.

Fig. 2.11 Profiles of the estimated (a) FNRs and (b) PE thresholds for GP3 sampling [12]
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2.5 Conclusions

In this chapter, a machine learning-based selective sampling procedure for PES
evaluation is introduced and applied to proton conduction in BaZrO3 to demonstrate
its efficacy. The region of interest governing the ionic conduction is defined in the
two ways: (1) a low-PE region and (2) a low-FN region.

For the low-PE region, the performance of the selective sampling based on the
GP model greatly depends on the descriptors. Employing the preliminary PES
(prePES) is significantly effective, which is evaluated by single-point DFT com-
putations in a smaller supercell. The GP3(xyz + prePES) sampling requires 394
DFT computations to sample all the low-PE grid points (353 points) in a grid with
1768 points for the asymmetric unit of BaZrO3 crystal. This is a 78% reduction in
the computational costs. However, the defined region of interest, i.e., the low-PE
region, comprises 20% of the configuration space. Consequently, the reducible
computational cost is limited to 80%.

The region of interest should, therefore, be redefined as it becomes smaller in the
configuration space. For the low-FN region, the region of interest contains only 15

Fig. 2.12 (a) Efficiency of GP3(xyz + prePES) sampling when α is increased in a stepwise manner
from 0.05 to 0.20 in 0.05 increments [12]. Number of grid points successfully sampled from the
low-PE region (#TP) is plotted versus the number of DFT computations (#TP + #FP). (b),
(c) Profiles of the estimated FNRs and PE thresholds versus the number of DFT computations [12]
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grid points, whose volume is less than 1% of the configuration space. Among the
several sampling methods to identify the low-FN region, GP5(xyz + preFNS)
shows the best performance. It requires only 116 DFT computations to identify all
grid points in the low-FN region. Furthermore, the computational cost can be
further reduced to 95 DFT computations using the 16 lowest FN grid points in the
preFNS as the initial points. This means that exploiting the information on the
preFNS can reduce the computational cost by 95%.

Thus, preliminary information (i.e., prePES and preFNS) significantly con-
tributes to the sampling performance. Therefore, a machine learning-based
approach hybridized with a low-cost PES and/or FNS evaluation should be a
solid methodology for preferential PES evaluation in the region of interest. In
addition, using the FNR, which is defined in Eq. (2.15), solves two critical issues,
which are when to terminate sampling and how to determine an appropriate α value
(equivalent to the PE threshold).
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