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Abstract. Feature selection is used in many application areas rele-
vant to expert and intelligent system such machine learning, bioinfor-
matics and image processing. Feature selection plays an important role
in reducing the dimensionality of high-dimensional features. However,
traditional feature selection methods are not able to intelligently learn
intrinsic data structures. In this paper, we proposed a novel feature selec-
tion method, which can automatically learn grouping structure relation
among features. Experiments are conducted on the selection of both raw
features and statistically handled features. Experimental results demon-
strate that the proposed method can identify important features by auto-
matic grouping, and outperforms the other methods on several public
data sets. Moreover, by using parallel computing, the training time con-
sumed by our method is only 50% of that of the traditional methods.
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1 Introduction

Feature selection is used in many application areas relevant to expert and intel-
ligent system such machine learning, bioinformatics and image processing. In
computer vision, machine learning, and data mining, data are always represented
by high-dimensional feature vectors. But high-dimensional data can increase the
consumption of processing time and storage space during processing. Moreover,
most of the existing machine learning methods, such as classification, regression,
or other tasks, are mainly designed more adaptive to low-dimensional data. The
computation of high-dimensional data can usually become much more complex
and difficult. As a solution to this issue, feature selection (also known as vari-
able selection) [2,13,20,21] is performed to choose a representative subset from
the high dimensional features. The subset is expected to bear sufficient informa-
tion about the original high-dimensional feature set for specific learning tasks.
The purpose of feature selection is to find the relevant feature subset that best
reflects the statistical properties of the pattern category to represent the original
feature.
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According to different evaluation metrics, feature selection algorithms can
roughly classified into three categories, i.e., filter, wrapper and embedded meth-
ods [13]. The filter methods rely on general characteristics of the data to evaluate
and select feature subsets without considering the learning algorithm. Such as
variance and Fisher score [11,14]. The wrapper model takes the performance
of the learner to be used as the evaluation criterion. For embedded methods,
the process of feature selection and learner training is integrated, both are com-
pleted in the same process, and in the process of training the learning algorithms
automatic feature selection.

Recently, some new embedded feature selection methods that integrate the
theory of sparse representation [3,8,24], compressed sensing, and feature selec-
tion [4,18,26] have been proposed. Sparsity-inducing feature selection methods
have been widely used in face authentication [5,23], face detection, face attributes
classification [9], and gene expression [25]. However, L1 regulraization compu-
tation typically requires solving either NP -problem or an alternative problem
that sill involves a costly iterative optimization [7].

In practical applications, the features have some essential structures. Inte-
grating knowledge about the feature structures may help identify the important
features. Ye and Liu [27] and Zhang et al. [28] proposed to use the group struc-
ture information of the data to carry on the feature selection. But the existence
of these methods have a defect that the number of groups in the group structure
is man-made, and the automatic grouping is not realized. On the one hand, the
feature set F is artificially divided into k groups, and this grouping is usually
carried out by experience, still do not achieve automatic grouping, on the other
hand, the so-called grouping is to divide the adjacent m features into a group,
the features that are adjacent to each other do not necessarily belong to the
same group.

Taking into account these factors, in this paper, we propose a novel automatic
grouping feature selection method, which use l2 norm to ensure group effect [31]
and use the mutual information measure to ensure the low redundancy within
the group. The Laplacian regularization based on mutual information is used
in the objective function of the method, so we call it MIL. Our experiments
demonstrate the efficiency of the proposed method. The difference between our
approach and the traditional group lasso method is shown in Fig. 1. As shown
in Fig. 1, the traditional group lasso method is continuous and the number of
groups is decided by people. In addition, the group is fixed once it is determined.
The MIL method combines autonomously by judging the correlation between
features, where each group of features can be discontinuous and the number of
features of each group can be unequal.

The remainder of the paper is organized as follows. Sect. 2 presents different
related methods and information theory used in our paper. Section 3 introduces
our proposed method. Experimental evaluation is depicted in Sect. 4. At last, we
conclude the paper in Sect. 5.
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Fig. 1. Comparison between traditional group lasso and MIL methods. Suppose there
is a data set A ∈ R7×15, we use the 7 × 15 table to represent the A dataset, each
row represents a sample, each column represents a feature, the same color indicates
the same group, (a) traditional group lasso grouping result, (b) MIL grouping result.
(Color figure online)

2 Related Work

In this section, we will introduce some of the existing feature selection algorithms,
and then introduce the basics of the information theory, as we will use it in
Sect. 3. Before the details are presented, we need to summarize the notations
and the definitions used in this paper. Let A = [a1, a2, . . . , an] ∈ Rn×d be n
samples data in the d-dimensional space, where n is the number of sample and d
is the number of features. Accordingly, denote label vector y = [y1, y2, . . . , yn]T ∈
Rn×1, which yi ∈ {+1,−1} , i ∈ {1, 2, . . . , n} if task is binary classification.
Denote λ as the hyper parameter to balance the data misfit and the penalty.
Denote W = [w1, w2, . . . , wd]

T ∈ Rd×1 as the unknown weight coefficient vector,
which need we to be estimated.

2.1 Related Feature Selection Methods

As a kind of embedded method, regularization techniques based on L1 norm
has been widely used to cope with feature selection in machine learning tasks.
According to compressive sensing theory, the minimum L1 norm solution to an
under determined system of linear equation is equivalent to the sparsest possible
solution under general conditions. Destrero et al. [5,6] used lasso for feature
selection in face detection and face authentication. Its objective function is:

min
W

‖y − WA‖22 + λ‖W‖1 (1)

Lasso is suboptimal since it produces biased estimates for the large coeffi-
cients. Zou [30] found that Lasso uses the same degree of compression for all
coefficients. And Lasso does not have the oracle properties. In order to improve
the performance of Lasso, the adaptive Lasso [30] is proposed

min
W

‖y − WA‖22 + λ

d∑

i=1

ai‖wi‖1 (2)
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From Eq. 2, we know the only difference between Lasso and adaptive Lasso is the
latter gives a weight coefficient for each. Different compression coefficients are
used for different weights, let Lasso has oracle properties. It not only has good
usability in prctice but also has an excellent character in theory. Obviously, when
all coefficient is equal, the adaptive Lasso is equivalent to Lasso.

The fused Lasso introduced in [22] get a solution that has sparse both the
coefficient and their successive differences. The objective function of fused Lasso
can be represented as follows:

min
W

‖y − WA‖22 + ‖W‖1 + α
d∑

i=2

|wi − wi+1| (3)

The bridge estimator [17] is defined as follows:

min
W

‖y − WA‖22 + λ

d∑

i=1

|wi|γ (4)

The bridge estimator has two important special cases. When γ = 2, it is popular
ridge estimator. When γ = 1, it is the Lasso.

In many practical applications, some features often have a strong correlation.
In this case, the lasso tends to select only one of the correlated features. To deal
with feature with strong correlation, Zou and Hastie [31] proposed elastic net
regularization as

min
W

‖y − WA‖22 + α
d∑

i=1

|wi| + (1 − α)
d∑

i=1

|wi|2 (5)

where |·|2 is the L2-norm. [31] show that L2 regularization has the group effect
and L1 regularization does not have group effect Zou et al. [31] add a group effect
to lasso by using L2 regularization to handle feature with strong correlations.
Furthermore, when α is equal to 1, the elastic net is lasso, and when α is equal
to 0, the elastic net is ridge estimator [17].

The penalties introduced in Eqs. (1)–(5) are assume that features are inde-
pendent and ignored the structures of features completely [27]. However, in prac-
tical application, the features have some essential structures, such as groups
[27,28]. Suppose that features are divided into k groups. With the group struc-
ture, the W is rewritten as k groups W = {wG1, wG2, . . . , wGk}, and the objective
function of group lasso as follows:

min
W

‖y − WA‖22 +
k∑

i=1

βi‖wGi‖q (6)

where the ‖·‖q is indicate q-norm, and βi is the weight coefficient of i-th group.
There are different structured feature selection methods according to different q
values or different constraints, such sparse group lasso [29]. The group structure
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provides good access to the structural property of the data. However, the number
of groups in the group structure is man-made, and the automatic grouping is not
realized. Moreover, the features that are adjacent to each other do not necessarily
belong to the same group.

2.2 Information Theory

Given the two variables U , V , if their respective marginal probability distribution
and joint probability distribution are respectively p (u), p (v) and p (u, v), and
then their mutual information I (u, v) is defined as:

I (u, v) =
∑

u,v

p (u, v)log
p (u, v)

p (u) p (v)
(7)

When the variables U and V completely unrelated or independent of each
other, the minimum mutual information, the result is zero, which means that
there is no overlapping information between the two variables; on the other hand,
the greater the interdependence, mutual information value will be greater.

3 MIL

In Sect. 2, we analyze some feature selection algorithms. On the one hand, L1

regularization computation typically requires solving either NP -problem or an
alternative problem that still involves a costly iterative optimization [7], on the
other hand, Traditional methods based on structural features are not automati-
cally group. Therefore, we proposed a novel feature selection model, MIL.

Assume given a set of training samples A ∈ Rn×d and the target labels
y ∈ Rn×1 of the corresponding samples, the MIL uses the following criterion:

min
W

‖y − WA‖22 + α‖W‖2 + β
∑

i

∑

j

MIij(wi − wj)
2
. (8)

to find W , where α and β is the hyper parameter of the objective function.
The first term of function (8) is the least-squares function. According to the
least-squares method to seek the relationship of features and target labels. The
second term of function (8) is l2 norm. In this paper, the group effect of MIL
is obtained via the L2 norm, where the group is determined by the correlation
between the features, and if the correlation between the two features is large,
then we classify it as a group, and if the correlation is small, it is considered not
a group. The third term of (8) is a manifold regularization where MIij is the
correlation between the i-th and j-th feature. In this paper, the MIij is defined
as the mutual information of the i-th and j-th feature (Mutual information can
be used to measure the degree of interdependence between the two variables, and
not limited to linear correlation, it also can be applied to nonlinear correlation).
It is reasonable to require wi and wj close to each other if the i-th and j-th
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feature Similarity (redundancy) is low, which is the objective of the term of
the third term of (8). In MIL, we use the third term of (8) to ensure that the
redundancy in the group is minimal. In fact, the third term of (8) have the ability
of l1 penalty in feature selection, it can ensure the minimal redundancy of the
feature subset. Denote MI as the similarity matrix constructed by all MIij and
the diagonal matrix D where the element i-th of is the sum of the i-th row of the
MI. Therefore, we can get the Laplacian matrix L = D−MI [15], and the third
term of (8) can be represented as βWT LW by simple algebra. The objective
function can be rewritten as follows:

min
W

‖y − WA‖22 + α‖W‖2 + βWT LW. (9)

Fortunately, (9) has an analytical solution as follows:

W =
(
AT A + αI + βL

)−1
AT y. (10)

After obtain W , we can rank features according to |wi|. The larger |wi| is,
the more important this feature is [12]. We can either select a fixed number of
the most important features or set a threshold and select the feature whose |wi|
is larger than the value [16].

4 Experimental Evaluation

In the section, we present experimental results of our method. The performance
of the newly proposed method in this paper, MIL, is mainly compared with
five other methods: Lasso (L1 regularization) [5], Ridge (L2 regularization) [17],
elastic-net [31], and group lasso [28]. These methods are chosen for the following
reasons:(a) Like MIL approach, the choice of these methods based on regulariza-
tion; (b) These methods are reported in the paper to provide good performance;
(c) These methods contain structure and non-structure method, group effect and
no group effect method, it helps to compare the performance of the algorithms.
In the experiment, we use non-image and image data set.

The non-image data sets are Colon [1] and Leukemia [10], where Colon con-
tains 2000 dimensions raw features and Leukemia contains 7029 dimensions raw
features. For image data set, we select the CFW [19] face data set, which is a
large collection of celebrity face images from the Internet. The data set con-
tains 200,000 face images for 1,500 celebrities. We selected 8,000 face images (20
images × 400 people) from the CFW 60K to carry out attributes classification
experiments, the 14 kinds of face attributes included in the selected pictures were
gender, race, age and so on (more detail see Table 1). Then we use the ULBP
to extracting low-level features. To be more specific, we scaling the face images
to 140 × 160 pixels, and divided image into 7 × 8 cells, each of cell is 20 × 20
pixels. Then use the ULBP descriptor to extract 3,304-dimensional features as
the raw features.
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4.1 Performance Analysis with Colon and Leukemia Dataset

In the first experiment, we use the non-image data sets to evaluate our approach.
We only selected the 50 features to observe the differences between the different
methods. Figures 2 and 3 show the classification accuracy of the two datasets
(Colon, Leukemia). As shown in Fig. 2, which illustrates the experiment with
Colon, MIL reached stability with just 12 features and from the 4-th feature, MIL
has always been far ahead of other methods. Compared to MIL, several other
methods do not achieve better classification results. Without losing generality,
the Fig. 3 shows similar results in Leukemia data set.

Fig. 2. Classification accuracy rate achieved with the Colon data set.

Fig. 3. Classification accuracy rate achieved with the Leukemia data set.
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4.2 Performance Analysis on Face Dataset

In this experiment, we test MIL on image data set. In CFW dataset, we chose
14 face attributes (more detail see Table 1), and we used the MIL method to
classify the 14 attributes. To observe the variation of accuracy with respect to a
number of dimensions, the recognition rate is calculated from 10, 20, . . ., to 100,
and from 100, 200, . . ., to 700. The results are shown in Table 1.

From the Table 1, we can find that our method has good performance. By
calculating the average recognition rate of all dimensions, it can reflect the rela-
tionship between the recognition rate and the dimension. In general, if the aver-
age recognition rate is higher, then the number of dimensions required to achieve
the same recognition rate will be less. However, the classification results obtained
by the group sparse are not bad. We all know that most of the image feature
description is based on statistical method, ULBP is the case, which itself counts
as an area of information. In this article, the statistical size of the region is
20 × 20 pixels. Therefore, selecting continuous features as a set does not have
much impact on the outcome of the experiment. The flaw in algorithms that
cannot be grouped automatically is not so obvious.

Table 1. The average recognition accuracy rate (%) of five different methods, highest
values are in blod, the average is calculated by the mean accuracy rate across a range
of feature set size (from 10 to the maximum number (700) of selected features).

Attributes Lasso Ridge Elastic-net Group lasso MIL

Man 79.52 89.11 89.57 89.40 90.42

Female 79.59 89.10 89.57 89.40 90.31

Asian 93.58 94.91 94.73 94.94 95.16

White 81.27 84.82 81.64 84.92 83.18

Black 90.88 93.54 94.59 93.60 93.12

Indian 93.52 95.12 94.59 95.14 95.24

Youth 66.28 71.71 64.33 71.87 69.88

Midddle age 67.12 69.11 67.25 69.25 66.88

Senior 90.79 93.20 92.37 93.26 93.34

No glasses 96.41 97.16 95.38 97.21 97.60

Eye glasses 97.43 97.50 96.66 97.54 98.01

Sun glasses 98.78 99.19 98.74 99.20 99.20

Positive expression 56.08 71.82 71.87 71.92 68.00

Neutral expression 55.01 71.64 71.87 71.92 68.14

4.3 Efficiency

Through the above analysis, we can say that our method is effective in feature
selection. In this experiment, we test the efficiency of MIL compared to other
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Fig. 4. Run time (s) comparison between MIL and other feature selection algorithms,
measured by the time for computing W weight coefficient vector from gender attribute
of the CFW data set.

Fig. 5. Run time (s) comparison between serial and parallel MIL, measured by the time
for computing W weight coefficient vector from gender attribute of the CFW data set.

approaches. However, we know the time complexity of MIL is O(kNN), where
N is defined as the feature numbers. MIL is thus generally more computationally
demanding. In this paper, the raw features of face data set are 3304 dimensions.
We use the time we calculate the weight coefficient W as a measure. In the
experiment, which involves calculating L1 regularization, we set the error toler-
ance to 10−6. Taking face gender attribute as an example, the result is shown in
Fig. 4.

As shown in Fig. 4, the proposed method takes 83.06 s to calculate CFW
dataset with 3304 dimensions features. MIL is considerably expensive. Never-
theless, we believe that the time complexity should not be a major deterrent to
the practicality of MIL. There are many applications where the data collecting
time is far more than the time required for data mining tasks such as feature
selection (e.g., days to months for data collection vs. hours for data mining).
Commodity multi-core systems are common nowadays, and it is straightforward
to parallelize MIL to harness this parallel processing power. In these cases, it
is justifiable to spend significant amounts of time for data processing and the
improved performance brought about by MIL will be worth the effort. Towards
this end, we tested a parallel version of MIL. The effectiveness of parallelization
can be clearly observed in Fig. 5.

As seen in Fig. 5, the parallel version of MIL can effectively reduce the com-
putation time of W weights. When using a 8 core processor, the computational
efficiency of the MIL is greatly improved, with a computation time of 27.02 s.
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However, as the number of cores increases, the latter’s promotion is not very
obvious. After using parallel computing, the amount of time that MIL spends
on computing the same dimensions training sample will be shortened to half of
elastic-net and group-lasso.

5 Conclusions

In this paper, we proposed a novel feature selection method, which can real-
ize automatic grouping. The proposed method is to use mutual information to
achieve the minimum redundancy of each group. Because the amount of cal-
culation of mutual information is increased by the increase in the number of
features, we use parallel computing to reduce the cost of computing. It is worth
mentioning that the calculation of L1 regularization can not use parallel comput-
ing to speed up. We compare with other feature selection methods to evaluate
the effectiveness of the proposed MIL. Experimental results show that the MIL
can obtain high recognition rate with fewer feature dimensions, and outperforms
the other methods on several public data sets.
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