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Abstract. Visual odometry (VO) is one of the important components
of visual SLAM systems, and some impressive works about VO have
been presented recently. However, these methods mostly follow the tra-
ditional feature detection and tracking pipeline, which usually suffer from
less robustness to complex scenarios. Deep learning has presented out-
standing performance in various visual tasks, which has great potential
to improve VO. In this paper, we discuss how to learn an appropriate
estimator to predict the frame-2-frame ego-motion with convolutional
neural network. Specifically, we construct a CNN model which formulates
the pose regression as a supervised learning problem. Here the proposed
architecture uses raw images and optical flow as input to predict the
motion. As a result, the trajectories can be produced by iterative com-
putation. We experimentally demonstrate the performance of the pro-
posed method on public dataset, which can achieve better ego-motion
estimation compared to the baselines.
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1 Introduction

Visual odometry (VO) as the front end of visual SLAM is a highly active area of
research, which has wide applications in numerous secnarios, such as robotics,
navigation, and virtual reality. In this paper, we focus on the task of monoc-
ular camera motion estimation in visual odometry. Over the past few years,
some impressive works about VO have been proposed with the development of
visual SLAM [9,12]. However, the results of these works mostly are far from the
expected performance in real systems, especially for the complex scenarios. In
recent years, deep learning has shown great success in various visual tasks, while
it has not yet been well explored in visual odometry [8,25].

In general, visual odometry is implemented through computing the camera
motion between consecutive frames. Specifically, the frame-2-frame ego-motion
is firstly estimated by utilizing geometric theory, and then refined with other
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optimization strategies, such as Kalman filtering or bundle adjustment. For the
geometric methods in monocular VO, some sophiscated computing frameworks
have already been formed. However, these systems are not robust enough while
complex scenarios are encountered, e.g., the initial feature extraction process is
apt to be interrupted. In addition, the problem of scale recovery is always one
of main obstacles of developing monocular VO. In order to further improve the
performance, more informative and robust features have always been desired,
which makes the geometric algorithms fall into the bottleneck of performance
now. Deep learning has achieved great success owing to the powerful ability of
extracting high-level features, particularly for image understanding tasks such as
classification and detection [22,24], semantic segmentation [23]. Inpired by these
works, it is believed that deep neural networks can learn the representations of
camera motion from large dataset. That is, the true scale and intrinsic rules of
camera motion can be learned even without other information.

Fig. 1. Overview of the proposed method for visual odometry. A pair of consecutive
images as input are fed into the trained CNN estimator to predict the frame-2-frame
ego-motion, and the trajectory is producted by iterative computation finally.

Our purpose in this paper is to build a proper architecture of CNN to directly
learn the frame-2-frame camera motion for VO, and consequently the trajectory
can be produced via iterative computation, as shown in Fig. 1. To this end, we
first construct a convolualtional neural network which uses both the image pair
and optical flow as input to perform the prediction. Then to reduce the offset
error, we propose to use a residual network to further boost the estimation
accuracy. Finally, we experimentally verified the effectiveness of the proposed
method through evaluation on public dataset.

The organization of this paper is as follows: Sect. 2 briefly explains the related
works, and Sect. 3 shows the details of our proposed method. Section 4 describes
the experimental results by comparing with the baseline methods. Finally, we
conclude this work in Sect. 5.
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2 Related Works

Here we briefly review the related works on monocular visual odometry. Accord-
ing to the technical routes adopted by ego-motion estimation, we can roughly
divide the VO algorithms into two broad categories: Geometric methods and
Learning methods.

Geometric methods can be further divided into the feature based methods
and direct methods. The feature based methods rely on detecting and tracking
a sparse set of salient image features [9,10], while the direct methods depend
on the pixel intensity values to extract motion information [11–13]. Specifically,
the feature based methods first match the feature points across the consecutive
frames, and then reconstruct 3D points by triangulation. Finally, the camera pose
can be estimated. Compared to the feature based methods, the direct methods
can theoretically achieve better accuracy and stability because they try to use
pixels of the whole image. But it is difficult for the direct methods to be used
in real systems due to introducing the heavy computation [12,13]. As for the
true scale, some extra information is usually needed, e.g., combining with other
sensor such as IMU [14].

On the contrary, the learning methods try to infer the motion estimation
directly from data. This type of methods can avoid several key issues in the
geometric methods, including the requirements of storing dense key frames and
establishing frame-2-frame feature correspondences. The learning method early
do not adopt the end-to-end framework. In [5], the authors train a KNN regressor
while one image is divided into cells. Another work is to create a semi-parametric
learning approach for visual odometry by incorporating geometric model into the
CGP framework [6,28].

Recent years, researchers start to deal with the inter-frame problems using
deep neural networks. For example, the authors propose a deep learning archi-
tecture to deal with human pose recovery problems [26,27]. Dosovitskiy et al.
[1] design a network FlowNet to compute the optical flow between two images.
DeTone et al. [2] propose to use deep networks to estimate the homography
matrix between two images, which essentially is a regression problem. Similarly,
a convolutional neural network for camera relocalization is proposed in [4], where
the pose vectors are discretized and the original problem is transformed into a
classification problem. In [3], the authors propose a learning method for visual
odometry with CNNs, where the depth data are required but may be unavailable
in real systems. A more related work to ours is P-CNN [15]. In the work, a CNN
architecture is designed only using the optical flow, and the robustness of learn-
ing VO is experimentally demonstrated. Different from [15], we propose a new
network using both raw images and optical flow in this paper, and consequently
the better estimation performance can be achieved.
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3 Methodology

In this section, we elaborate on the proposed method. Here we firstly formulate
the pose regression problem, and then explain the network architecture used to
estimate camera motion with the raw images and optical flow.

3.1 Problem Formulation

Given a pair of consecutive images with the resolution of n × m, we want to
learn a function f that is able to estimate the camera motion between them.
Our network outputs a motion vector y ∈ Y ⊂ �6, given by the displacement p
of the camera centre and orientation q represented by three Eular angles:

y = [p, q] (1)

The input x ∈ X ⊂ �n×m×3 is the RGB representation of raw image or dense
optical flow. So, the problem is to find a function difined as:

f : X → Y (2)

Here the motion vector y ∈ Y is defined relative to consecutive frames. So
we can select the first frame of the entire image sequence as the reference frame
to create a continuous trajectory via iterative computation.

In order to regress motion, we construct and train a CNN with the Euclidean
loss, i.e., the following loss function is adopted:

L =
1
N

N∑

i=1

‖f(xi) − yi‖2 (3)

In this work, both the raw images and dense optical flow are fed into the
network. In particular, the dense optical flow are extracted using the Broxs
algorithm [7], which allows for the large displacements and linearization. For one
time of motion estimation, a pair of consecutive frames and the corresponding
dense optical flow are used, as show in Fig. 2, where the optical flow is encoded in
RGB image. To more efficiently train the networks in practice, the raw images
for VO are down-sampled with a resolution of 160 × 48, and the optical flow
images are with 78 × 24.

Fig. 2. Two subsequent frames from Seq 00 and corresponding dense optical flow. (a)
and (b) show the raw images and (c) shows the dense optical flow (Color figure online).
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3.2 Network Architecture for Ego-Motion Estimation

Inspired by the works for action recognition [16,17], we propose a new CNN
architecture for pose estimation in this paper. Specifically, we first introduce an
architecture called LearnVO-I fed by a pair of raw images, and then extend it to
a new two-stream architecture called LearnVO-T with both the raw image and
optical flow.

LearnVO-I. The main idea of LearnVO-I is to first process each of a pair of
consecutive images by two separate and identical networks and then combine
them in some middle layer. The resulting network is illustratred in Fig. 3. With
this architecture, the network is constrained to produce meaningful representa-
tions for images separately and the motion estimation is performed by fusing
them on a high level. Such a way is similar with the traditional matching and
tracking approach.
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Fig. 3. Architecture of LearnVO-I. Two consective images are fed into the network
and the corresponding features are extracted by CNNs. Two fully connected layers are
used to produce 6-dimensional motion vectors.

Specifically, we stack convolutional layers, pooling layers, and RELU layers
to construct the LearnVO-I network, and two extracted features are stacked
channel-wise for the fusion. More specifically, we use several convolutional lay-
ers with max pooling to keep the salient value and meanwhile downsample the
feature maps. It is worth noting that the batch normalization [18] is added after
each convolutional layer, which is helpful for training. The outputs of the last
convolutional layer are fed into two fully connected layers. The first one has 1000
units and is followed by a RELU activation layer. The Second one has only 6
units which outputs a 6-DOF ego-motion vector.

LearnVO-T. The proposed architecture LearnVO-T is an extension of the
LearnVO-I by following the two-stream [17]. As shown in Fig. 4, the architecture
uses both the two raw images and optical flow as input to predict camera motion.
Overall, we can divide the architectue into two parts: optical flow stream and
raw image stream, and each of them is implemented by CNNs.
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Specifically, the optical flow network uses the optical flow data as input and
extract features through two convolutional layers with max pooling layers. Here
we combine the features from different levels by merging the outputs of the first
convolutional layer and the last one. For the raw image, we use a similar network
with LearnVO-I. We concatenate the flatten features from two streams to form
the final representations for the followng motion estimation, and feed them into
the fully connected layers. Here we similarly set the two fully connected layers
with 1000 and 6 uints respectively.

Raw images

Optical flow

Part A

Part B

Flatten
and 

concat

Fully connected

Camera 
pose

Fig. 4. Architecture of LearnVO-T network. It consists two sub parts: the raw images
stream (Part A) and the optical flow stream (Part B), then they are fed into the same
fully connected layers.

3.3 Boosting with Residual Network

Monocular camera VO is usually suffer from accumulate error caused by iter-
ative computation, which is important but very difficult to solve in learning
based method. Essentially, the accumulate error is derived from the inaccuracy
of camera motion estimation between consecutive frames. Here we use a simple
technique to make the motion estimation more accurate, and thus to some extent
mitigate the interference of accumulate error for whole trajectory. We propose to
train a residual network to fit the error fluctuation of the ego-motion generated
by the LearnVO network, and so that we can correct the inital pose estimation.
The idea is inspired by ORB-SLAM which guesses an initial value by the motion
model and then optimize it. We use a similar architecture as LearnVO-T to
build the residual network fed by raw images and optical flow, and the network
outputs 6-dimension error compensation vector. And we combine the outputs of
two network with the add operator in the testing phase. LearnVO-T with resid-
ual does help but the improvement in accuracy is limited as shown in Sect. 4.2
and we will explore more effective methods to deal with accumulate error in the
future work.
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3.4 Training Details

We have designed a network architecture which takes the paired images and
optical flow as inputs to regress the ego-motion. In order to obtain a good net-
work model, we firstly train the two networks with fully connected layers sepa-
rately, and then conduct a global finetuning in which the parameters of the fully
connected layers will be relearned. In practice, all weights in the convolutional
layers and fully connected layers are initialized with Xavier. We set the para-
meter use global stats in BN layer as false at the training phase and true at the
test phase. The networks are designed to adopt L2 loss, and Adam is adopted as
the solver to minimize the loss. The base learning rate is set as 0.0001 and the
momentum is 0.9.

4 Experimental Results

In this section, we experimentally evaluate the proposed methods. We show
the results of different network architectures and then compare with baseline
methods.

4.1 Dataset and Experiment Protocal

We evaluate the performance of the proposed method on the public dataset
KITTI vision benchmark [19], which provide 11 sequences with the precise
groundtruth trajectories in the terms of a 3×4 transformation matrix. There are
all about 23000 images to be used with a resolution of 1241× 376 or 1226× 370.
In our experiments, we transform the groudtruth to 6-DOF pose using Peter
Corke’s Robotic Toolbox. For the learning methods, we use the first 7 sequences
to train the model and the other 3 sequences to evaluate the performence.

We choose three different methods to make comparison: a geometric monoc-
ular SLAM system (ORB-SLAM) [9], a geometric visual odometry (VISO2-M)
[20], and a learning method (P-CNN VO) [15]. VISO2-M computes the trajecto-
ries through the frame-2-frame estimation without bundle adjustment, and thus
it is comparable to our proposed method. Consdering the scale recovery problem,
we have aligned the trajectories of ORB-SLAM, VISO2-M to the groundtruth
with a similarity transformation using Horn’s algorithm [21]. For fair compari-
son, the same optical flow data are used for P-CNN VO and our methods.

4.2 Performance Analysis

In this section, we analyze the performances of different network architectures:
LearnVO-I, LearnVO-T, and LearnVO-T with residual network, and the results
are shown in Fig. 5. From the results, it can be seen that LearnVO-T produces
more accurate trajectories than LearnVO-I for all sequences. It is implies that
raw images and optical flow represent different types of information and their
combination may offer more robust features for pose estimation. The bold lines
in Fig. 5 demonstrate the performance with the additional residual network. It
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can be seen that the results of Seqences 08 and 09 are improved and the almost
same performance is achieved for Sequence 10, which show that the residual
network is helpful to reduce the offset error. In the next comparison with the
baselines, we will adopt LearnVO-T without residual network. On one hand,
it is more fair since P-CNN VO does not have a refinement process. On the
other hand, LearnVO-T can yield good enough results with a relatively simple
architecture.
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Fig. 5. Trajectories of Sequence 08, 09 and 10 with different network architectures:
LearnVO-I, LearnVO-T, and LearnVO-T with residual network. (a): sequence 08, (b):
sequence 09, (c): sequence 10. Best viewed electronically.

4.3 Performance Comparison

In this subsection, we evaluate the effectiveness of the proposed method by
comparing with other three methods mentioned in Sect. 4.1. Here we conduct
comparisons from two aspects: accuracy and computational time, which together
measure the overall performance.

Accuracy. Figure 6 gives all the resulting reconstructed trajectories while
Table 1 provides the translation and rotation error for different methods. The
qualitative results in Fig. 6 show that our LearnVO-T can produce more
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accrurate trajectories for all three sequences than other methods except ORB-
SLAM. Here ORB-SLAM is a complete SLAM system with the feature tracking,
mapping, and loop detecting, and we are not surprised that it performes best.
The result of Sequence 08 provides an interesting observation that our LearnVO-
T is almost at the same accurate level with ORB-SLAM, and more robust since
ORB-SLAM tracks unsuccessfully for many times in our experiments.
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Fig. 6. Trajectories of Seqence 08, 09, and 10 for different methods. (a): sequence 08,
(b): sequence 09, (c): sequence 10. Best viewed electronically.

Table 1 shows the median RMSE error [19] of the trajectories over four execu-
tions. Aside from ORB-SLAM, P-CNN VO and our LearnVO-T perform better
than the geometric VISO2-M. It shows that the deep learning methods can
predict the 6-DOF frame-2-frame motions as accurate as possible. In general,
LearnVO-T outperforms P-CNN VO. In particular, for Sequence 10, the trans-
lation error of length reduces nearly 50% from 21.23% to 13.6%. From the results,
it is convinced that the learning methods have enormous advantage for the tra-
jectories consisting of many curves.

Computational Time. Table 2 provides the computational time for different
methods, where ORB-SLAM is not included due to its incomparableness to
others. Here P-CNN VO and LearnVO-T are implemented using caffe with a
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Table 1. Comparison results in terms of average translation and rotation errors.

ORB-SLAM VISO2-M P-CNN VO LearnVO-T

Trans
(%)

Rot
(deg/m)

Trans
(%)

Rot
(deg/m)

Trans
(%)

Rot
(deg/m)

Trans
(%)

Rot
(deg/m)

08 5 0.0067 19.39 0.0393 7.6 0.0187 6.05 0.017

09 1.6 0.0024 9.26 0.0279 6.75 0.0252 6.4 0.026

10 1.2 0.0018 27.55 0.0409 21.23 0.0405 13.6 0.028

NVIDIA K40 GPU. Our LearnVO-T takes about 20 ms to estimate a camera
pose, and the estimator is satisfied for real-time applications. Taking the results
in Tables 1 and 2, it can be seen that compared to P-CNN VO, our method
reduces the time cost using a more simple architecture without accuracy loss.

Table 2. Comparison results in terms of average computational time.

VISO2-M P-CNN VO LearnVO-T

08(s) 0.187 0.021 0.017

09(s) 0.198 0.013 0.019

10(s) 0.233 0.024 0.020

5 Conclusions

In this paper, we propose a novel camera motion estimation method based on
CNNs for visual odometry. Specifically, both the raw images and optical flow data
are used and the corresponding CNN architectures are proposed. In addition,
to reduce the offset error, we propose to use a residual network to learn the
errors. We experimentally analyze and compare the performance of the proposed
method on public dataset. The results verify the effectiveness of our method,
which can implement the frame-2-frame ego-motion estimation well. It is believed
that deep learning has a great potential to achieve accurate estimation for visual
odometry or visual SLAM. In the future, we plan to explore more advanced
approach for pose estimation under the deep learning framework, e.g., combining
with loop detection.
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