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Abstract. The non-additive measure provides a useful tool for many
problems in different communities. The Choquet integral has been suc-
cessfully used for many applications. However, their applicability is
restricted due to the exponential computational complexity. In this
paper, a novel polynomial method is proposed to solve the parameter
estimation problem for Choquet integral. The basic idea of our method
is to regard the problem as a sequential one at first; and then we use
Bayesian inference method to solve the problem. Using our method, the
computational complexity for the non-additive measure is reduced from
O((n+K)∗22n) to K ∗O(n2logn). Specifically, the semantic information
of the 2n variables is not lost. This method can be utilized to real-time
applications. We provide statistical performance guarantees for the pro-
posed method. As a real-world application, cross-layer design of wireless
multimedia networks is optimized by the proposed method. The experi-
ments show that the performance achieved by using this method is better
than that of traditional methods.
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1 Introduction

Within the fields of economics, finance, computer science and decision theory
there is an increasing interest in the problem how to replace the additivity
property of probability measures by that of monotonicity or, more generally,
a non-additive measure. Several types of integrals with respect to non-additive
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measures, also known as fuzzy measures [30], were developed for different pur-
poses in various works [2,14,21,32,37]. The Choquet integral, as a popular rep-
resentation of the non-additive measure, has been successfully used for many
applications such as information fusion [7], multiple regressions [33], classifica-
tion [15,38], multicriteria decision making [9], image and pattern recognition
[20,39], and data modeling [12].

In general, the basic idea to solve the non-additive model based on Choquet
integral is a two-step procedure. The first step is to reduce the non-linear multi-
regression model to the traditional linear multi-regression model by converting
each n-dimensional vector to a 2n-dimensional one, which is defined over the
powerset of attributes; and thus, the second step is to solve the linear model by
using various numerical indices and optimization method [27]. So far, numerous
related works have been developed [16,19,22,23,26].

However, the numbers of variables involved in solving the non-additive model
increases exponentially with n and so will the computational time. Thus, the
use of non-additive measure in practical applications is clearly curbed by this
exponential complexity [24]. Several approaches to deal with this problem are
known. The notion of k-additivity proposed by Grabisch [6,10,11,13] enables
to find a trade-off between the complexity of representation and the richness of
the modeling. In [40], Yan developed a hierarchical Choquet integral to model
the data. These techniques, however, are all working on solving the complexity
problem through discarding or integrating the 2n variables to smaller ones. The
results obtained through these techniques are all approximate solutions. On the
other hand, these results cannot be mapping back to the original 2n-dimensional
space.

To solve the computational complexity problem, several approaches are
known as follows. The notion of k-additivity proposed by Grabisch [6,10,11,13]
enables to find a trade-off between the complexity of representation and the
richness of the modeling. In [40], Yan developed a hierarchical Choquet integral
to model the data. These techniques, however, are all working on solving the
complexity problem through converting the 2n-dimensional space to a smaller
but less precise one. In the original 2n-dimensional space, the practical Choquet
integral problem is still not solved.

In this paper, we propose a novel polynomial method to solve the parame-
ter estimation problem for Choquet integral. The basic idea of our method is
to regard the problem as a sequential one at first; and then we use Bayesian
inference method to solve the problem. The parameters of Choquet integral are
updated after each data sample presentation. This update procedure is finished
in a low-dimensional space mapping from original one. We provide statistical
performance guarantees for the proposed method. The experiments show that
the performance achieved by using this method is better than that of traditional
methods. A special benefit of our method is that the 2n variables are retained.
So the semantic information of the 2n variables is not lost. Based on our pre-
vious works [19,25,35,36], this sequential method is very suitable to real-world
applications.
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The main contributions of the paper can be summarized as follows. (1) A
novel polynomial method is proposed to solve the parameter estimation problem
for Choquet integral. Using our method, the computational complexity for the
non-additive measure is reduced from O((n+K)∗22n) to K ∗O(n2logn). (2) As
a case of combining sequential concept and Choquet integral, this method can
be utilized to real-time applications. (3) As a real-world application, cross-layer
design of wireless multimedia networks is optimized by the proposed method.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the preliminaries which provides a mathematical setting for fuzzy measures.
Section 3 gives the Bayesian inference based algorithm to estimate the parame-
ters of large-scale Choquet integral. A benchmark dataset test and a real-world
application are provided to illustrate the proposed algorithms in Sect. 4. Finally,
summary and future works are drawn in Sect. 5.

2 Choquet Integral

2.1 Basic Definitions

Let us consider a multi-feature problem described by a finite set of alternatives
A = {a1, a2, . . .} and a finite set of features F = {f1, f2, . . .}. Each alternative
ai ∈ A can be associated with a profile (μ1, . . . , μn) ∈ Rn, where, for any
fj ∈ F, μj ∈ R represents the utility of ai related to feature j.

In general, one can compute an aggregation score H(f, w) by a linear basis
function model which takes into account the weights of importance of the
feature.

H (f, w) =
n∑

j=1

wjφj (f) = wT φ (f) (1)

where w = (w1, . . . , wn)T and φ = (φ1, . . . , φn)T . The weight w is also regarded
as a Lebesgue measure on a singleton f . However, the assumption of indepen-
dence among features is rarely verified. In order to take into account a flexible
representation of complex interaction phenomena among features, it is useful to
substitute to the weight vector w a non-additive set function μ on N = 1, . . . , n,
called Choquet capacity [34], allowing defining a weight not only on the impor-
tance of each feature, but also on the importance of each subset of features. It is
clearly more powerful than the Lebesgue integral model since Lebesgue integral
thus becomes a special case of the Choquet integral model. The Choquet integral
is defined as follows [4,7].

Definition 1. For every space Ω and algebra A of subset of Ω, a set-function
μ : A → R is called a capacity if it satisfies the following:

(i) μ (∅) = 0, μ (Ω) = 1,
(ii) ∀A,B ∈ A : A ⊆ B ⇒ μ (A) ≤ μ (B)

Furthermore, a capacity μ on Ω is said to be additive if
(iii) ∀A,B ∈ A : μ (A ∪ B) ≥ μ (A) + μ (B) − μ (A ∩ B)
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For each subset of feature A ⊆ Ω, the number μ(A) can be regarded as the
weight or the importance of A.

Definition 2. If φ : Ω → R is a bounded A-measurable function and μ is any
capacity on Ω, we define the Choquet integral of φ with respect to μ to be the
number

∫

Ω

φ (f) dμ (f) =
∫ ∞

0

μ ({f ∈ Ω : φ (f) ≥ α}) dα

+
∫ 0

−∞
[μ ({f ∈ Ω : φ (f) ≥ α}) − 1] dα (2)

where the integrals are taken in the sense of Riemann. In particular, if Ω is finite
and φ(f1) ≥ φ(f2) ≥ . . . ≥ φ(fn), then

∫

Ω

φ (f) dμ (f) =
n−1∑

i=1

(φ (fi) − φ (fi+1)) μ ({f1, . . . , fi})

+φ (fn) (3)

Definition 3. Let φ be a function from X = {x1, . . . xn} to [0, 1]. Let
{xσ(1), . . . , xσ(n)} denote a reordering of the set X such that 0 ≤ φ(xσ(1)) ≤
. . . ≤ φ(xσ(n)), and let A(i) be a collection of subsets defined by A(i) =
{xσ(i), . . . , xσ(n)}. Then, the discrete Choquet integral of φ with respect to a
fuzzy measure μ on X is defined as

Cμ (φ) =
n∑

i=1

μ
(
A(i)

) (
φ

(
x(i)

) − φ
(
x(i−1)

))

=
n∑

i=1

φ
(
x(i)

) (
μ

(
A(i)

) − μ
(
A(i+1)

))
(4)

where we take φ(x(0)) = 0, A(n+1) = 0, and x(i) = xσ(i).

2.2 Existing Method

Based on the Definitions 1–3, the relationship between the Choquet integral of
φ and the capacity μ can also be described by a new nonlinear multi-feature
regression model [5]:

Cμ (φ) = e +
∫

Ω

φ (f) dμ (f) + N (
0, δ2

)
(5)

where e is a regression constant, φ is an observation of X = {x1,
x2, . . . , xn}, N(0, δ2) is a normally distributed random perturbation with expec-
tation 0 and variance δ2, and δ2 is the regression residual error. The Choquet
integral problem is reduced to a traditional linear multi-regression model. At the
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same time, specifying a general fuzzy measure requires specification of 2n − 1
parameters, which is clearly exponential.

For solving this linear multi-regression model, usually we need to define a
loss function. Through minimizing this loss function, the parameter of the lin-
ear model can be derived. Given classes C1, . . . , Cn, Grabisch [17,18] proposed
a mean squared error (MSE) criterion, where the difference between desired
outputs ti for i = 1, . . . , n and the actual outputs Cμ(φ) is minimized under
constraints [1]. The loss function L is

L2 =
∑

φ∈C1

(Cμ (φ) − t1)
2 + · · · +

∑

φ∈Cn

(Cμ (φ) − tn)2 (6)

Given the observation data, the optimal regression coefficients μ can be deter-
mined by using regression methods. For example, in order to make the loss
function minimal, the least square method, as a regression method, is used for
determine μk(k = 1, 2, . . . , 2n − 1) [28].

We use a maximum likelihood estimation (MLE) [8] method to fulfill the
least square method. In fact, we define the likelihood function by using Gaussian
distribution:

p (t |φ, μ, β ) = N (
t
∣∣Cμ (φ) , β−1

)
(7)

where t is desired outputs given by a deterministic function Cμ (φ), and β is the
precision of Gaussian random variable. Consider an observation set of inputs φ
with corresponding desired outputs t1, . . . , tn,

p (t |φ, μ, β ) =
N∏

n=1

N (
tn

∣∣μT φn, β−1
)

(8)

where t and μ are column vectors
Solving for μ using MLE method, we obtain

μML =
(
ΦT Φ

)−1
ΦT t (9)

Here Φ is an N × M matrix whose elements are given by Φnj = φj(fn) [31],
so that

Φ =

⎛

⎜⎜⎜⎝

φ0 (f1) φ1 (f1) · · · φM−1 (f1)
φ0 (f2) φ1 (f2) · · · φM−1 (f2)

...
...

. . .
...

φ0 (fN ) φ1 (fN ) · · · φM−1 (fN )

⎞

⎟⎟⎟⎠ (10)

To summarize, the algorithm to be employed by MLE method is as follows:
For time-complexity analysis, we assume that there are n feature and K

samples. The Choquet integral space is 2n-dimensional. In addition, we assume
that the complexity of the inversion of a matrix n × n is Ω(n2logn) [29]. We
present the time complexity using pseudo-code analysis.
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Algorithm 1. MLE-based Choquet integral
Input: matrix Φ, target variable t
Output: μ

– Step 1: Compute the ΦTΦ
– Step 2: Compute the ΦT t
– Step 3: Compute the (ΦTΦ)−1

– Step 4: Compute the (ΦTΦ)−1ΦT t

O(K(2n)2)
O(K ∗ 2n)
Ω((2n)2log2n)
O((2n)2)

for ΦT Φ
for ΦT t
for (ΦT Φ)−1

for (ΦT Φ)−1ΦT t

We can rewrite this time complexity as

O(K ∗ 22n + K ∗ 2n + log2 ∗ n ∗ 22n + 22n)

Thus, we have that the time complexity for MLE-based method is O((n+K)∗
22n). Obviously, the numbers of variables involved in solving the non-additive
model increases exponentially with n and so will the computational time. In fact,
the use of non-additive measure in practical applications is clearly curbed by this
exponential complexity [24]. As an important challenge, the practical applica-
tion of the non-additive measure has been plagued by real-time computational
problems for a long time.

On the other hand, the traditional method, such as the MLE-based method,
which involves processing the entire samples in one go, can be inappropriate
for some real-time applications in which the data observations are arriving in
a continuous stream, and predictions must be made before all of the samples
are acquired. For a large scale dataset, it may be suitable to use sequential
algorithms in which the data samples are considered one by one, and the model
parameters updated after each such presentation.

3 Our Method

A general Choquet integral is defined by 2n − 1 coefficients. In order to reduce
the computational complexity, we developed a Bayesian inference based Choquet
integral (BIBCI) method.

Now we introduce some theorems needed in this work, and these theorems
also can be found in [3].

Given a marginal Gaussian distribution for φ and a conditional Gaussian
distribution for Cμ (φ) given φ in the form

p (φ) = N (
φ

∣∣ϕ,P−1
)

(11)

p (Cμ (φ)|φ) = N (
Cμ (φ)

∣∣μφ + b,Q−1
)

(12)
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where ϕ, μ, and b are parameters governing the means, and P and Q are precision
matrices. So the marginal distribution of Cμ (φ) and the conditional distribution
of φ given Cμ (φ) are given by

p (Cμ (φ)) = N (
Cμ (φ)

∣∣μϕ + b,Q−1 + μP−1μT
)

(13)

p (φ|Cμ (φ)) = N
(
φ

∣∣∣
∑ {

μT Q (Cμ (φ) − b) + Pϕ
}

, Σ
)

(14)

where

Σ =
(
P + μT Qμ

)−1
(15)

Based on (3)–(7), we can derive the posterior distribution of μ as

p (μ |t ) = N (μ |ϕN , SN ) (16)

where

ϕN = SN

(
S−1
0 ϕ0 + βΦT t

)
(17)

S−1
N = S−1

0 + βΦT Φ (18)

where ϕN is prior means, SN is prior precision matrices, β is prior uncertainty.
Because the posterior distribution is Gaussian, its mode coincides with its mean.
Thus the maximum posterior weight vector is simply given by μMAP = ϕN .

Suppose that we have already observed N data points; thereby the posterior
distribution over μ is given. This posterior can be regarded as the prior for
the next observation. By considering an additional data point (φN+1, tN+1) the
resulting posterior distribution can be derived based on (8)–(10)

p (μ |tN+1, φN+1, ϕN , SN ) = N (μ |ϕN+1, SN+1 ) (19)

with

S−1
N+1 = S−1

N + βφN+1φ
T
N+1 (20)

ϕN+1 = SN+1

(
S−1

N ϕN + βφN+1tN+1

)
(21)

Since the non-additive measure in the Choquet model is defined over the pow-
erset Ω, the reduction step basically aggregates the observed data of individual
features to the observation on sets. It is clear that there are only n(n  2n)
non-zero elements in each 2n-dimensional vector data. On the other hand, it is
not all necessary to use the 2n coefficients for building a Choquet integral model.
In most cases, we only need a very small part of these coefficients to compute
the Choquet integral. More importantly, some coefficients may not be used at
all in many applications. However, for traditional Choquet integral method, the
model cannot be built if we do not figure out all the coefficients.

We now develop a new approximation algorithm to reduce the computational
complexity. Because most information about the relationship among features is
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contained in only a small fraction of all the coefficients, we can use the n non-
zero element in each sample to adjust the related parameter. For each sample,
the parameters of Choquet integral related with non-zero element are updated
through Bayesian inference method. The basic idea behind the proposed method
is that it is far easier to consider a sequence of conditional distributions than
it is to obtain the marginal by integration of the joint density. Based on (19)–
(21), we can update the parameters of Choquet integral model by Bayesian
inference. Though only n parameters are modified in each training process, the
2n-dimensional parameter vector will tend to be reasonable after certain rounds
of training. Meanwhile, this algorithm only updates the coefficients that the
training data support. It is possible to acquire a reasonable model which maybe
has a few coefficients much less than 2n. It then executes the following algorithm.

We present the time complexity using pseudo-code analysis. We can rewrite
this time complexity as

K ∗ O(n + n2 + n2 + n2logn + n2 + n + n + n + n)

Thus, the time complexity for our method is K ∗ O(n2logn).
Our method uses the idea of mapping high-dimensional space distributions

to lower one to update the utility parameters.
Given an n-dimensional vector in original non-additive space, it can be

mapped to a 2n-dimensional linear space. If the our method use K samples
to achieve convergence, and we define a learning rate as λp under certain preci-
sion p, the frequency of training of each element in an n-dimensional vector is
generally in a direct ratio to n:

nK

2n
≈ λpn (22)

Algorithm 2. Bayesian Inference Based Choquet Integral Method
Input: matrix Φ, target variable t
Output: μ

– Initialize model parameters {β, μ0}
– For k=1,. . . ,N

1. Sample the data φk and target variable tk.
2. Obtain the n-dimensional non-zero vector φ

(n)
k , μ

(n)
k−1and t

(n)
k

3. Initialize n-dimensional prior precision matrices {S(n)}
4. Compute the posterior precision matrices S

(n)
k :

(
S

(n)
k

)−1

=
(
S(n)
)−1

+ βφ
(n)
k

(
φ
(n)
k

)T

5. Compute the posterior μ
(n)
k :

μ
(n)
k = S

(n)
k

((
S(n)
)−1

μ(n)
k−1 + βφ(n)

k
t(n)
k

)

6. Update the n related parameters back to μk
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Usually, our method needs K samples to achieve the precision p, and K can
be estimated by:

K ≈ 2nλp (23)

4 An Application Example

For wireless multimedia networks, cross-layer design has been regarded as one
of the most effective and efficient ways to provide quality of service (QoS).
At the application layer, prediction mode and quantization parameter (QP)
in video encoding are two critical design variables [H.264 2005]. At the phys-
ical layer, modulation and coding schemes (MCS) have been adopted to achieve
a good tradeoff between transmission rate and transmission reliability. PSNR
indicates the performance of wireless multimedia networks. The channel signal-
to-interference-noise ratio (SINR) reflects the channel conditions

Using non-additive measure, we can estimate the parameters μk(k =
1, 2, . . . , n). In fact, μk indicates the importance of coefficients k. In previ-
ous works [19,25,35,36], we have illustrated that the parameters of model is
stable under certain scenario, and the optimization using non-additive measure
for cross-layer design is effective when channel condition is known.

Let us further consider this issue for real-world applications. In fact, it is
very hard to acquire the real-time channel condition information in wireless
multimedia networks community. In other words, the system is usually unaware
of the state transitions. For example, we can only obtain the coefficients of QP
and MCS for a wireless multimedia networks system. The optimal configuration
of QP and MCS is largely determined by SINR under the current scenario.
However, the system is not able to obtain the current SINR.

For cross-layer design optimization of wireless multimedia networks, the
three problems mentioned above all exist. The traditional non-additive measure
method is not able to handle this multi-modal, real-time and high complexity
problem.

4.1 The Performance of the Application

The MLE and our methods were applied to the real-time transmission of
an individual video bitstream across a multi-hop 802.11a/e wireless network.
We first discuss the regression experiments and then the real-time application
experiments.

Regression. In this part, the data set contained 8064 3-D samples, each con-
taining one PSNR value from each of the three variables (Mac length, QP and
AMC) used in the cross-layer optimization problem. Two algorithms, MLE and
Bayesian inference based Choquet integral (BIBCI) methods, were considered
for non-additive measure.
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To evaluate the methods as regression algorithms, three runs of a 10-fold
cross-validation (in a total of 30 simulations) were applied for the MLE method.
As real-time methods, our methods were applied directly to real-time prediction.
The overall performance is evaluated by MAD and RMSE. We also conducted
the paired t-tests against true PSNR value confirmed the statistical significance
of each method.

The results are shown in Table 1. Under the MAD and RMSE criterion, the
BIBCI method outperforms the MLE method. For the time consumption, the
MLE method is better than BIBCI method. This is an interesting outcome,
since the matrix of variables can be calculated directly under low-dimensional
situation, with no need for accumulated calculations. However, from the MAD
and RMSE points of view, the best option is still our method.

Table 1. The experiment results in terms of the MAD errors and t-test

MAD RMSE Mean t pone ptwo Time

MLE(1) 4.935 6.775 29.35 −0.008 0.497 0.994 0.00042

MLE(2) 4.936 6.776 29.35 0.0004 0.5 1.0 0.00023

MLE(3) 4.931 6.769 29.44 0.00004 0.5 1.0 0.00039

BIBCI 1.788 2.694 29.34 0.09 0.497 0.93 6.71

Real-Time Application. In this part, we simulate the real time wireless mul-
timedia dataset. In this dataset, channel condition is unstable and constantly
changing. We draw samples to simulate the real-life situation where the channel
condition changes from bad to good or vice versa. There are 1300 samples in
this dataset, and it includes 2 period of channel condition changing.

For better illustration, we process the dataset using kernel smoothing as
shown in Figs. 1 and 2. The channel condition is just utilized to acquire the opti-
mal PSNR. In real-life situation, the channel condition is hidden and unknown.

For the MLE method, the utility of variable can be calculated by traversing
all the options. For our dataset, the utility of Mac length equals to 28.56, the
utility of QP equals to 35.73 and the utility of AMC equals to 38.40. So the
distortion performance is more sensitive to the AMC than to other variables.
In this test, system optimizes the AMC configuration all the time for the MLE
method.

For our method, we calculate the utilities for each slice, and consider the
variable with the largest utility value as the most important variable. For each
slice, system always optimizes the most important variable. In order to avoid
local optimum, we update the utilities by 8 random samples before dealing with
each slice.

The results are shown in Fig. 3. We can see clearly that the performance
of our method is closer to the optimal than traditional Choquet integral. We
also can find that the accuracy of the first 200 samples is not very satisfactory,
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Fig. 1. The kernel smoothing of the real-time wireless multimedia dataset
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Fig. 2. The SNR of the real-time wireless multimedia dataset

and this phenomenon does not happen in second period, which means the our
algorithm turns to stable within 9 * 200 updates under this dataset.

The performances of MLE and our methods are shown in Table 2. Larger
values result in better multimedia system. To illustrate the quality of the recon-
structed videos, we show some sample video frames dealing with the optimal
configuration, the MLE-based method and our method, respectively. As shown
in Table 3, we can see that the performance achieved by using our method is
better than that of MLE-based method.
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Fig. 3. The simulation on the real-life situation. The performance of our method is
closer to the optimal than traditional Choquet integral.

Table 2. The mean performance of MLE and BIBCI methods

Optimum MLE BIBCI

Mean PSNR 46.05 35.77 42.71

Table 3. Some sample video frames dealing with the optimal configuration, the MLE-
based method and BIBCI method.
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5 Conclusion

In this paper, we propose a novel polynomial method to solve the parameter
estimation problem for Choquet integral. The proposed approach allows train-
ing parameters of Choquet integrals without requiring entire input samples. The
computational complexity of the proposed algorithm is low and the number of
parameters needed to compute is only linear rather than exponential with the
number of inputs. Using our method, the computational complexity for the non-
additive measure is reduced from O((n+K)∗22n) to K ∗O(n2logn). Specifically,
the semantic information of the 2n variables is not lost. This method can be uti-
lized to real-time applications. As a real-world application, cross-layer design of
wireless multimedia networks is optimized by the proposed method. The exper-
iments show that the performance achieved by using this method is better than
that of traditional methods.
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