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Abstract. One of the major challenges in object detection is to propose
detectors with highly accurate localization of objects. The online sam-
pling of high-loss region proposals (hard examples) uses the multitask
loss with equal weight settings across all loss types (e.g., classification
and localization, rigid and non-rigid categories) and ignores the influ-
ence of different loss distributions throughout the training process, which
we find essential to the training efficacy. In this paper, we present the
Stratified Online Hard Example Mining (S-OHEM) algorithm for train-
ing higher efficiency and accuracy detectors. S-OHEM exploits OHEM
with stratified sampling, a widely-adopted sampling technique, to choose
the training examples according to this influence during hard example
mining, and thus enhance the performance of object detectors. We show
through systematic experiments that S-OHEM yields an average preci-
sion (AP) improvement of 0.5% on rigid categories of PASCAL VOC
2007 for both the IoU threshold of 0.6 and 0.7. For KITTI 2012, both
results of the same metric are 1.6%. Regarding the mean average pre-
cision (mAP), a relative increase of 0.3% and 0.5% (1% and 0.5%) is
observed for VOC07 (KITTI12) using the same set of IoU threshold.
Also, S-OHEM is easy to integrate with existing region-based detectors
and is capable of acting with post-recognition level regressors.

1 Introduction

One of the major and fundamental challenges in object detection is to increase
localization accuracy, which indicates the detector’s ability to predict correct
regions of target objects. The metric is typically measured by the bounding
box overlap, i.e., the intersection over union (IoU) of the ground truth and
predicted bounding boxes. While previous challenges (e.g., PASCAL VOC [3]
and KITTI [5]) normally requires an IoU threshold of 0.5 to be considered a
correct detection, real-world applications usually call for a higher accuracy (e.g.,
IoU ≥ 0.7). For example, the vehicle and pedestrian detection in autonomous
driving need an accurate measurement of distance through real-time road traffic
captures.
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Recent literature has focused on the modification of region-based detection
models at the post-recognition level to boost the localization accuracy [4,6,7].
However, limited work has addressed the problem from a data perspective. Data
is important. The rapid advancement in the data collection, storage, and process-
ing technology has made machine learning, especially deep learning, much easier
by lightening the burden of generalizing well to unseen data with a limited num-
ber of training data [10].

However, the challenge of learning from imbalanced data [12] still exists.
Within the “Recognition Using Regions” paradigm [11], the training set of object
detection is divided into two distinct groups of annotated objects and back-
ground regions, and the number of examples in these groups experience a huge
imbalance. Online Hard Example Mining (OHEM) [27] is proposed to overcome
the data imbalance by integrating bootstrapping technique [30] with region-
based detectors, and can be effortlessly implemented on most of the region-based
detectors.

Fig. 1. Architecture of the Stratified Online Hard Example Mining algorithm (S-
OHEM). We use the parameter denotation from [27]. In each mini-batch iteration,
N is the number of images sampled from the dataset, R is the number of forward-
propagated RoIs, and B is the number of subsampled RoIs to be fed into backpropa-
gation. We denote classification loss by Lcls and localization loss by Lloc. S-OHEMiner
conducts stratified sampling over R region proposals according to the sampling distri-
bution at current training stage and produces B RoIs to be fed into backpropagation.
We maintain a read-only RoI network and a standard RoI network with sharing weights
for efficient memory allocation, derived from [27]. The blue solid stream indicates the
process of forward-propagation and the green dashed stream shows the backpropaga-
tion process. More details are described in Sect. 3.3.

In this paper, we propose S-OHEM, the Stratified Online Hard Example Min-
ing algorithm for training region-based deep convolutional network detectors to
enhance localization accuracy, as shown in Fig. 1. The intuition of our method
is that feeding hard examples to the backpropagation process could overcome
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the dilemma of unbalanced data, resulting in a more efficient and effective train-
ing process [27]. In the field of object detection, the hard example is defined as
region proposal with higher training loss. Thus, previous hard example mining
method (e.g., OHEM) is conducted by sampling region proposals according to
a distribution that favors high loss instances. However, the training loss defined
in previous work is the multitask loss with equal weight settings across all loss
types (e.g., classification, localization, mask [13], or rigid categories and non-rigid
categories). This approach ignores the influence of different loss types through-
out the training process, which we found essential to the training efficacy (e.g.,
localization loss is more important during the latter part of the training period).
Therefore, maintaining a sampling distribution according to this influence during
hard example mining should enhance the performance of object detectors.

S-OHEM exploits stratified sampling, a sampling method involving the divi-
sion of a population into distinct groups known as strata [21] (homogeneous
subgroups, in which the inner items are similar to each other). During each
mini-batch iteration, S-OHEM firstly assigns candidate examples (in the form of
Region of Interests, RoIs) to different strata by the ratio between classification
and localization loss. Then the RoIs are subsampled according to a dynamic
distribution and fed into the backpropagation process. With an increasing focus
on the localization loss, S-OHEM can predict more accurate bounding boxes and
therefore enhance the localization accuracy. We apply S-OHEM to the standard
Fast R-CNN [8] and Faster R-CNN [26] detection method and evaluate it on
PASCAL VOC 2007 and KITTI datasets. Our systematic experimental analysis
reports that S-OHEM yields some AP improvements of 0.5% on rigid categories
of PASCAL VOC 2007 for both the IoU thresholds of 0.6 and 0.7. For KITTI
2012, both results of the same metric are 1.6%. Regarding the mAP, a relative
increase of 0.3% and 0.5% (1% and 0.5%) is observed for VOC07 (KITTI12)
with the same set of IoU threshold.

The remainder of this paper is structured as follows. In Sect. 2, we compare
our work with related research with a focus on the improvement of localization
accuracy and the use of data in object detection. In Sect. 3, we describe the
design of the algorithm. In Sect. 4, we show the experimental results, and in
Sect. 5, we conclude this work.

2 Related Work

Object detection has significantly benefited from the advancement of image clas-
sification task. The remarkable feature extraction ability of Deep Convolutional
Networks [16,20,28,31,32] has equipped us with abundant information for the
classification of region proposals. In addition, the continuously developing prac-
tical strategies (e.g., activation functions [15,24,34], regularization [18,29,30],
and optimization [2,17,19]) further contribute to the efficacy of deep neural
networks.

Several region-based detectors depend on the strong classification capabil-
ity of deep convolutional networks to evaluate generated RoIs. R-CNN is the
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first to adopt this approach by evaluating each RoI separately. Fast R-CNN [8]
improved this method by allowing computation sharing through projecting RoIs
to a shared feature map (called RoIPool layer, derived from SPPnets [14]), result-
ing in better speed and accuracy. It was then integrated with the region proposal
module (the Region Proposal Network, RPN) by sharing their convolutional fea-
tures and extended to a unified network with “attention” [1] mechanism, lead-
ing to further speedup and accuracy enhancement. R-FCN [22] eliminates the
fully-connected layers of region-based detectors and turns the whole model fully
convolutional with the backbones of state-of-the-art image classifiers [16,32] to
fully share computation, contributing to a significant speedup. Mask R-CNN [13],
which adds a small Fully Convolutional Network (FCN) [23] as a parallel branch
to standard Faster R-CNN and replaces the RoIPool layer with the RoIAlign
layer, is the latest descendant of this stream and achieves significant advance-
ment in several benchmarks of both the detection and segmentation tasks. How-
ever, most of these models use the multitask loss with equal weight settings
without considering the influence of different loss type throughout the training
process.

Recent work has focused on the post-recognition level of region-based detec-
tion models to boost the localization accuracy. Gidaris and Komodakis [6] pro-
posed a CNN-model for bounding box regression, which is used with iterative
localization and bounding box voting. LocNet [7] aims to enhance the localiza-
tion accuracy by assigning a probability to each border of a loosely localized
search region for being related to the object’s bounding box. It’s different from
the bounding box regression approaches [4] adopted by most of the aforemen-
tioned region-based detectors and can be served as an effective alternative.

However, little work has focused on the advancement of region-based detec-
tors from a data perspective. Online Hard Example Mining (OHEM) [27] inte-
grates bootstrapping [30] (or hard example mining) with region-based detec-
tors for a small extra computational cost, but still lacks enough focus on the
localization accuracy because of the derived multi-task loss imbalance. Further
discussion is available in Sect. 3.

3 Model Design

In this section, we argue that the current way of choosing hard examples lacks
enough focus on localization accuracy and is suboptimal, and we will show that
our approach results in better training (lower training loss), higher localization
performance, and higher average precision. Firstly, we discuss the design moti-
vation. Then we give a brief introduction of stratified sampling and definition of
stratified constraint in this work. Finally, we present the design and implemen-
tation of our Stratified Online Hard Example Mining algorithm (S-OHEM).

3.1 Motivation

Most of the region-based detectors derive the multitask learning from Fast R-
CNN, and assume equal contributions of classification loss and localization loss
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throughout the training process. However, this assumption is not often the case.
We apply the original OHEM on standard Fast R-CNN and Faster R-CNN, then
report the classification and localization loss throughout the training process on
PASCAL VOC and KITTI datasets separately.

As is illustrated in Fig. 2, the classification loss is consistently larger than the
localization loss (more than double in average). But this could result in a prob-
lem. Let’s consider a situation where we have two region proposals RoI A and
RoI B and are asked to choose one as the hard example for backpropagation.
Based on the preliminary experiment result shown in Fig. 2, we make a com-
mon assumption that the training loss for RoI A and RoI B is Lcls(A) = 0.21,
Lloc(A) = 0.11, and Lcls(B) = 0.19, Lloc(B) = 0.12 respectively. Recall that the
classification loss is defined as log loss Lcls(p, u) = −logpu for true class u [8],
and thus the probability for the true class is 61.5% and 64.5% for RoI A and
RoI B respectively. It’s not a significant gap of the class prediction probability
between these two RoIs, and we can believe they have similar performance for
the classification task.

Fig. 2. Influence of different loss types throughout the training process. For better
visualization, we average out the training loss of every 1000 iterations.

Regarding the localization loss, the gap between RoI A and RoI B is 0.01
(Lloc(B)−Lloc(A) = 0.12−0.11 = 0.01). Within the smooth L1 loss settings [8],
this gap turns to a 0.14 difference between the bounding boxes of ground truth
and prediction. Note that this gap is quite significant when we use the parame-
terization for bounding box offsets given in [9], and therefore we are supposed to
choose RoI B as the hard example for better localization accuracy and prediction
quality. However, within the equal-weight multitask loss settings, RoI A will be
chosen as the hard one. Thus, the previous hard example mining approach lacks
focus on localization accuracy.
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3.2 Stratified Sampling

Stratified sampling is a sampling method involving the division of a popula-
tion into distinct groups known as strata [21]. These strata are homogeneous
subgroups of the original data with similar inner items. Stratified sampling can
get higher statistical precision because the variability within subgroups sharing
the same properties is lower than that of the entire population [33]. Therefore.
stratified sampling improves the representativeness by reducing sampling error.

Each stratum constraint sk is denoted by sk = (pk, fk), where pk is a propo-
sitional formula and fk is the required sample size. In this work, the four stratum
constraint is defined by the ratio between classification loss (Lcls) and localiza-
tion loss: s1 = (high Lcls and high Lloc, f1), s2 = (high Lcls and low Lloc, f2),
s3 = (low Lcls and high Lloc, f3), and s4 = (low Lcls and low Lloc, f4). The
required sample size and threshold of high loss (hard examples) change dynam-
ically throughout the training process.

3.3 Stratified Online Hard Example Mining Algorithm

Given the observation that the previous hard example mining approach ignores
the influence of different loss types throughout the training process and lacks
focus on localization accuracy, we now demonstrate our approach of Stratified
Online Hard Example Mining (S-OHEM).

The architecture of S-OHEM is shown in Fig. 1. In each mini-batch itera-
tion, S-OHEM firstly generates region proposals of the input images, forward-
propagates all of them across the region-based detector, and gathers the training
loss of each RoI. Then each RoI is assigned to one of the four strata defined in
Sect. 3.2. Different loss type combinations represent how well the current detec-
tor performs in classification and localization tasks on each RoI respectively.
Inside each stratum, hard examples are chosen by sorting the RoIs by loss. After
that, all RoIs are subsampled according to a dynamic distribution, and a total
number of B hard examples are fed into the backpropagation process. The sam-
pling distribution of RoIs from each stratum changes dynamically throughout
the learning process, as each loss type maintains different contribution to the
detector model at different training stages. Specifically, the effect of classification
loss is more important in the beginning, while the localization loss contributes
more at later training stages.

For implementation, we keep a record of history training loss and start to
change the sampling distribution when the loss becomes stable (e.g., after 40K
iterations shown in Fig. 2). At the beginning of training, we only sample the first
B RoIs with high Lcls (i.e., sample from s12, the union of strata s1 and s2).
When loss becomes stable, we gradually focus on choosing the RoIs with high
Lloc (i.e., sample from the union of s2 and s3, denoted by s23) by increasing the
sampling ratio between s23 and s1. Because of the gradually increasing focus on
the localization loss, S-OHEM can predict more accurate bounding boxes and
thus enhance the localization accuracy.
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An equivalent alternative is available. To make it simple, we denote the con-
tribution coefficient of Lcls and Lloc to hard example selection by α and β
respectively. And our approach aims to find the optimal value of α and β in
Formula (1) at different training stages. Lselect is only for hard example mining,
and the actual loss backpropagated across the network will not be affected.

Lselect = αLcls + βLloc (1)

When training begins, we only sample the first B RoIs with high Lcls by
setting α and β in Formula (1) to 1 and 0 respectively. When loss becomes
stable, we gradually focus on choosing the RoIs with high Lloc by gradually
decreasing the value of α and increasing β in Formula (1).

S-OHEM will not have a significant influence on the training time because
most of the forward computation is shared between RoIs [8], and the number of
backpropagated examples is much smaller than that of all region proposals of the
input images. To overcome co-located RoIs and loss double counting, we follow
the solution of [27] and apply non-maximum suppression (NMS) [25] to perform
deduplication before the sampling procedure. NMS works by finding the highest
loss RoI, and eliminating all other RoIs with lower loss and high overlap with the
selected region. Besides, we derive their method of maintaining a read-only RoI
network and a standard RoI network with sharing weights for efficient memory
allocation. It is also worth noting that S-OHEM can be combined with any post-
recognition regressors introduced in Sect. 2, because it focuses on enhancing the
localization accuracy from the data perspective.

4 Experiments and Results

In this section, we conduct systematic experiments to evaluate the proposed
S-OHEM and compare it with original OHEM. We describe the experimental
setup in Sect. 4.1, and demonstrate the efficiency and accuracy of the algorithm
by examining the training loss and average precision.

4.1 Experimental Setup

We use the standard and popular CNN architecture VGG16 from [28], and eval-
uate the algorithms on the PASCAL VOC 2007 and KITTI Object Detection
Evaluation 2012 dataset. In the PASCAL VOC experiment, training is done on
the trainval set and testing on the test set. In the KITTI 2012 experiment, we use
the first 5000 images to form the training set and the remaining 2481 images for
testing. All models are trained with SGD for 80k mini-batch iterations and fol-
lowed the same setup from Sect. 4.1. For average precision, we report the results
with IoU thresholds of 0.5, 0.6, and 0.7, to evaluate the localization accuracy in
a wider range of IoU thresholds. We use Fast R-CNN [8] as the detector base
for our PASCAL VOC experiment, and Faster R-CNN [26] for the KITTI 2012
experiment, to prove the usability of our approach. The initial learning rate is
set to 0.001 and dropped in “steps” by a factor of 0.1 every 30K iterations. We
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process 2 images in each mini-batch iteration, and subsample 128 RoIs to feed
them into backpropagation. Note that the baseline of OHEM reported in Table 2
(row 1–2) were reproduced and are slightly higher than the ones reported in [27].

For both experiments, we follow the procedure described in Sect. 3.3 to con-
trol the contribution coefficient of Lcls and Lloc. In the beginning, α and β are
set to 1 and 0 when training starts. Then we gradually increase β to the ratio
between classification and localization loss when the loss becomes stable. Specif-
ically, β will increase to 1.9 and 2.3 for the VOC07 and KITTI12 experiment
respectively.

4.2 Results and Analysis

Training Convergence. We firstly analyze the training loss for both meth-
ods by logging the average training loss every 10K steps. Figure 3 shows the
average loss per RoI for VGG16 with settings presented in Sect. 4.1. We see
that S-OHEM yields lower loss in both classification and localization than the
original OHEM, validating our claims that S-OHEM leads to better training
than OHEM. Also, the results indicate that S-OHEM is better in classification
confidence and localization accuracy during the training process.

Fig. 3. Training loss for S-OHEM and OHEM. We show the average loss per RoI for
VGG16. These results indicate that S-OHEM is better in classification confidence and
localization accuracy during the training process.

VOC 2007. Table 1 shows that on VOC07, S-OHEM improves the mAP of
OHEM from 71% to 71.1% for an IoU threshold of 0.5, and an improvement of
0.4% and 0.3% for IoU 0.6 and 0.7 respectively. For category-specific improve-
ments, S-OHEM performs well in most of the rigid categories (bold categories
in Table 1) across all three IoU thresholds, especially for IoU 0.7.

As is listed on Table 3(a), we compute the mAP among rigid categories and
show increase of 0.1%, 0.5%, and 0.5% for IoU 0.5, 0.6, and 0.7 respectively.
It’s also interesting to find that S-OHEM performs quite well in detecting cats
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for IoU threshold 0.6, which indicates the better bounding boxes generated by
S-OHEM in this environment.

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16 and
bounding-box regression. Legend: IoU: IoU threshold.

method IoU mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

OHEM 0.5 71.0 72.1 80.4 68.9 60.5 47.1 81.5 79.6 82.8 54.1 77.3 70.7 81.7 81.4 76.7 74.4 41.6 70.0 69.6 76.5 73.6
S-OHEM 0.5 71.1 72.8 80.9 69.2 60.2 47.9 81.4 79.5 82.5 53.8 76.6 70.3 81.9 81.5 77.5 74.5 41.6 70.1 70.2 76.0 73.6
improv 0.5 0.1 0.7 0.5 0.3 -0.3 0.8 -0.1 -0.1 -0.3 -0.3 -0.7 -0.4 0.2 0.1 0.8 0.1 0 0.1 0.6 -0.5 0

OHEM 0.6 62.2 63.5 74.5 57.7 47.1 38.0 76.0 74.4 70.9 42.0 70.8 61.7 72.7 74.9 68.1 62.6 30.7 59.3 63.5 66.5 68.2
S-OHEM 0.6 62.7 64.9 74.4 58.5 48.1 38.5 76.6 73.9 75.3 42.0 71.8 60.3 72.8 74.7 69.2 62.0 30.8 59.1 65.0 67.6 68.5
improv 0.6 0.5 1.4 -0.1 0.8 1.0 0.5 0.6 -0.5 4.4 0 1.0 -1.4 0.1 -0.2 1.1 -0.6 0.1 -0.2 1.5 1.1 0.3

OHEM 0.7 48.3 52.8 58.2 42.1 32.0 27.3 68.6 63.0 56.5 31.0 56.3 44.9 50.0 55.6 55.6 44.0 16.6 49.2 48.9 55.5 58.5
S-OHEM 0.7 48.6 55.2 57.8 41.4 32.5 27.9 69.0 63.8 56.9 30.4 58.2 44.9 50.0 54.1 56.1 44.2 16.4 48.6 49.9 56.2 58.9
improv 0.7 0.3 2.4 -0.4 -0.7 0.5 0.6 0.4 0.8 0.4 -0.6 1.9 0 0 -1.5 0.5 0.2 -0.2 -0.6 1.0 0.7 0.4

KITTI 2012. The evaluation results on KITTI 2012 is shown in Table 2. S-
OHEM improves the mAP of OHEM from 63.9% to 64.9% for an IoU threshold
of 0.6, and an improvement of 0.5% for IoU 0.7. We also compute the mAP
among rigid categories and list results in Table 3(b). Note that the Note that
the misc category is classified as rigid based on our observation of the dataset.
We show some increase of 1.6% for both IoU thresholds 0.6 and 0.7.

Table 2. KITTI 2012 test detection average precision (%). All methods use VGG16
and bounding-box regression. Legend: IoU: IoU threshold.

Method IoU mAP car persn cyclist truck van tram misc

OHEM 0.5 78.5 78.5 62.9 72.4 87.5 89.9 87.6 71.0

S-OHEM 0.5 78.5 78.2 63.7 73.9 88.3 89.0 85.3 70.8

improv 0.5 0 −0.3 0.8 1.5 0.8 −0.9 −2.3 −0.2

OHEM 0.6 63.9 68.7 47.4 57.7 73.8 79.0 70.8 49.6

S-OHEM 0.6 64.9 68.3 48.8 55.7 77.7 78.2 73.4 52.4

improv 0.6 1 −0.4 1.4 −2 3.9 −0.8 2.6 2.8

OHEM 0.7 42.9 50.5 29.1 37.3 52.7 59.8 42.0 28.8

S-OHEM 0.7 43.4 49.8 28.8 33.3 61.2 60.1 39.3 31.7

improv 0.7 0.5 −0.7 −0.3 −4 8.5 0.3 −2.7 2.9

Rigid and Non-rigid Category. Our experimental results have shown that S-
OHEM performs quite well on rigid categories of both the VOC07 and KITTI12
dataset. The reason is that rigid bodies can reach better classification accuracy
on pre-trained deep convolutional networks ascribed to its strong resistance to
deformation. Therefore, the influence of different loss distribution throughout
the training process (as described in Sect. 3.1) is more likely to happen on rigid
bodies. Also, the border distribution of rigid bodies is more similar to each other
and is thus easier to learn.
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Table 3. Category specific mean average precision (%). All methods use VGG16 and
bounding-box regression. Legend: IoU: IoU threshold. (a) On VOC 2007 test set. (b)
On KITTI 2012 test set.

method IoU rigid non-rigid

OHEM 0.5 70.2 72.2
S-OHEM 0.5 70.3 72.2
improv 0.5 0.1 0

OHEM 0.6 62.0 62.4
S-OHEM 0.6 62.5 63.1
improv 0.6 0.5 0.7

OHEM 0.7 49.7 46.2
S-OHEM 0.7 50.2 46.2
improv 0.7 0.5 0

method IoU rigid non-rigid

OHEM 0.5 82.9 67.7
S-OHEM 0.5 82.3 68.8
improv 0.5 -0.6 1.1

OHEM 0.6 68.4 52.6
S-OHEM 0.6 70.0 52.3
improv 0.6 1.6 -0.3

OHEM 0.7 46.8 33.2
S-OHEM 0.7 48.4 31
improv 0.7 1.6 -2.2

(a) (b)

5 Conclusion

In this paper, we proposed Stratified Online Hard Example Mining (S-OHEM)
algorithm, a simple and effective method for training region-based deep convo-
lutional network detectors to enhance localization accuracy. During hard exam-
ple mining, S-OHEM exploits stratified sampling and focuses on the influence
of different loss types throughout the training process. Experimental analysis
shows that S-OHEM outperforms OHEM regarding training convergence and
localization accuracy, and achieves some AP improvements on rigid categories
of PASCAL VOC 2007 and KITTI 2012. Besides, S-OHEM addresses the local-
ization enhancing problem merely from the data perspective and can be easily
plugged into existing region-based detectors. Furthermore, the state-of-the-art
Mask R-CNN [13] also derives the equal-weight multi-task loss with an addition
task of semantic segmentation, which is improvable through S-OHEM. S-OHEM
can also be applied to other multi-task loss, including the loss of semantic seg-
mentation, key-point detection, etc.
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