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Abstract. Salient object detection has attracted a lot of research in
computer vision. It plays a vital role in image retrieval, object recog-
nition and other image processing tasks. Although varieties of methods
have been proposed, most of them heavily depend on feature selection
and fail in the case of complex scenes. We propose a processing frame-
work for saliency detection which contains two main steps. It uses deep
convolutional neural networks (CNNs) to find a coarse saliency region
map that includes semantic clues. Then it refines the coarse saliency map
by training an extreme learning machine (ELM) on a group of color and
texture compactness features. To get final saliency objects, it synthesizes
the coarse saliency region map and several multiscale saliency maps that
are obtained by refining the coarse one together. The method achieves
good experimental results and can be used to improve the existing salient
object detection methods as well.
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1 Introduction

Visual saliency aims at detecting salient attention-grabbing parts in an image.
It has received increasing interest in recent years. Though early research primar-
ily focus on predicting eye-xations in images, it has shown that salient object
detection, which segments entire objects from images, is more useful and has
been successfully applied in object recognition [22], image classification [29],
object tracking [28], image compression [23], and image resizing [2]. Despite
recent progress in deep learning, salient object detection remains a challenging
problem that calls for more accurate solutions.

Without a rigorous definition of image saliency, traditional saliency detection
methods rely on several saliency priors. The contrast prior is the most popular
one, which can be further categorized as local contrast and global contrast [7,31].
Conventionally, the contrast based methods use hand-crafted features based on
human knowledge on visual attention and thus they may not generalize well in
different scenarios.
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Several researchers [19,26,33] propose CNN based approaches for saliency
detection. Though better performance has been achieved, there are still two
major issues of prior CNN based saliency detection methods [27]. Firstly, CNNs
use limited sizes of local image patches as input. To consider the spatial con-
sistency, the CNNs networks require carefully designing and become extremely
complex. Secondly, saliency priors, which are shown to be elective in previous
work, are completely discarded by most CNN based methods.

Because of this, in our work, we present a progressive framework for image
saliency computation called CELM. We leverage the advantages of high-level
semantically meaningful features from deep learning as well as hand-crafted fea-
tures when inferring saliency maps. Specifically, the framework has two proce-
dures and learns the saliency map in a coarse-to-fine manner. The coarse-level
image saliency semantically identities rough regions for salient objects by the
CNN. The CNN takes the whole images as input and trains a global model to
measure the saliency score of each pixel in an image, generating a coarse-level
saliency map in a lower resolution. The fine-level image saliency is achieved by
an ELM-based classification. This step is guided by the coarse-level saliency
map and the input RGB image from which we fetch compactness features. After
that, the coarse-level saliency map and the refined saliency map are synthesis
together to get the final result. Figure 1 shows some saliency results generated
by our approach. Extensive experiments on the standard benchmarks of image
saliency detection demonstrate that the proposed CELM has better performance
compared with state-of-the-art approaches. In summary, this paper makes the
following main contributions to the community:

– A progressive saliency framework is developed by integrating CNN and ELM,
taking advantage of both semantic and hand-crafted features. This model is
general to be extended to improve the current saliency detection method.

– A heuristic learning method based on ELM is proposed to refine the coarse
saliency image. It utilizes a new compactness hypothesis on superpixels to
find subtle structures which has the same color and texture distribution as
the positive samples.

– A saliency image synthesis algorithm based on saliency priors is proposed to
fusion multiple leveled saliency maps.

The remainder of the paper is organized as follows. Section 2 reviews related
work and differentiates our method from such work. Section 3 introduces our
proposed method. Extensive experimental results and comparisons are presented
in Sect. 4. And Sect. 5 concludes this paper.

2 Related Works

2.1 Image Saliency Detection

Image saliency detection approaches can be roughly categorized into two groups:
bottom-up and top-down. Bottom-up methods focus on the low level features
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Fig. 1. Results from HKU-IS by different methods, from left to right: input, GT, our
CELM, FT, GC, HC, DRFI, GMR, QCUT, PISA, DISC

(e.g. orientation, color, intensity, etc.). And the low level based methods can be
further divided into local methods, global methods and hybrid of previous two
according to the spatial scope of saliency computation. Local methods design
saliency features by considering the contrast in a small neighborhood. As an
example, in [16], multiscale image features (colors, intensity and orientations)
are combined to generate saliency map. However, if there is a lot of high fre-
quency noise in an image, local methods may result in a very poor performance.
On the contrary, global methods compute saliency of an image region using
its contrast over the entire image, which can tackle aforementioned problems.
For example, Cheng et al. [9] used Histogram based Contrast (HC) and spatial
information-enhanced Region based Contrast (RC) to measure saliency. But on
the other hand, global methods ignore the details of local regions, leading to the
blurring of the edges of the saliency. In order to combine the advantages of the
complementary pair, Chen et al. [5] simultaneously integrate local and global
structure information by designing a structure-aware descriptor based on the
intrinsic bi-harmonic distance metric. Top-down methods move attention to high
level features (e.g., faces, humans, cars, etc.), and are usually task-dependent.
Yang et al. [32] proposed a top-down visual saliency model which incorporates
a layered structure from top to bottom: CRF, sparse coding and image patches.
Considering both importance of low and high features, Borji et al. [4] proposed
a boosting model by integrating bottom-up features and top-down features.
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2.2 Deep Learning for Saliency Detection

In recent years, with the development of deep learning, the methods of saliency
detection based on deep learning have become a hotspot. Compared with the
traditional manual extraction of features, the ones based on deep learning (such
as convolution neural network) not only have better robustness, but also contains
a higher level of semantic information, which is very important for salient object
detection.

In [33], local and global context are integrated into a multi-context deep
learning framework for saliency detection, whose performance was improved a
lot, compared to many conventional approaches. Instead of using a fixed size local
context, Li et al. [19] used a spatially varying one, which relies on the actual size
of the surrounding regions. Furthermore, in order to dig more valuable informa-
tion hidden inside the concatenated multiscale deep features, Li et al. [33] used
neural network architecture at integrating stage. Though significant improve-
ments have been made, the efficiency of deep feature extraction is not satisfied
because of significant redundancy in computation and storage. In [10], rather
than treat each region as an independent unit in feature extraction without any
shared computation, Li et al. proposed an end-to-end deep contrast network
which consists of a pixel-level fully convolutional stream and a segment-wise
spatial pooling stream. In [6], Chen et al. also proposed an end-to-end deep
hierarchical saliency network, whose architecture works in a global to local and
coarse to fine manner. Our method also learns the saliency map in a progressive
way. But different from Chens work, we use extreme learning machine to get
fine saliency maps. While our approach leverages the advantages of high-level
semantically meaningful features from deep learning, it also integrates hand-
crafted features when inferring saliency maps.

3 Proposed Method

3.1 Progressive Framework

The pipeline of the proposed method is summarized in Fig. 2. We train the
CNN to get the coarse-level saliency map. It can be found that Pixels in the
coarse-level saliency map are probably unconnected to form coherent regions.
To maintain the spatial structure, we divided the original image into a number
of superpixels. Then we statistically compute the labels of superpixels through
the coarse-level saliency map. Combined with a group of extracted features of
the superpixels, an ELM classier for the given image is trained, and its condense
output for each super-pixel is used as a measure of saliency. This procedure is
carried out in a multiscale way. Finally, the detected results of different scales
and the coarse saliency map are synthesized to form a strong and fine saliency
map result.
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Fig. 2. Saliency detection framework

3.2 Coarse Saliency Map

We use all the images in the MSRA10K dataset and their labeled ground truth
to train the coarse-level CNN. Its architecture is similar to the general AlexNet
[18] proposed by Krizhevsky et al. Fig. 3 depicts the overall architecture of our
CNN which contains six layers. The first five are convolutional and the last one is
fully connected. All of them contain learnable parameters. The input of our CNN
contains three RGB channels of whole images and one channel of average map as
Fig. 4 illustrated. They are all resized to 256 × 256 and then filtered by the first
convolutional layer (COV1) with 96 kernels of size 11 × 11 × 4 with a padding
of 5 pixels. The result 62 × 62 × 96 feature maps are then sequentially given
to a rectified linear unit (ReLU1) followed by a LRN and a max-pooling layer
(MAXP1) which performs max pooling over 3 × 3 spatial neighborhoods with a
stride of 2 pixels. The output of the MAXP1 is 31 × 31 × 96 features and then
passed to the second convolutional layer (COV2). The number of filter kernels
is changed from COV2 to COV5. They are set to 5, 3, 3, and 3 respectively.
According to the parameter configuration of each layer, the architecture of the
CNN can be described concisely by layer notations with layer sizes:

COV1(62 × 62 × 96)→RELU1→MAXP1→
COV2(31 × 31 × 96)→RELU2→MAXP2→
COV3(15 × 15 × 256)→RELU3→
COV4(15 × 15 × 384)→RELU4→
COV5(15 × 15 × 256)→RELU5→MAXP5→
FC1(7 × 7 × 256)→4096.

The last fully connected layer serves like a SVM. It computes the linear
transformations of the feature vector and outputs 4096 saliency scores. The 4096
values are later re-arranged to a 64 × 64 coarse-level saliency map.

3.3 Saliency Refinement

The coarse-level saliency detection takes the whole image as input. It mainly
considers the global saliency region in the image. Since it pays less attention
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Fig. 3. CNN architecture

Fig. 4. Four input channels for CNN

to local context information, the salient pixels in coarse saliency map may be
unconnected and may mistakenly lose subtle salient structures. To further refine
the saliency result, we train a binary classier through Extreme Learning Machine
[13] (ELM). The extreme learning machine (ELM) is proposed by Huang et al.
[13,14]. It is a kind of machine learning algorithm for the single-layer feed-forward
neural network (SLFN) [15] and its architecture is given in Fig. 5. The ELM
contains three layers: the input layer, the hidden layer, and the output layer. The
ELM randomly initializes the weights between input layer and hidden layer as
well as the bias of hidden neurons. It analytically determines the weights between
the hidden layer and the output layer using the least-squares method. Compared
with Neural networks (NN), support vector machines (SVM) and other popular
learning methods, the ELM has several significant advantages, such as real-
time learning, high accuracy, least user intervention. In our experiments, sigmoid
neurons are chosen for the training.

We use both the coarse saliency image and the original given image as input
and propose a multiscale superpixel-based statistic method to label the saliency
image. The procedure of saliency refinement is shown as Fig. 6. The original given
RGB image is converted into the CIE LAB color space first, and is efficiently
segmented into multi-leveled sets of superpixels by the SLIC algorithm [1]. We
use two thresholds, Th and Tl (Th > Tl) to collect the training samples from
the coarse saliency map. If average saliency value of the superpixel is higher
than Th, the superpixel is labeled as positive sample. If average saliency value
of the superpixel is lower than Tl, the superpixel is labeled as negative sample.



Saliency Detection via CNN and Refined by ELM 451

Fig. 5. ELM architecture: single layer feed forward neural network

Those whose values are between Th and Tl are discarded. The thresholds are
statically computed by the formula as:{

Th = min[(1 + a) ∗ (M + b), 0.9]
Tl = min[(1 − a) ∗ (M + b), 0.1]

(1)

where M is the mean grayscale value of the coarse saliency map; a is the scope
ratio parameter; b is the saliency ratio parameter. In our experiments, a is gen-
erally set to be 0.8 and b is computed by 0.5 subtraction of the mean gray scale
value of average map.

The classification is based on a group of 16-dimensional feature of compact-
ness. According with boundary prior assumption, we depart the superpixels into
two groups, the center group and the boundary group. As the Fig. 7 illustrated,
the areas which are masked by the transparent red color are the boundary group,
and the left areas are the center group. For both groups, we compute compact-
ness values on both color and texture.

The method to compute the compactness features is similar to the work [12].
For a superpixel vi, the compactness degree Θ are computed by the Eq. 2 where
W is a weight factor, θ is the scatter degree, c is an element in the set of { L, a,
b, Lab}. The compactness degree is the summation of weighted scatter degree.
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Fig. 6. Procedure of saliency refinement

Fig. 7. The Center group and the boundary group

The weight value is computed according to the pattern of Gaussian functions
by Eq. 4. The scatter degree for vi is computed by Eq. 3 which is the reciprocal
form of weighted linear combination of spatial distance factor D(pi, pj). We use
the Euclidean distance to measure the spatial distance.

Θc(vi) =
N∑
j=1

W c(vi, vj) · θc(vj) (2)

θc(vj) =
1∑N

j=1 D(pi, pj) · W c(vi, vj)
(3)
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W c(vi, vi) =
1
Ωi

exp(− (D(ci, cj)2

2σ2
) (4)

The algorithm computes the weight values for individual color channel and
the whole color space. For color weights computation, we simply use the mean
color value of the superpixel to represent vi and vj . For texture weights compu-
tation, we use a uniform LBP histogram stated on the superpixel. It is commonly
a 59-dimensional vector.

The 16 features of superpixels and their saliency labels gotten from the coarse
saliency map are all sent to the ELM as input. According to our approach, an
ELM classier is trained. The output of ELM is confidence value of each superpixel
and it is used as a measure of saliency. We perform the process in multiple scales
of superpixels. In our experiments, most of the images in dataset are in about
400 × 400 pixels resolution. Thus we choose three numbers for superpixels to
control the scales; they are [150, 250, 750].

3.4 Image Synthesis

The refined saliency map is generated by integrating several rened saliency maps.
For each saliency map, we first perform a smoothing operation through the
GrabCut algorithm. The GrabCut algorithm [24] was designed by Rother et al.
from Microsoft Research Cambridge, UK. It extracts foreground using iterated
graph-cuts. The GrabCut requires a mask map in which all pixel values are
set with a value in 0, 1, 2, 3 which means foreground, background, probably
foreground, and probably background. We compute two thresholds by Eq. 1 to
set the mask values using the following rules:

M(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, M(i, j) < Tl

1, M(i, j) > Th

2, Tl < M(i, j) < (Th + Tl)/2
3, Th > M(i, j) > (Th + Tl)/2

(5)

The quality of the saliency map should be evaluated before synthesis. This
step is carried out based on two hypotheses: the compactness and the variances.
It is observed that salient regions are usually distributed close and the pixels
in saliency map probably have high variance. Thus we compute the assessment
weight ψ(Si) by

ψ(Si) = norm(
1∑H

i=1

∑W
j=1 S(i, j)D(S(i, j), SGC)2

) (6)

where S(i, j) is the pixel with position(i, j), SGC is the saliency gravity, and
norm() is the normalization operation. Multiple saliency maps then are inte-
grated in a linear weighted sum form of involved saliency map according to its
corresponding assessment score.
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4 Experiment Result and Analysis

4.1 Experiments Setup

To evaluate the effectiveness of the proposed method, we perform experiments
on five different types of datasets publicly available, which are MSRA10K [9],
ECSSD [30], PASCAL-S [21], DUT-OMRON [31], and HKU-IS [19] datasets. All
of the dataset are annotated by people and have pixel-wise groundtruth. The
feature of each dataset is listed in Table 1.

Table 1. The description of the five datasets

Dataset Size Source Description

MSRA10K 10000 MSRA Only one salient object

ECSSD 1000 Internet Structurally complex images

DUT-OMRON 5168 Dalian University of Technology Controversial annotations

PASCAL-S 850 VOC2010 Contain 12 subjects

HKU-IS 4447 Hong Kong University Contain multiple salient objects

4.2 Evaluation Metrics

In the comparison experiments, we use Precision-Recall (PR) curves, F0.3 metric,
AUC, and Mean Absolute Error (MAE) to evaluate the proposed method. With
saliency value in the range [0,255], the P-R curve is obtained by generating the
binary map when the threshold varies from 0 to 255, and comparing the binary
result with the ground-truth. The F-measure is defined as,

F =
(1 + β)2 · Precision · Recall

β2 · Precision + Recall
(7)

where β2 is set to be 0.3 as suggested in [1]. AUC is the area under ROC. As
indicated in [11], PR curves, AUC and F metric provide a quantitative evalu-
ation, while MAE provides a better estimate of the dissimilarity between the
saliency map and binary ground truth. The MAE computes the average pixel-
wise difference between saliency map S and the binary ground truth G.

MAE =
1

W × H

W∑
x=1

H∑
y=1

|S(x, y) − G(x, y)| (8)

4.3 Performance Comparison

In this subsection, we evaluate the proposed method on MSRA10K, ECSSD,
OMRON, PASCAL-S, HKU-IS dataset and compare the performance with 7
state-of-the-art algorithms, including HC [9], GC [8], GMR [31], PISA [25],
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Table 2. Comparison between our CELM and other methods

Dataset Metrics HC GC GMR PISA QCUT DRFI DISC Ours

MSRA10K MAE 0.215 0.150 0.126 0.101 0.116 0.126 0.044 0.039

Fβ 0.677 0.766 0.846 0.861 0.873 0.877 0.940 0.952

ECSSD MAE 0.331 0.233 0.187 0.150 0.173 0.170 0.119 0.121

Fβ 0.455 0.598 0.738 0.766 0.766 0.782 0.799 0.838

OMRON MAE 0.310 0.217 0.189 0.141 0.126 0.150 0.119 0.095

Fβ 0.381 0.496 0.612 0.631 0.684 0.664 0.659 0.711

PASCAL-S MAE 0.354 0.264 0.233 0.192 0.198 0.207 0.156 0.151

Fβ 0.423 0.536 0.643 0.657 0.683 0.688 0.725 0.744

HKU-IS MAE 0.292 0.215 0.175 0.128 0.143 0.145 0.103 0.087

Fβ 0.493 0.580 0.712 0.752 0.766 0.776 0.784 0.834

QCUT [3], DRFI [17], and DISC [6]. For fair comparison, we use the original
source code provided by authors or the detection results provided by the corre-
sponding literatures. The quantitative comparisons are shown in Figs. 8 and 9,
and Table 1. We train the coarse CNN model on MSRA10K and test the model
on other datasets to prove the generalization performance (Table 2).

The existing CNN based model DISC uses two CNN to train an end-to-end
saliency detection model in a coarse to fine manner. Different from it, our model
choose the ELM to refine the saliency map combining deep features and hand-
icraft features. Our CELM based model improves the F-measure achieved by
the DISC [6] by 1.3%, 4.9%. 7.9%, 2.6% and 6.8% respectively on MSRA10K,

Fig. 8. Precision-Recall Curves on datasets, from left to right, up to down: ECSSD,
OMRON, MSRA10K, HKU-IS, PASCAL-S
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Fig. 9. MAE, F-measure and AUC values of compared methods on five datasets, from
left to right, up to down: ECSSD, OMRON, MSRA10K, PASCAL-S, HKU-IS

ECSSD, OMRON, PASCAL-S, HKU-IS. At the same time, our CELM based
model lowers the MAE by 11.4%, 20.2%, 3.2%, 15.5% on MSRA10K, OMRON,
PASCAL-S and HKU-IS. Our method outperforms all the seven previous meth-
ods based on the three evaluation metrics.

4.4 Analysis of Propose Method

For most images, the approach achieves good salient results as Fig. 1 shows. How-
ever, the final saliency map heavily depended on the results gotten from CNN.
Our CELM based model may fail if the coarse CNN output totally wrong region
as Fig. 10 illustrated. Because the saliency map generated by CNN indicates the
location of the salient object, if this saliency map indicates the wrong location of
the salient map, the detection will failed. To further improve the performance,
we could replace the AlexNet CNN with the state-of-the-art CNN network,

Fig. 10. Failed cases, from left to right are Input, groundtruth, coarse map, CELM
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i.e. the DCL network [20]. The DCL network is proposed in CVPR 2016. It
is one of the best models to detect salient object.

We use the same refining and synthesis framework as Subsects. 3.3 and 3.4
described. We compare our proposed CELM-DCL method with the original
CELM, the DCL, and the other seven state of the art methods on three datasets:
HKU-IS(1446), ECSSD and OMRON as Fig. 11 illustrated. This is because the
DCL only provides results on these three datasets, and only 1446 results are pro-
vided in the HKU-IS dataset. For quantitative evaluation, we show comparison
results with PR curves and F-measure scores in Table 3 and Fig. 12.

Table 3. Comparison between CELM-DCL and other methods

Dataset Metrics GMR PISA QCUT DRFI DISC CELM DCL CELM-DCL

ECSSD MAE 0.187 0.150 0.173 0.170 0.119 0.126 0.068 0.067

Fβ 0.738 0.766 0.766 0.782 0.799 0.838 0.902 0.907

OMRON MAE 0.189 0.141 0.126 0.150 0.119 0.116 0.080 0.075

Fβ 0.612 0.631 0.684 0.664 0.659 0.711 0.756 0.768

HKU-IS(1446) MAE 0.175 0.128 0.143 0.145 0.103 0.102 0.048 0.057

Fβ 0.712 0.752 0.766 0.776 0.784 0.834 0.907 0.913

Fig. 11. Results from HKU-IS dataset by different methods, from left to right: input,
groundtruth, FT, GC, HC, DRFI, GMR, QCUT, PISA, DISC, CELM, CELM-DCL

In Table 3, the best results are marked red and the second ones are marked
green. Our CELM-DCL based model improves the F-measure achieved by the
DCL by 0.5%, 1.6% and 0.7% respectively on ECSSD, OMRON, and HKU-IS.
At the mean-time, the CELM-DCL based model lowers the MAE by 1.5% and
6.25% on ECSSD and OMRON.



458 R. Li et al.

Fig. 12. Comparison of GMR, PISA, QCUT, DRFI, DISC, CELM, CDL, CELM-CDL
on HKU-IS, ECSSD and DUT-OMRON; up: Precision-Recall curves; down: MAE,
F-measure, and AUC

5 Conclusions

In this paper, we propose a saliency detection framework through the combina-
tion of CNN and ELM. To carry it out, we statically label the coarse map, extract
the compactness features on two groups, and synthesis the multiple saliency map
based on their qualities. Experiments show that the CELM get excellent salient
results on all five datasets. Further improvements are also made by replacing the
AlexNet with the network that the DCL uses. Extent experiments prove that the
CELM-DCL outperforms the state of the art. It is proved that our approach can
be used not only as a complete method, but also as a lifting method for current
CNN based method. Future works include extending our work to a pixel-wise
and accuracy approach as well as exploring better CNN networks.
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