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Abstract. Similar to irises and fingerprints, pore-scale facial features
are effective features for distinguishing human identities. Recently, the
local feature extraction based on deep network architecture has been
proposed, which needs a large dataset for training. However, there are
no large databases for pore-scale facial features. Actually, it is hard to
set up a large pore-scale facial-feature dataset, because the images from
existing high-resolution face databases are uncalibrated and nonsynchro-
nous, and human faces are nonrigid. To solve this problem, we propose
a method to establish a large pore-to-pore correspondence dataset. We
adopt Pore Scale-Invariant Feature Transform (PSIFT) to extract pore-
scale facial features from face images, and use 3D Dense Face Alignment
(3DDFA) to obtain a fitted 3D morphable model, which is constrained
by matching keypoints. From our experiments, a large pore-to-pore cor-
respondence dataset, including 17,136 classes of matched pore-keypoint
pairs, is established.
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1 Introduction

Pore-scale facial features include pores, fine wrinkles, and hair, which commonly
appear in the whole face region. Pore-scale facial features, which are similar to
the features for irises and fingerprints, are one of the most effective features for
distinguishing human identities. Recently, local feature extraction based on deep
network architecture [1], namely Learned Invariant Feature Transform (LIFT),
has been proposed. LIFT is a deep network architecture that implements the
full feature-point handling pipeline, i.e. detection, orientation estimation, and
feature description. If LIFT is trained with a large and accurate dataset, it can
perform better than state-of-the-art methods for feature extraction. This inspires
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us to believe that good pore-scale feature extraction can be achieved if LIFT is
trained under a large pore-scale facial-feature dataset. However, currently, there
are no large and open databases of pore-scale facial features. Therefore, in this
paper, we first propose an efficient method for generating a large pore-to-pore
correspondence dataset.

It is hard to set up a large pore-to-pore correspondence dataset, because the
images from existing high-resolution (HR) face databases are uncalibrated and
nonsynchronous. Besides, human faces are nonrigid. All these make pore-scale fea-
ture matching a great challenge. To the best of our knowledge, only a few studies
have been reported in the literature that attempt to set up a pore-to-pore cor-
respondences dataset using uncalibrated face images. Lin et al. [2] employed the
SURF features [3] on facial images with viewpoints of about 45◦-apart, which typ-
ically obtained nomore than 10 inliers (i.e. correctlymatched keypoint pairs) out of
a total of 30 matched candidates in 3 poses. Li et al. [4] proposed a new framework,
namely Pore Scale-Invariant Feature Transform (PSIFT), to achieve the pore-
scale feature extraction, and also generate a pore-to-pore correspondence dataset,
including about 4,240 classes of matched pore-keypoint pairs. PSIFT is a feature
that can describe the human pore patches distinctively. However, the human face is
symmetic, and PSIFT may produce some outliers. For this problem, Li [4] uses the
RANSAC (Random SAmple Consensus) [14] method to discard the potential out-
liers, which will result in reducing the number of matched keypoints. We found that
theRANSACalgorithmcannot perform satisfactorily, if the object under consider-
ation is nonrigid. Therefore, Li’s method [4] also removes many matched keypoints
from facial regions. In our opinion, one of the most promising ways of establishing a
larger pore-to-pore correspondence dataset is finding a new constraint, which can
perform well for pore-scale feature matching.

Currently, some research solves the face-alignment problem with a 3D solu-
tion. Blanz et al. [11] proposed a standard 3D morphable model (3DMM), and
Zhu et al. [10] presented a neural network structure, namely 3D Dense Face
Alignment (3DDFA), to fit the 3D morphable model to a face image. Inspired
by the 3DDFA algorithm, in this paper we use the fitted 3D morphable model to
constrain the pore-scale keypoint matching. To the best of our knowledge, 3D-
model constraint is one of the most effective constraints for keypoint matching.
Our proposed framework is shown in Fig. 1. In summary, our contributions are:

1. We propose the 3D morphable model constraint, which can improve the accu-
racy for pore-scale keypoint matching.

2. Our proposed methods can establish a large number of correspondences
between uncalibrated face images of the same person using the pore-scale fea-
tures, which leads to many potential applications. Our work shows a method
to merge face-based approaches with general computer-vision approaches.

3. Based on our framework, a pore-to-pore correspondences dataset containing
17,136 classes of matched pore-keypoint pairs, is established, where the same
pore keypoints from 4 face images of the same subject, with different poses,
are linked up.
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Fig. 1. The structure of the proposed overall framework.

2 Pore-Scale Invariant Feature Transform

PSIFT [4] is variant of SIFT [9], which can generate pore-scale features. The
details of PSIFT will be introduced in the following sections.

2.1 Pore-Scale Feature Detection

Pore-scale facial features, such as pores and fine wrinkles, are darker than
their surroundings in a skin region. Therefore, PSIFT applies the Difference-
of-Gaussians (DoG) detectors for keypoint detection on multiple scales, which is
shown as follows.

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y), (1)

where the scale space of an image L(x, y, σ) is the convolution of the image I(x,y)
and the Gaussian kernel

G(x, y, σ) =
1

2πσ2
exp(

−(x2 + y2)
2σ2

). (2)

PSIFT constructs the DoG in octaves, which have the σ doubled in the scale
space. Li [4] found that the PSIFT detector only needs the maxima of the DoG
to locate the darker pore keypoints in face regions. An example is shown in
Fig. 2(c). This is because a blob-shaped pore-scale keypoint is a small, darker
point due to its small concavity, where incident light is likely to be blocked.
Therefore, PSIFT models the blob-shaped skin pores using a Gaussian function,
as follows:

pore(x, y, σ) = 1 − 2πσ2G(x, y, σ), (3)



32 X. Zeng et al.

where σ is the scale of the pore model. Then, the DoG response to a pore,
denoted as Dpore, can be computed as follows:

Dpore(x, y, σ1, σ2) = [G(x, y, kσ1) − G(x, y, σ1)] ∗ pore(x, y, σ2), (4)

and the pore-scale keypoints are the maxima of Dpore.
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Fig. 2. (a) Four face images with different skin conditions from the Bosphorus face
database, (b) local skin-texture images, and (c) the DoG of the local skin-texture
image.

2.2 Pore-Scale Feature Descriptor

The local PSIFT descriptor, which is adapted from SIFT, is used to extract the
relative-position information about neighboring pores. The keypoints from two
facial-skin regions can be matched by using the PSIFT descriptor. Figure 2 shows
some sample results of the DoG layers. The lighter points on a DoG, as shown
in Fig. 2(c), represent the responses of the feature points. These points are very
similar to each other: most of them are blob-shaped, and the surrounding region
of the keypoints have almost the same color. However, the relative positions
of the pores are unique. Therefore, the descriptor should extract not only the
information around the keypoints, but also the information of a neighborhood
wide enough to include the neighboring pore-scale features. Therefore, both the
number of subregions and the support size of these subregions for the PSIFT
descriptor should be sufficiently large. Besides, Li [4] found that the keypoints
are not assigned a main orientation, because most of the keypoints do not have
a coherent orientation. Some parameters of the PSIFT and SIFT descriptors are
shown in Table 1.

3 Matching with the 3D Morphable Model Constraint

In order to achieve a more efficient and accurate matching, we present our
method for local PSIFT feature matching by using the 3D-model constraint.
The details of our method are introduced in the following sections.
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Table 1. The parameters of the PSIFT and SIFT descriptors

Parameters PSIFT SIFT

No. of subregions 8 × 8 4 × 4

Support size of each subregion 6 × scale of keypoints 3 × scale of keypoints

Support size of total subregion 48 × scale of keypoints 12 × scale of keypoints

Dimension of the feature 512 128

3.1 3D Morphable Model

Blanz et al. [11] proposed the 3D morphable model (3DMM), which describes
the 3D face space with principal component analysis (PCA), as follow:

S = S̄ + Aidαid + Aexpαexp, (5)

where S is a 3D face, S̄ is the mean shape, Aid is the principal axes trained on
the 3D face scans with neutral expression, αid is the shape parameter, Aexp is
the principal axes trained on the offsets between different expression scans, and
αexp is the expression parameter. For this, Aid and Aexp come from Basel Face
Model (BFM) [12] and Face-Warehouse [13] respectively. The 3D face is then
projected onto the image plane with Weak Perspective Projection, as follows:

V (p) = f ∗ Pr ∗ R ∗ (S̄ + Aidαid + Aexpαexp) + t2d, (6)

where V (p) is the constructed model and projection function, leading to the 2D
positions of the model vertexes; f is the scale factor; Pr is the orthographic pro-
jection matrix Pr =

(
1 0 0
0 1 0

)
; R is the rotation matrix constructed from rotation

angles pitch, yaw, and roll; and t2d is the translation vector. The collection of
all the model parameters is p = [f, pitch, yaw, roll, t2d, αid, αexp]T .

3.2 3D Dense Face Alignment

Zhu et al. [10] presented a network structure, namely 3D Dense Face Alignment
(3DDFA), to compute the model parameters p. The purpose of 3D face align-
ment is to estimate p from a single face image I. 3DDFA [10] employs a unified
network structure across the cascade and constructs a specially designed feature
Projected Normalized Coordinate Code (PNCC). In summary, at iteration k
(k = 0, 1,..., K), given an initial parameter set pk, 3DDFA constructs PNCC with
pk, and trains a convolutional neutral network Netk to predict the parameter
update Δpk:

Δpk = Netk(I, PNCC(pk)). (7)

After that, a better parameter set pk+1 = pk + Δpk becomes the input of the
next network Netk+1, which has the same structure as Netk. The input is a
100 × 100 × 3 color image of PNCC. The network contains four convolution
layers, three pooling layers, and two fully connected layers, and the network
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Fig. 3. An overview of 3DDFA.

(a) (b)

Fig. 4. (a) The original image, and (b) the image with 3D-model projection.

structure is shown in Fig. 3. The output is a 234-dimensional updated parameter
set, including 6-dimensional pose parameters [f, pitch, yaw, roll, t2dx, t2dy], 199-
dimensional shape parameters αid, and 29-dimensional expression parameters
αexp. The result, based on 3DDFA, after the 3rd iteration is shown in Fig. 4.

3.3 3D Morphable Model Constraint

A pore keypoint is a pore pointin a face image. Therefore, we can write the
equations of the probe image and the gallery image from Eq. (6) as follows.

Vp(pore) = fp ∗ Pr ∗ Rp ∗ (S̄p(pore) + Aidαidp
+ Aexpαexpp

) + t2dp
, (8)

Vg(pore) = fg ∗ Pr ∗ Rg ∗ (S̄g(pore) + Aidαidg
+ Aexpαexpg

) + t2dg
, (9)

where S̄p(pore) and S̄g(pore) are the 3D location of the pores of the mean shape.
From Eqs. (8) and (9), we assume that if a pore keypoint of the probe image and
a pore keypoint of the gallery image are the same pore keypoint of the face, then
Err3d = ||S̄g(pore)− S̄p(pore)||2 approximately equals 0. Then, we can compute
the following:

Vpg(pore) = fg ∗ Pr ∗ Rg ∗ (S̄p(pore) + Aidαidg
+ Aexpαexpg

) + t2dg
(10)
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Err2d = ||Vpg(pore) − Vg(pore)||2 < range, (11)

where fg, R(g), S̄p(pore), αidg
, αexpg

, and t2dg
can be computed from 3DDFA.

This means that if range is set correctly and the same pore patch can be detected
in the probe image and the gallery image, Eq. (11) will be true. Then, we
only need to compute the nearest neighbor rate of the neighboring feature of
Vpg(pore). If the rate is less than a threshold, the matched keypoint between the
probe and gallery images will be found. The estimation of the keypoint positions
matched based on the pore-scale facial features is summarized in Algorithm 1.

Algorithm 1. PSIFT improvement by using 3D-model constraint
1: Given two images I1, and I2, we assume that there are Nk1 and Nk2 keypoints

detected in I1 and I2, respectively. The coordinates of the i-th keypoint in I1 are
denoted as (xi

1, y
i
1). Similarly, the coordinates of the j-th keypoint in I2 are denoted

as (xj
2, y

j
2);

2: Using the 3DDFA method to find the best parameters p1 and p2 of I1 and I2,
respectively. Afterwards we adopt Z-Buffer to project the S̄1 and S̄2 to I1 and I2,
and denote them as Z(S̄1) and Z(S̄2), respectively;

3: Without loss of generality, assume that Nk1 < Nk2. Matching the keypoints is
established from I2 to I1;

4: for the j-th keypoint in I2 do
5: Compute Vpg(j) = fg ∗ Pr ∗ Rg ∗ (Z(S̄2(j)) + Aidαidg + Aexpαexpg ) + t2dg ;
6: Initialize a list L, which includes all the keypoints in I1;
7: for the i-th keypoint in I1 do
8: if ||Vpg(j) − (xi

1, y
i
1)|| < range then

9: L is not updated;
10: else
11: Remove the i-th keypoint from the list L of I1;
12: end if ;
13: end for;
14: if the distance ratio based on the reduced list L is smaller than the threshold

δ, which is a constant between 0.8 and 0.9 then
15: a match is established;
16: end if ;
17: end for;

In our algorithm, we do not use RANSAC [14] to identify those inliers,
because the 3D morphable model constraint can identify the inliers accurately,
and detect more matched keypoints. Some examples are shown in Fig. 5, where
the green point in Fig. 5(a) is one of the pore keypoints, while the red points in
Fig. 5(b) are the neighbors of the green point in Fig. 5(a), by using the 3D-model
constraint. Besides, the green point in Fig. 5(b) is the matched pore keypoint of
the green point in Fig. 5(a).
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(a) (b)

Fig. 5. (a) A face image in the neutral pose, (b) the face at a yaw rotation of 10◦. The
red points in (b) represent the neighboring keypoints of Vpg(pore), and the green point
in (b) is the matched point of (a).

4 Experiment

In this section, we will evaluate the performances of our proposed method in
terms of accuracy for pore matching. The face images used in the experiments
are the original size from the Bosphorus database [15].

4.1 Skin Matching Based on the Bosphorus Dataset

In this section, we estimate the performance of each stage of our algorithm for
facial skin matching. We use 105 skin-region pairs cropped from 420 face images,
which were captured at 10◦, 20◦, 30◦, and 45◦ to the right of the frontal view
in the Bosphorus database, as shown in Figs. 2 and 6. Considering the fact that
the dataset is uncalibrated and unsynchronized, Li [4] set the distance threshold
used in RANSAC at 0.0005, so only limited number of accurate matching results
can be obtained. On the contrary, our method uses 3D-model constraint, so we
can obtain more matched keypoints than Li’s method [4]. Table 2 illustrates the
numbers of inliers obtained by the two methods. Table 2 shows that our method
can detect many more matched keypoints, so our method can be used to generate
a larger pore-to-pore correspondence dataset.

Table 2. Skin matching results in terms of number of inliers detected

Method Avg. no. of inliers total inliers

PSIFT + RANSAC 40.4 4240

PSIFT + 3D-model constraint 163.2 17136
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4.2 Pore-to-pore Correspondences Dataset

With the improvement achieved by PSIFT with the 3D-model constraint, a larger
pore-to-pore correspondences dataset can be constructed, so that the learning
for pore-keypoint-pair matching can be conducted. For each subject, its pore
keypoints at one pose are matched to the corresponding pore keypoints at an
adjacent pose. We have established three sets of matched keypoint pairs, with
viewing angles at 10◦ and 20◦, 20◦ and 30◦, and 30◦ and 45◦. After finding a
set of matched pore keypoints between each image pair, we use the matched key-
points to form tracks. A track is a set of matched keypoints across the face images
of the same subject at different poses. If a track contains more than one key-
point in the same image, it is considered to be inconsistent, and is then removed.
We choose only those consistent tracks, containing 4 keypoints corresponding
to the 10◦, 20◦, 30◦, and 45◦ poses, as shown in Fig. 6. Finally, 17,136 tracks
are established, which is much larger than the pore-to-pore correspondences
dataset established in Li [4]. In addition, we have also generated another larger

(a) 10◦ (b) 20◦

(c) 30◦ (d) 45◦

Fig. 6. Images of the same subject at different poses. The red points are the keypoints
of the skin region, and the green points are the corresponding keypoints at another
pose.
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Fig. 7. Some patches of a subject: each row consists of the corresponding patches of
the same pore keypoints of the face images of the same subject at 10◦, 20◦, 30◦, and
45◦ poses.

pore-to-pore correspondences dataset, based on the whole face of the subjects
in the Boshorus dataset, which contains 80, 236 tracks.

Based on our proposed method, which relies on the PSIFT features, we can
match the pore-scale keypoints of the same subject from different perspectives.
We extract training patches according to the scale σ of the pore keypoints
detected. Patches are extracted from a 24σ × 24σ support region at the key-
point locations, and then normalized to S × S pixels, where S = 128 in our
algorithm. Some data from the pore-to-pore dataset is shown in Fig. 7.

5 Conclusion

In this paper, we have proposed using the 3D-model constraint to improve the
performance of pore-scale feature matching, which can improve the matching
performance when the face images to be matched have a large baseline. Using
our proposed method, a larger pore-to-pore correspondences dataset, including
17,136 classes of matched pore-keypoint pairs, is established. In our future work,
we will use this larger pore-to-pore correspondences dataset to train a deep
neural network so as to learn a better pore-scale feature for face matching.
Furthermore, we will evaluate our method under different facial expressions and
different light conditions, so that we can produce a pore dataset with different
conditions.
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