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Abstract. Dehazed image quality assessment algorithm is aimed to
evaluate the quality of dehazed images. However, the existing dehazed
image quality evaluation algorithms are overly dependent on the dehazed
images database with accurate subjective quality scores, which are inac-
curate, biased and time-consuming, and it is difficult to obtain a large
dehazed images database, or extent the existing database. To overcome
these problems, it is by using the subjective quality preference that we
propose a rank learning algorithm to evaluate the dehazed image quality,
here, the subjective quality preference stands for the information such as
“the quality of Image Ia is better than that of image Ib”, and the rank
learning is aimed to learn a function that can predict the correspond-
ing rank sequence for a given set of input stimulus. In our algorithm, we
transform the problem of dehazed image quality evaluation into the clas-
sification problem of quality preference learning and then use and random
forest and pairwise comparison in turn to learn the function that can pre-
dict the corresponding quality rank sequence for a given set of dehazed
images. The experimental results show that our algorithm is highly con-
sistent with the subjective feeling of human eye and is superior to the
traditional dehazed image quality evaluation algorithms. Moreover, our
algorithm has a strong expansibility.
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1 Introduction

Dehazed image quality assessment algorithm is aimed to evaluate the quality of
dehazed images, which indirectly reflects the performance of the dehaze algo-
rithm. Dehazed image distortion caused by dehazed algorithm tends to appear
contrast distortion, noise pollution, and image color cast, such as the more com-
mon image super-saturation enhancement phenomenon, which seriously affects
the perception of the image for human eye. Therefore, there has been more focus
on dehazed image quality assessment.

Recently, there are some dehazed image quality evaluation algorithms while
majority of them such as [1–3], trained models by a large number of dehazed
images with accurate subjective quality scores. However, the acquisition of the
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dehazed images subjective scores has some problems: First, the subjective quality
scores are not accurate. Observers are usually not sure which score can describe
the dehazed image quality accurately, so randomly select a score from a small
rough range. As a result, the subjective quality scores are difficult to accurately
reflect the small difference between images. Second, the subjective quality scores
are easily influenced by the observers’ preference to the image content, which
further reduces the reliability of the subjective scores. Third, it’s difficult to
build a large-scale dehazed image quality evaluation database which limits the
practicality of [4,5], or extend the existing database because of the inconvenience
of the database construction process: (1) the database must contain a variety
of distortion types, and there must include a number of images with different
distortion degree or different contents for each type. (2) In order to reduce the
impact of personal preference, the organizer need to arrange multiple observers to
judge its quality for each image, which greatly increases the manpower, material
and time consumption.

In summary, the subjective quality scores are inaccurate, biased, time con-
suming, which limit the reliability and expansibility of these dehazed image
quality evaluation algorithms.

In order to overcome these problems, it is by using the preference information
that we propose a rank learning algorithm to evaluate the dehazed image quality.
Here, the ranking learning is a key issue in application areas such as page ordering,
text retrieval and image search, and is aimed to learn a function that can predict
its rank sequence for a given set of input stimulus, and the subjective quality pref-
erence stands for the information such as “Image Ia quality is better than image
Ib”. Given a pair of images, we would call it “Preference Image Pair” (PIP) if the
relative quality of the two images is known. Meanwhile, the relative quality of the
two images is represented by a Preference Label. In our algorithm, we transform
the problem of dehazed image quality evaluation into the classification problem
of quality preference learning, and then use random forest and pairwise compari-
son in turn to learn the function that can predict the corresponding quality rank
sequence for a given set of dehazed images. The experimental results show that our
algorithm is highly consistent with the subjective feeling of human eye and is supe-
rior to the traditional dehazed image quality evaluation algorithms. Moreover, our
algorithm has a strong expansibility.

2 The Acquisition of Preference Images Pairs

So far, researchers have constructed some databases for dehazed image quality
evaluation. Therefore, designing a proper method to obtain reliable PIPs from
the existing database is pretty meaningful. From those existing databases, we
select dehazed images with large difference in quality scores, then construct
preference image pairs and get the preference labels based on their subjective
quality scores. Moreover, in order to get more PIPs, we use different dehazing
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algorithm to get dehazing images with different quality, then build the preference
image pairs and get the corresponding preference labels, which also proves the
proposed methods expansibility.

If an existing dehazed image quality evaluation database contains n images,
we can get the set of preference image pairs, we can get the set of preference
image pairs P1, which size is N1:

P1 ⊆ {(Ii, Ij) ||si − sj | > T, i, j = 1, ..., n} (1)

where, T is the threshold of the difference in subjective quality scores, and si is
the quality score of the image Ii. |si − sj | is the absolute value of (si − sj). For
each preference image pair pk = (Ii, Ij)εP1, we can get the preference label lk,
k = 1, 2, ...N1 based on (si − sj):

lk =
{

sign(si − sj)
−sign(si − sj)

(2)

Moreover, we get more PIPs using following method. First, selected some
original hazy images, then use method of Fattal13 [6], He09 [7], Choi [4,8,9] to
obtain dehazed images, and get some preference images pairs and the correspond-
ing preference labels though our subjective evaluation. In order to simplify the
process of the preference image pairs acquiring, we specify that each sub-images
pair conforms to the same preference label of the corresponding preference image
pair. For each pair of images, randomly select 50 pieces of n ∗n non-overlapping
sub-image blocks, where n is 64. In this way, we get pairs of preference images.

Finally, we get our preference images pairs as follows:

P = {(Ik1, Ik2) , k = 1, ..., N} (3)

where, N = N1+N2, Ik1 and Ik2 are the two images of the k-th preference image
pair. And for each preference pair, we get its preference label lk, k = 1, ..., N , if
the quality of dehazed image Ik1 is better than Ik2, the preference label lk = 1,
and lk = −1 if the quality of dehazed image Ik1 is worse than Ik2. Then we can
get the preference labels set:

L = {l1, ..., lN} ⊂ {−1,+1}N (4)

In the process of PIPs acquisition, we can put the preference image pairs
from different databases together without any data correction. In addition, we
can also add PIPs from our subjective experiment to the total set of PIPs. So
it can be seen that the acquisition of the preference image pairs is very sim-
ple and convenient, and extending the existing PIPs is pretty easy, which can
effectively overcome the problem of the dehazed images subjective scores’ acqui-
sition and the database building or expanding, and has great significance to the
popularization and application of dehazed image quality evaluation algorithms.
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3 The Acquisition of Preference Images Pairs

This section details the proposed quality evaluation algorithm. In our algorithm,
we transform the problem of dehazed image quality evaluation into the classifi-
cation problem of quality preference learning, and then, based on our database
of preference image pairs, we learn the mapping relationship between the prefer-
ence image pairs and the corresponding preference labels using the random forest
classification model, finally get ranking result through pairwise comparison in
turn, which is predicted base on voting strategy (Fig. 1).

Fig. 1. The framework of dehazed image quality assessment.

3.1 Features Extraction

In this paper, features are extracted from the following two aspects. On the one
hand, we extract the features that can represent the degree of haze density. Image
dehazing is a process of image clarity. Thus, the big difference between dehazed
image quality assessment with conventional IQA is the consideration of the haze
removal degree, and we will extract the image haze density features from the
image sharpening degree, the texture detail richness and the contrast index. On
the other hand, those features that can represent the degree of over-enhanced
image distortion are also extracted. For the over-enhanced images, not only there
exist the difference of haze density, but also exist the image distortion caused by
contrast distortion, noise pollution, image color cast and so on, which seriously
affects the visual perception comfort of the human eye. For the natural image
dehazing, we should keep the similarity of color tone between images before
and after dehazing as much as possible when achieving the purpose of haze
removal. Therefore, we extract dehazed images’ features using two indicators of
perceived comfort and the similarity of color tone between images before and
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after dehazing. In the following part, we detail these features and demonstrate
that these features we extracted can well represent the haze density and over-
enhanced image distortion of dehazed images.

(a) Features of haze density

Ruderman et al. [10] found that the operation of brightness normalization sim-
ulates the contrast gain mechanism of the human visual cortex, which is called
the MSCN coefficient [11] as

IMSCN (i, j) =
Igray(i, j) − μ(i, j)

σ(i, j) + 1
(5)

μ(i, j) =
∑K

k=−K

∑L

l=−L
ωk,lIgray(i + k, j + l) (6)

σ(i, j) =

√∑K

k=−K

∑L

l=−L
ωk,l [Igray(i + k, j + l) − μ(i, j)]

2

(7)

J̃dark = 1 − ( min
y∈Ω(x)

(min
c

Ic(y)
A

)) (8)

where i ∈ {1, 2, ...M}, j ∈ {1, 2, ...N}, M and N are the image size, and
ω= {ωk,k |k = −K, ...K, l = −L, ...L} is the local Gaussian symmetric convolu-
tion window corresponding to pixel (i, j), and K and L denote respectively the
length and width of convolution window.

For natural haze images, the variance of the MSCN coefficients decrease
as the haze density increase, reflecting the degree of image haze density to a

Fig. 2. MSCN coefficient histogram: (a) natural fog images at different fog density in
the same scene. The fog density from image #1 to image #5 is sequentially decreased.
(b) MSCN coefficient histogram of the images in (a). (c) histogram of the parameters
sigma in the MSCN coefficients. (Color figure online)
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Fig. 3. Differences in image haze density evaluation using respectively the image dark
channel features and the MSCN variance coefficient: (a) natural haze images at different
haze density. The haze density from image #1 to image #3 is sequentially decreased.
(b) haze density rank of the images in (a) by using respectively the dark channel feature
and the MSCN variance coefficient. (Color figure online)

certain extent, as shown in Fig. 2(b). For images with low brightness values
but with partial dark block distortion, the variance of the MSCN coefficients
is more accurate for haze density evaluation than the dark channel statistical
features. Figure 3 compares the differences in image haze density estimate using
respectively the image dark channel features and the MSCN variance coefficient.
The dark channel statistical feature is defined as (8), which is similar to the
MSCN characteristic. For both of them, the larger the eigenvalue is, the better
the image dehazing result is. When evaluating the haze density of the “aerial”
Level #2 and countryside Level #2 in Fig. 3(a), the dark channel feature detects
that the number of dark pixels in the image is larger, concluding that the two
images have the lowest haze density and the result of image dehazing is best
which is not consistent with the actual estimate; while MSCN coefficient variance
can make an accurate estimate, as shown in Fig. 3 (b).

The local standard deviation parameter σ(i, j) in the MSCN coefficients can
accurately measure the sharpness degree of the local structure in the image,
which can reflects the image haze density. As shown in Fig. 2(c), the parameter
σ(i, j) decrease as the fog density increases. Therefore, we use the local standard
deviation parameter σ(i, j) in the MSCN coefficient as a feature of evaluating
image haze density.
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The texture information can reflect the spatial distribution and the struc-
ture information of images, which is the basis of the visual system for image
perceiving. For dehazed images, the richness of the texture information indi-
rectly reflects the image clarity and visibility, so we use it to evaluate the image
haze density. The gray covariance matrix can represent texture information well,
and the entropy value can accurately reflect the amount of information contained
in the image and the complexity of the texture. The greater the entropy value,
the richer the image texture. In order to make the feature independent of images
content and direction, it is defined as

E = (ENT 0◦
+ ENT 45◦

+ ENT 90◦
+ ENT 135◦

) (9)

The contrast value reflects the brightness changes in the gray scale of image,
and it can well represent the image clarity and detail. High contrast images
tend to be sharper and richer, and vice versa. The contrast energy CE, as an
approximation of the parameter β in the Weibull function, is a description of
the image contrast distribution, which reflects the local contrast changes in the
image. CE can convolute the image I by using the Gaussian second derivative
filter, and the filter response is normalized to simulate the nonlinear contrast
gain control process in human visual cortex. The image contrast is defined in
three color channels (grayscale, yellow-blue: yb, red-green: rg):

CE(Ic) =
α · Z(Ic)

Z(Ic) + α · κ
− τc (10)

Z(Ic) =
√

(Ic ⊗ hh)2 + (Ic ⊗ hv)2 (11)

where ⊗ represents the convolution operation, hh and hv are Gaussian sec-
ond derivatives in the horizontal and vertical directions respectively, and c ∈
{gray, yb, rg}, gray = 0.299R + 0.587G + 0.114B, yb = 0.5 (R + G) − B,
rg = R−G. In addition, α is maximum value of Z(Ic), κ is the contrast gain and
it is 0.1 in our paper, and τc defines the noise threshold of each color channel,
the values are 0.2553, 0.2287, 0.0528 respectively.

(b) Over-enhanced distortion feature of image

One of the significant features of over-enhanced image is the contrast distortion
caused by high contrast. The paper [12] indicated that the skewness and kur-
tosis of images can effectively reflect the comfort degree of the human visual
perception. For natural images, the skewness and kurtosis distribution of the
image conform to the corresponding Gaussian distribution. And the high con-
trast images show the statistical characteristics of positive skewness, whereas the
darker or smoother images show statistical characteristics of negative skewness.
Kurtosis is an indicator of measuring the symmetry of variable distribution, and
it can also reflect the changes of images contrast. The higher the image’s kurtosis
is, the stronger the images gloss and the less natural the visual perception is.
For those images with contrast distortion, the skew and absolute kurtosis val-
ues are higher. Therefore, we take the images skew and kurtosis as features of
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contrast distortion perceived by human eye, and they are respectively defined in
the following formula (12) and (13).

skewness(I) =
E[I − E(I)]3

σ3(I)
(12)

kurtosis(I) =
E[I − E(I)]4

σ4(I)
− 3 (13)

If a image is too dark or too bright, the human eye’s feelings to it will be
influenced. For these contrast-distorted image of this type. The literature [13]
used the Gaussian kernel function to define a first-order statistic, representing
the visual comfort of the image, as defined in Eq. (14).

Comfort = exp[−(
E(I) − μ

υ
)2] (14)

where, μ and υ is the fixed parameter of this model, and the values in our paper
is 130 and 300 respectively, σ(I) is the variance of image I, and E (I) is the
expectation of I.

Naturalness, as a standard of human visual feeling, affects the subjective
evaluation result of human eye. In [14], a factor of the naturalness was proposed
to enhance the image quality, and it can be used as an image evaluation standard
of naturalness degree without reference images. For any image I, we obtain the
naturalness value of each channel separately. The closer the value is to 1, the
better the images naturalness. The image naturalness degree is defined as follows:

Nf = (1 − θ)
T1

T pr
1

+ θ
T2

T pr
2

(15)

where Θ is weighting factor and it belongs to 0–1, C is the color channel, c ∈
{R,G,B}, and T1 and T2 are respectively the gradient distribution model and
the Laplace distribution model in [14]. In addition, the values of T pr

1 and T pr
2 is

respectively 0.38 and 0.14 in our paper.
It is not the better as the higher color intensity of the dehazed image. The

image dehazing operation is aimed at the image clarity. Therefore, it is necessary
to keep the maximum similarity between the two images before and after dehaz-
ing. Enhanced images often show a higher degree of color distortion, seriously
affecting the image quality and the perception feelings of human eye. We convert
the image to the YIQ color space, and define the image hue similarity feature as
the fidelity of I and Q color channels. In our paper, we use the eigenvalue fIQ to
measure the hue similarity of images before and after dehazing, and it is defined
as follows.

fI =
1
N

∑
x

2Ir(x) · Id(x) + c0
I2r (x) + I2d(x) + c0

(16)

fQ =
1
N

∑
x

2Qr(x) · Qd(x) + c0
Q2

r(x) + Q2
d(x) + c0

(17)
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fIQ =
1
N

∑
x

(
2Ir(x) · Id(x) + c1
I2r (x) + I2d(x) + c1

· 2Qr(x) · Qd(x) + c2
Q2

r(x) + Q2
d(x) + c2

) (18)

where x is the pixel coordinate, Ir, Qr, Id, and Qd are I and Q color channel
values of the hazy image and the dehazed image respectively. In addition, c0, c1,
and c2 are constants in order to maintain the validity of the feature.

3.2 The Training Data Set

According to the method of Sect. 2, we can get the database of the preference
image pairs with preference labels. Then, using the method of Sect. 3.1, we cal-
culate feature vector for each image included in the image pairs, and calculate
the feature difference vector for each preference image pair (Table 1).

Table 1. List of the features used in our algorithm.

Features Features representation The formula

(1) Variance of MSCN (5)

(2) Sharpening degree (7)

(3) Detail of texture (9)

(4) (5) (6) Contrast (10)

(7) The image skewness (12)

(8) The image kurtosis (13)

(9) The degree of visual comfort (14)

(10) The degree of images naturalness (15)

(11) Hue similarity (16)

• Our database of preference images pairs:

P = {(Ik1, Ik2) , k = 1, ..., N} (19)

Where, Ik1 and Ik2 are the two images of the k-th preference image pair.
• The feature vector fIk for each image Ik.
• For each preference image pair Pk = (Ik1, Ik2) ∈ P the feature difference

vector xk and the preference label lk, k = 1, ..., N :

xk = fIk1 − fIk2 (20)

lk ∈ {−1,+1} (21)

• Let X denotes the set of feature difference vectors and Y denotes the set of
the preference labels

X = {x1, ..., xk, ..., xN} (22)

L = {l1, ..., lk, ..., lN} (23)

Then, we train two-class stochastic forest model by {X,L} to study the
mapping relation between the feature difference vectors and the preference labels.
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3.3 Rank and Preference Learning by Random Forest

The preference labels are +1 or −1, so the problem of learning mapping relation
between the feature difference vectors and the preference labels is transformed
into a two classification problem.

Because Random forest has high classification precision, ability to avoid over-
fitting, and simpleness to implement, we choose random forest as our two clas-
sification model in our algorithm. We train the Random forest model based on
the establishing database, and the training process is described as follows. First,
randomly generate multiple training sets from the established dehazed images
set. Then construct a decision tree gi(x,Θi) for each image set, and i = 1, ...,M ,
where M is the total number of decision trees, Θi is a mechanism used in the
training data. And random forest set G = {g1(x), g2(x), ..., gM (x)} is constituted
by different decision trees. When using the constructed stochastic forest model
to classify hazy images, the classification result is determined by voting mech-
anism, that is, the mode of different classification results evaluated by decision
trees determines the final classification result. For the two classification problem,
the output is −1 or +1, as shown in Eq. (24).

C = arg max(p(c|x)), c ∈ {−1, 1} (24)

p(c|x) =
1
M

M∑
i=1

pi(c|x) (25)

For given test data of preference dehazed pairs, we can use the trained Ran-
dom forest model to get the preference labels based on its feature difference
vectors. And if a feature difference vector is 0, we think the two images of this
pair have a same quality, and set the corresponding preference label to 0. Finally,
we can get the final ranking result through pairwise comparison in turn.

4 Experimental Results

In order to verify the relevance of the established PIPs and the features men-
tioned, we conduct the following experiment. First, 80% of established PIPs is
selected for training the random forest classification model, and the remaining
20% is used for testing this model. Repeat the above steps and use the average
result of 50 repetitive training as the final classification result. We compare the
final results using SVM and random forest classifiers in Table 2.

Table 2. The results classification using SVM and random forest model.

Method Accuracy

Our method using SVM 80.97%

Our method using random forest 90.58%
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It can be seen that the classification result of random forest model is superior
to SVM. This result also proved the validity of our extracted features.

In order to verify the accuracy of our method in evaluating image haze den-
sity, we subjectively sort the images with different haze density in the same scene,
and sorting results are shown in Fig. 4. Then we compare the subjective sorting
result with the evaluation result of our algorithm. The evaluation result of our
algorithm is: Level #1 < Level #2 < Level #3 < Level #4, and is consistent
with the subjectively sorting result, which fully demonstrates the effectiveness
of the algorithm in image haze density evaluation.

In order to verify the effectiveness of our algorithm in evaluating over
enhancement distortion, we select several hazy images and respectively use the
algorithm [6,7,15,16] to remove haze, and the dehazing result is shown in Fig. 5.
Then, the results of our algorithm are compared with the result of standard eval-
uation algorithm proposed in [1,4], and the comparison results are respectively
shown in Tables 3 and 4.

The haze density standard proposed in [4] can evaluate the change of image
haze density to a certain extent. However, it excessively used the image color
bright features as the haze density evaluation criteria, so the evaluation result
was overly dependent on the image color information and was not accurate, as
shown in “y01”. At the same time it did not take into account the factor of
over-enhanced distortion, so the evaluation results did not match human visual
perception. The evaluation results using the blind contrast evaluation algorithm
in [1] is shown in Table 4 and it can be seen that the evaluation algorithm
cannot detect the over-enhancement phenomenon. In our paper, through a large
number of experimental analysis, we select features closely related to the changes
in haze density, color distortion features, and features of human visual perception
which can reflect over-enhanced distortion. Using the random forest classification

Table 3. The ranking results of images in Fig. 5 using respectively our evaluation
algorithm and the image haze density evaluation algorithm in [4], and the quality is
more better if it is in the more forward position of the sequence.

FADE Our paper Reference rank sequence

ny17 (c) (a) (b) (d) (a) (b) (d) (c) (a) (b) (d) (c)

y01 (c) (b) (a) (d) (a) (d) (b) (c) (a) (d) (b) (c)

Table 4. The evaluation results of images in Fig. 5 using contrast evaluation algo-
rithm [1].

ny17 y1

Fattal13 He09 Tan08 Kopf08 Fattal13 He09 Tan08 Kopf08

e 0.04 0.01 −0.06 0.01 0.03 0.08 0.08 0.09

r 1.95 1.65 2.22 1.62 1.88 1.33 2.28 1.62

Σ 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00
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Fig. 4. The hazy images at different haze density in the same scene: the haze density
decrease in turn from Level #1 to Level #4.

Fig. 5. The dehazing results using different algorithm.

model, not only can we make an accurate estimate of image haze density, as
shown the sorting result of (a) (b) (d) in Fig. 5, but also can make a more
accurate estimate of image over-enhanced distortion; and our evaluation results
are largely consistent with the human subjective feelings.

5 Conclusion

From the problem of subjective quality scores that are inaccurate, biased and
time-consuming, and the difficulty in building a large dehazed images database
or extenting the existing database. It is by using the preference information that
we propose a rank learning algorithm to evaluate the dehazed image quality. In
our algorithm, we transform the problem of dehazed image quality evaluation
into the classification problem of quality preference learning, and then use the
feature fusion and random forest to solve it, finally get ranking result through
pairwise comparison in turn. The experimental results show that our algorithm
is highly consistent with the subjective feeling of human eye and is superior
to the traditional dehazed image quality evaluation algorithms. Moreover, our
algorithm has a strong expansibility. Further research is needed to explore the
dehazed image quality-relevant features, and generate preference dehazed image
pairs with preference labels.
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