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Abstract. In this paper, an automatic shoeprint retrieval method used
in forensic science is proposed. The proposed method extracts shoeprint
features using recently reported descriptor called neural code. The first
step of feature extraction is rotation compensation. Then, shoeprint
image is divided into top region and bottom region, and two neural codes
for both regions are obtained. Afterwards, a matching score between
test image and reference image is calculated. The matching score is a
weighted sum of cosine similarities of both regions’ neural codes. Exper-
imental results show that our method outperforms other methods on
a large-scale database captured by commercial shoeprint scanners. By
using PCA, the performance can be improved while the feature dimen-
sion is reduced dramatically. To our knowledge, this is the first study
using the database collected by commercial shoeprint scanners, and our
method obtained a cumulative match score of 88.7% at top 10.
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1 Introduction

Shoe impressions play very important roles in forensic science since the fre-
quency of shoe impression occurrence at the place of crime is much higher than
other evidences (e.g. DNA, fingerprints, and hair) [7]. According to [11], 35%
of crime scenes have useful shoeprints for further investigation, and shoe prints
can be used in linking cases, knowing the brand and model of the shoes. Thus,
an automated shoeprint retrieval or recognition algorithm is necessary for fast
and accurate forensic investigations. Shoeprint image retrieval composed of two
categories: real crime scene shoeprint retrieval and suspect’s shoeprint retrieval,
and this paper is focused on the latter category.

Nowadays, several commercial shoeprint scanners have been developed [1,2].
These scanners can scan suspect’s shoeprint and acquire a highly detailed
shoeprint image. The detailed image may then be uploaded into a database for
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comparison against recovered crime scene shoeprint impressions. For an appli-
cation of commercial shoeprint scanners in suspect’s shoeprint retrieval, please
refer to [4].

Recently, several automatic shoeprint retrieval or recognition methods have
been reported. Bouridane et al. [8] extracted shoeprint features using fractal
transformation and compared features using Mean Square Noise Error (MSNE)
method. On a database of 145 images, the recognition accuracy was 88%. A
method using Fourier-Mellin transform and power spectral density (PSD) was
proposed by Chazal et al. [10]. On a database of 476 images, the method achieved
cumulative match scores (CMSs) of 65% and 87% at top 1 and top 5, respectively.
Pavlou and Allinson [14] employed Maximally Stable Extremal Region (MSER)
to detect keypoints and used SIFT descriptor to describe the keypoints. On
a database containing 374 images, the method achieved 92% CMS at top 8.
Zhang and Allinson [17] first calculated edge orientation histogram; and then,
they used 1D DFT to obtain a rotation invariant feature. On a database of
512 images with 10% Gaussian noise, they achieved a CMS of 97.7% at top
20; however, their algorithm was not robust against rotation and noise. Patil
and Kulkarni [13] utilized Radon transform to compensate image rotation and
applied Gabor filter to extract multi-resolution features. The method reached
a CMS of 91% at top 1 when evaluating on a database containing 200 images.
Wang et al. [16] first divided shoeprint image into top region and bottom region
and extracted features using Wavelet-Fourier transform. A confidence value of
each region was computed, and final matching score was computed based on
the confidence value and feature similarities. The method was evaluated on a
very large database containing 210,000 real crime scene shoeprint images and
achieved a CMS of 90.87% at top 2.

Most of methods mentioned above are suspect’s shoeprint retrieval meth-
ods except for [16]. They performed pretty well only on their own databases;
however, none of them used commercial shoeprint scanners to construct the
database. Consequently, the applications of these methods are limited in their
own databases.

Differing from these methods, this paper focuses its attention on suspect’s
shoeprint images collected by commercial shoeprint scanner called EverOSTM

[1]. Both test images and reference images in the database are binary images
which are captured by EverOSTM. According to [16], most well-known local
features (e.g. SIFT, SURF, and MSER) do not perform well on binary images.
Therefore, in this paper, we use a deep Convolutional Neural Network (CNN) to
extract high-level feature which is called neural code. Experimental results show
that the deep CNN-based neural codes outperform other shoeprint features (e.g.
[13,16,17]).

The rest of this paper is organized as follows: Sect. 2 briefly reviews CNN and
neural code; Sect. 3 explains the proposed method in detail; some experimental
results are given in Sect. 4, and Sect. 5 concludes this paper.
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2 Related Works

Deep Convolutional Neural Networks (CNNs) have demonstrated the state-of-
the-art performance in computer vision, speech, and other areas. Especially
in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), CNNs (e.g.
vggNet [15], and ResNet [12]) have exhibited high classification accuracies, and
ResNet [12] has outperformed human-level performance.

Our work was inspired by Babenko et al. [6]. In [6], they argued that outputs
of the upper layers in a CNN could be served as good features (neural codes)
for image retrieval, although the CNN was originally trained to classify images.
They extracted neural codes from the last max-pooling layer (L5) and two fully
connected layers (L6, and L7). Experimental results showed that the neural
code extracted from L5 performed much better than the neural codes extracted
from L6 and L7. They also showed that using PCA dimension reduction, the
dimension of the neural code (L5) could be reduced from 9216 to 128, with no
loss of retrieval accuracy.

In this paper, we employ vgg-verydeep-16 [15] to extract neural code. Vgg-
verydeep-16 model is pre-trained using ImageNet and MatConvNet [3], which
can be downloaded from MatConvNet. The model comprises five convolutional
layers and two fully connected layers followed by a soft-max layer. Each convo-
lutional layer is followed by a max-pooling layer. As the dimensions of neural
codes extracted from other layers are too high (≥100,000), in this paper, we
only consider five neural codes extracted from the last max-pooling layer and
two fully connected layers (each fully connected layer has a pre-activation layer
and a ReLu layer).

3 The Proposed Method

The pipeline of the proposed method is illustrated in Fig. 1. The proposed
method is divided into two phases: offline database feature extraction phase,
and online shoeprint image retrieval phase. In Fig. 1, the dashed box indicates
offline database feature extraction phase, and the other parts indicate online
image retrieval phase.

In offline database feature extraction phase, we first estimate main axis of
each shoeprint image in the database, and each image is rotated so that the
main axis is in the vertical position. Afterwards, each image is divided into two
semantic regions (top region and bottom region); then, neural codes (features)
for both regions are extracted. Extracted neural codes are used in the next phase:
online shoeprint retrieval.

In online shoeprint retrieval phase, neural codes for test image are extracted
as described above; then, top region similarity and bottom region similarity
between test image and an image in the database are calculated respectively. The
matching score between two images is a weighted sum of top region similarity
and bottom region similarity. After calculating all matching scores between test
image and all images in the database, matching scores are sorted so that images
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most similar to the test image are presented at the top of ranked list. Finally,
this ranked list is returned as the retrieval result.

Fig. 1. Pipeline of the proposed method

3.1 Rotation Compensation

Figure 2 illustrates some shoeprint examples provided by EverOSTM. EverOSTM

provides binary images which are pre-processed interactively. The pre-processing
includes three steps: rotation compensation, noise removal, and binary image
generation. Among them, rotation compensation has much more effect on the
retrieval result than the other two steps. Below, we will explain how to mitigate
the effect caused by rotation.

In order to compensate rotation, main axis estimation is necessary. We adopt
a computationally inexpensive and effective method called shape orientation
algorithm [5] to find the main axis. The shape orientation algorithm is composed
of three steps:

Step 1: Generate an edge map of a shoeprint image using Canny edge detector [9].
Step 2: Obtain the mass center (xc, yc) of the edge map.
Step 3: Find a straight line which passes through the mass center and summation
of the distances from points on the edge map to this line is minimum.

We refer to the straight line described in Step 3 as main axis and will describe
how to find it. The equation of a straight line passes mass center (xc, yc) with
angle θ is given as

ax + by = c, (1)
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Fig. 2. Shoeprint examples provided by EverOSTM

where ⎧
⎨

⎩

a = tan θ
b = −1 if θ �= 90◦,
c = yc − xc × tan θ

(2)

and ⎧
⎨

⎩

a = 1
b = 0 if θ = 90◦.
c = −xc

(3)

The distance (di) from a point (xi, yi) on the edge map to the straight line
is given as

di =
|axi + byi + c|√

a2 + b2
. (4)

Thus, the summation of the distances (D) from points on the edge map to
the straight line is expressed as

D =
∑

i

di. (5)

For each angle θj in the range of 0 ≤ θj ≤ π with a suitable step size (in
180 steps and 1 degree step size), we can obtain corresponding summation of
distances Dj for each angle. Among these Djs, we can find the minimum, and
the corresponding angle is the angle of the main axis.

After finding the main axis, we can compensate rotation by rotating the
shoeprint image so that the main axis is in the vertical position.
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3.2 Image Partition

A shoeprint can be divided into several parts: toe part, sole part, arch part, heel
part, and back of heel part. When comparing two shoeprints, these parts can be
ranked based on their importance, and the rank is as follows: sole (rank 1), heel,
toe, back of heel, and arch (rank 5) [16]. We adopt the method proposed in [16]
to divide a shoeprint image into two semantic regions: top region and bottom
region. The top region contains toe, sole, and a part of arch, and the bottom
region contains heel, back of heel, and the rest part of arch. The ratio between
top region and bottom region is set to 6:4. Details are illustrated in Fig. 3.

Fig. 3. Shoeprint image partition

3.3 Feature Extraction

The CNN model used in this paper is vgg-verydeep-16 net. The model has five
convolutional layers (layer 1–layer 5), and each convolutional layer is followed
by a max-pooling layer. At the top of the model, there are two fully connected
layers (layer 6, layer 7) and a soft-max layer. Each fully connected layer includes
a pre-activation layer (layer 6p for layer 6, and layer 7p for layer 7) and a ReLu
transform layer (layer 6r for layer 6, and layer 7r for layer 7). The output of
a certain layer can be flattened into a vector, and we call this vector a neural
code. Since the neural codes obtained from first four max-pooling layers are of too
high dimensions (e.g. a neural code extracted from the forth max-pooling layer is
14 × 14 × 512 = 100352 dimension); therefore, we only consider five neural codes:
a neural code extracted from the last max-pooling layer (layer 5m), and four
neural codes extracted from fully connected layers (layer 6p, layer 6r, layer 7p,
and layer 7r). These five neural codes are denoted by NC5m, NC6p, NC6r, NC7p,
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and NC7r. The dimension of NC5m is 7× 7 × 512 = 25088, and the dimensions
of the rest neural codes are 4096.

The CNN model is applicable to 224 × 224 images; thus, top region and
bottom region of a shoeprint image are resized to 224 × 224. Then, for each
shoeprint image, we obtain two neural codes for top region and bottom region
respectively. We consider these two neural codes as shoeprint image features.

Since the dimension of NC5m is much higher than the other neural codes
used in this paper, we use PCA to reduce NC5m’s dimension. In Sect. 4, we will
show PCA dimension reduction can improve retrieval performance compared to
original NC5m.

3.4 Region-Based Similarity Calculation

After feature extraction, feature similarity calculation is needed. While com-
paring two shoeprints, two similarities (top region similarity and bottom region
similarity) are calculated.

In this paper, we use cosine similarity to compare two neural codes. For two
neural codes n1 and n2, cosine similarity (sim) between n1 and n2 is defined as

sim =
n1 • n2

‖n1‖2‖n2‖2 . (6)

3.5 Matching Score Calculation and Sorting

After calculating top region similarity and bottom region similarity, a matching
score between two shoeprint images can be calculated. The matching score is a
weighted sum of two similarities. Since the ratio between top region and bottom
region was set to 6:4, the matching score is calculated using

score = 0.6 × simt + 0.4 × simb, (7)

where, score, simt and simb are matching score, top region similarity and bot-
tom region similarity, respectively.

Real shoeprints have left prints, right prints, and upside down prints. While
comparing two shoe prints, they are compared four times. For a test image, its
original version, mirror version, up-down flipped version, and up-down flipped +
mirror version are compared to an image in the database and four matching scores
are calculated. Among the four matching scores, we pick the maximum as the final
matching score between the test image and the image in the database. Figure 4
demonstrates the diagram of final matching score calculation.

Once all matching scores between the test image and all images in the data-
base are calculated, these matching scores are sorted so that images most similar
to the test image are presented at the top of the ranked list. Finally, the ranked
list is returned as the final retrieval result.
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Fig. 4. Diagram of final matching score calculation. (a) An image in the database,
(b) test image (original version), (c) test image (mirror version), (d) test image
(up-down flipped version), (e) test image (up-down flipped + mirror version)

4 Experimental Results

4.1 Dataset and Evaluation Metrics

In order to evaluate the proposed method, we conducted several experiments.
The dataset used in the experiments is composed of the test set and the database.
The test set includes 1,000 images and the database includes 37,886 images
belonging to 37,886 classes. For each image in the test set, there exists only one
matching image in the database. Performance of the shoeprint image retrieval
accuracy was evaluated in terms of cumulative match score (CMS).

4.2 Performance of Different Neural Codes

We first evaluated the performance of five neural codes described in Sect. 3.
CMSs for top 1, top 5, and top 10 are shown in Table 1.
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Table 1. CMS (%) of different neural codes

Neural code Dimension Top 1 Top 5 Top 10

NC5m 25088 64.4 83.5 87.9

NC6p 4096 59.0 77.6 81.7

NC6r 4096 59.0 77.4 81.4

NC7p 4096 57.3 76.9 81.3

NC7r 4096 56.7 76.1 80.2

As can be seen from Table 1, the neural code extracted from layer 5m per-
forms much better than the neural codes extracted from fully connected lay-
ers. This result is consistent with [6], in which they showed that neural codes
extracted from convolutional layers are more discriminative.

4.3 Performance of Different Dimensions of NC5m

In previous subsection, we have shown that neural code extracted from con-
volutional layer performed much better than neural codes extracted from fully
connected layers. From Table 1, we can see that dimension of NC5m is much
higher than the other neural codes. Therefore, we use PCA to reduce the dimen-
sion of NC5m, and CMSs for top 1, top 5, and top 10 are shown in Table 2.

Table 2. CMS (%) of different dimensions of NC5m

Dimension top 1 top 5 top 10

Original 64.4 83.5 87.9

95% 64.9 84.2 88.7

4096 64.8 84.2 88.7

2048 64.5 83.9 88.4

1024 64.0 83.0 87.7

512 62.5 82.5 86.8

256 60.6 80.6 85.1

128 57.5 77.8 82.0

64 53.1 73.7 78.5

32 44.4 66.4 72.4

16 33.2 51.5 57.8

In Table 2, “95%” in the third line means that we use 95% of the total prin-
ciple component covariance. As can be seen from Table 2, with PCA dimension
reduction, performance has been improved (e.g. 95%, 4096, and 2048) compared
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Table 3. CMS (%) of different methods

Method top 1 top 5 top 10

[17] 12.8 20.9 24.5

[13] 23.5 32.2 36.6

[16] 54.8 69.8 74.5

NC5m 64.4 83.5 87.9

NC5m + PCA (95%) 64.9 84.2 88.7

to original NC5m. We also can see that 256 dimensional neural code still out-
performs neural codes extracted from fully connected layers; however the per-
formance degrades considerably when dimension is reduced to 32.

4.4 Comparison with Other Methods

We also compared our method with three state-of-the-art methods [13,16,17],
and the results are illustrated in Fig. 5 and Table 3. From Fig. 5 and Table 3,
we can see that the proposed methods (NC5m and NC5m + PCA) reached
much higher CMSs than other methods. Among [13,16,17], only [16] has been

Fig. 5. CMS (%) with respect to rank for different methods
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evaluated on a large-scale dataset, and none of them has been evaluated on
images captured by commercial shoeprint scanners. Therefore, this experiment
also showed that the proposed method is applicable to the databases collected
by commercial shoeprint scanners.

5 Conclusion

In this paper, we have proposed a suspect’s shoeprint retrieval method using
neural codes. The proposed method used neural codes to extract shoeprint fea-
tures. By using rotation compensation, shoeprint image partition, region-based
similarity calculation, and weighted sum of similarities, the proposed method is
simple but performs well on shoeprint images captured by commercial shoeprint
scanners. As far as we know, this is the first study using the shoeprint data-
base collected commercial scanners. Performance of the proposed method has
been evaluated on a database containing 37,886 shoeprint images, and the pro-
posed method performed much better than other state-of-the-art methods. We
also showed that by using PCA dimension reduction method, performance can
be improved while using a short neural code. Since we used pre-trained CNN
model to extract neural codes, training a CNN model using shoeprint images
and expanding its application to real crime scene shoeprint images will be the
future scopes of this work.
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