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Abstract. Images captured in foggy or hazy weather conditions are
often degraded by the scattering of atmospheric particles, which seri-
ously reduces the performance of outdoor computer vision processing
systems. Single image haze removal algorithm has been considered to be
an efficient dehazing method in recent years. The key to this type of app-
roach is the estimation of atmospheric light. In this paper, an improved
single image dehazing algorithm with heterogeneous atmospheric light
estimation is presented to enhance the quality of hazy images. First, the
heterogeneous atmospheric light is calculated with max-pooling. Second,
a haze-free image can be recovered with the estimated atmospheric light
based on dark channel prior. The experimental results on a variety of
hazy images demonstrate that the addressed method outperforms state-
of-the-art approaches through the assessment of dehazing effect and algo-
rithm cost.
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1 Introduction

Outdoor images captured under foggy weather condition are often seriously
degraded by the turbid medium (e.g., dust, water-droplets) in the atmosphere.
And the distant objects in the degraded images lose the color fidelity and become
blurred with their surrounding, as demonstrated in Fig. 1(a). This problem seri-
ously reduces the performance of outdoor computer vision processing systems.
Thus, effective and robust dehazing (or haze removal) methods are strongly desired
in both computational photography and computer vision applications [1,2], such
as outdoor surveillance, intelligent driving, and satellite remote sensing system.
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Fig. 1. Image dehazing by presented approach. (a) Input hazy image. (b) Dehazed
image. (c) Estimated heterogeneous atmospheric light. (d) Estimated medium
transmission.

Available methods for image dehazing are broadly classified as image enhance-
ment based approaches and image restoration based schemes [3]. The approaches
based on image enhancement employ image processing algorithms to restore the
dehazed image, enhance the visibility of a haze image, and highlight the valuable
information in a scene. The advantage of this kind of method is that it is very
convenient with the commonly used image enhancement algorithms. However, the
recovered image usually suffers from significant halos and distorted colors. In order
to recover high-quality dehazed images, the schemes based on image restoration
build a atmospheric scattering model based on the scattering effect of atmospheric
aerosol particles on the light. This is a special kind of haze removal method based
on the physical mechanism of image degradation, thus the restored image is more
photo-realistic, and the details information are also preserved well.

Early haze removal methods based on image restoration [4–7] usually require
multiple images or additional information to be available. Though these meth-
ods can ameliorate the visibility of hazy images, they cannot be employed in
applications where additional information or multiple images are not obtain-
able. Therefore, single image haze removal has been a hot spot of research given
its wider application range [8]. Recently, a lot of progresses have been made
since the introduction of single image haze removal. These image dehazing algo-
rithms [1,2,9–14] remove the haze under certain priors or assumptions, such as
dark channel prior (DCP) [2], and then recover the haze-free image with a haze
model. And the advantage of them is to demand only a single input image.

Image dehazing mainly includes two tasks, estimating the atmospheric light
and calculating the medium transmission, as shown in Fig. 1(c) and (d), respec-
tively. Inaccurate estimation of the atmospheric light can incur unwanted color
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shift. As a result, the haze-free image cannot be obtained visually pleasing.
Therefore, the estimation of the atmospheric light is the key technique for image
dehazing. The homogeneous atmospheric light estimation considers the light
both absorbed and scattered by turbid mediums, so it is widely applied in image
dehazing. In [10], the brightest pixel of the entire hazy image was regarded as the
atmospheric light. And in [2], the top 0.1% brightest pixels in the dark channel
were first picked up, and then the one with the highest intensity was selected
as the estimation of the atmospheric light. [12] filtered each color channel of an
input image using a minimum filter, and then the maximum value of each color
channel was estimated as the atmospheric light.

These methods mentioned above simply approximate the atmospheric light
under an assumption that the whole scene has the same value for the atmospheric
light. Namely, the atmospheric light within an entire image is homogeneous.
This assumption leads to that many state-of-the-art algorithms for dehazing
get much darker dehazed images, especially objects with dark color in scenes.
In fact, the atmospheric light is not a valid one when there are multiple point
light sources such as the sun, street lights, or vehicle headlights at night. Hence,
these existing approaches often fail by mistakenly taking white objects (e.g.,
clouds) as the atmospheric light. Meanwhile, the amount of scattering depends
on the distances of the scene points from the camera, and the degradation varies
spatially [2].

In order to efficiently and robustly remove haze from a single input image,
an improved dehazing scheme based on the heterogeneous atmospheric light
estimation is presented in this paper. The main works are as follows. Firstly,
we think that an entire image has not uniform value for the atmospheric light.
In other words, the atmospheric light within an image is heterogeneous. And
then, the heterogeneous atmospheric light can be obtained with max-pooling.
Finally, combining the estimated heterogeneous atmospheric light and a dark
channel prior dehazing method, we can recover a haze-free image with faithful
colors and fine image details. As a result of our experiments, the haze-free image
restored by the developed scheme achieves more satisfying image quality at an
acceptable algorithm cost compared with state-of-the-art approaches.

The rest of this paper is organized as follows. The atmospheric scattering
model is treated in Sect. 2. The improvements for dehazing is addressed in Sect. 3.
Experimental results are shown in Sect. 4. Finally, we conclude the whole paper
in Sect. 5.

2 Atmospheric Scattering Model

The atmospheric scattering model (ASM) is the basic model of image dehazing
[1]. To address the formation of a hazy image, the atmospheric scattering model
is first presented by McCartney in [15], and further developed by Narasimhan
and Nayar [4,5] later. When the atmospheric light is homogenous, the model can
be defined as follows:

I(x) = J(x)t(x) + A(1 − t(x)) (1)
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where x is the position of the pixel within the image, I(x) is the observed
intensity representing the hazy image, J(x) is the scene radiance describing
the haze-free image. A denotes the atmospheric light, and t(x) indicates the
medium transmission representing the portion of the light that is not scattered
and reaches the camera. The goal of image dehazing is to estimate A and t(x),
and then recover J(x) from I(x) based on (1).

3 Improvements for Dehazing

To create a photo-realistic haze-free image, two improvements to the DCP app-
roach [14] are given. One is to produce the heterogeneous atmospheric light
estimation, which accurately describes how the amount of scattering from one
or multiple point light sources is spatial-variant. The other is to decide how a
dehazed image is recovered efficiently. Therefore, the two improvements for the
addressed dehazing method are discussed in this section.

3.1 Heterogeneous Atmospheric Light Estimation

The estimation of the atmospheric light is a fundamental and challenging prob-
lem for the haze removal [16]. Under the assumption of homogeneous atmospheric
light, the darker regions in these images become very dark after haze removal
and some important details in the images are often lost. Therefore, the assump-
tion of homogeneous atmospheric light does not hold in most cases. Besides, the
occlusion of big objects to the light source and different albedos or absorptivi-
ties of different objects in a scene can incur the heterogeneous atmospheric light.
Based on these observations, we assume that the atmospheric light is heteroge-
neous in whole scene. As a result, we present a novel solution which is useful for
estimating heterogeneous atmospheric light from a single hazy image directly.

According to (1), the heterogeneous ASM is formulated by:

I(x) = J(x)t(x) + A(x)(1 − t(x)) (2)

where A(x) is the heterogeneous atmospheric light, and is dependent on the
position x in a scene. The difference between (2) and (1) is that A(x) is a
variable, not a constant. Actually, (1) can be regarded as a special case of (2)
when the A(x) is a constant.

Additionally, in the ideal case, the medium transmission t(x) could be zero as
the scenery objects that appear in the image could be very far from the camera,
and we have:

I(x) = A(x), t(x) → 0 (3)

Equation (3) shows that the intensity of the pixel can represent the value of
the atmospheric light A(x) when t(x) tends to zero.

Therefore, A(x) can be calculated by I(x) approximately when the medium
transmission t(x) tends to be very small. When t(x) becomes very small, all of the
light radiated from objects in a scene are almost scattered and cannot reach the
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camera. Hence I(x) becomes nearly haze-opaque. Under this circumstance, I(x)
can be taken as the approximation of the heterogeneous atmospheric light A(x).

Inspired by this idea, we propose a novel method for the estimation of hetero-
geneous atmospheric light. Firstly, in order to make the haze in the input image
become white color, the white balance operation is conducted on the input hazy
image I(x). Secondly, the max-pooling [17] is performed on the output image of
white balance to obtain a small heterogeneous atmospheric light. Here the size
of the window for max-pooling is N × N. And then, a guided image filtering [14]
strategy is employed to suppress the block artifacts incurred by the max-pooling.
Finally, according to the size of original hazy image, a bicubic interpolation way
is used to enlarge the small heterogeneous atmospheric light, and then the het-
erogeneous atmospheric light A(x) can be obtained, as shown in Fig. 1(c).

3.2 Dehazing with Heterogeneous Atmospheric Light Estimation

Image dehazing is essentially under-constrained problem if the input is a single
haze image. In order to handling this problem, the explore for additional priors
or constraints are generally required. Dark channel prior (DCP) for single image
dehazing [2] is a better solution compared with most haze removal methods.
Therefore, we estimate the medium transmission t(x) based on (1). Under the
DCP assumption, referring to (1), we easily derive the medium transmission t(x)
as follows:

t(x) = 1 − min
y∈Ω(x)

(
min

c∈{R,G,B}
Ic(y)
Ac

)
(4)

where Ic is a color channel of I, Ω(x) is a local patch center at x, min
c∈{R,G,B}

is

conducted on each pixel, and min
y∈Ω(x)

is a minimum filter. Hence we can directly

obtain the estimation of t(x). To refine the medium transmission t(x), a guided
image filtering is used to smooth the image.

The aim of image dehazing is to recover the scene radiance J(x). After finish-
ing the estimation of the heterogeneous atmospheric light A(x) and the medium
transmission t(x), referring to (2), the scene radiance can be restored by:

J(x) =
I(x) − A(x)
max(t(x), ε)

+ A(x) (5)

where ε is a small constant (typically 0.1) for avoiding division by zero. One
haze-free image recovered with the developed scheme is illustrated in Fig. 1(b).

4 Experimental Results and Analysis

To confirm the performance of our proposed dehazing method, several experi-
ments are conducted for a set of real-world hazy images. The tests are imple-
mented with the MatlabR2014a and performed on an Intel Core4 3.1 GHz com-
puter that has 8 GB memory. We compare the qualitative results, quantitative
ones, and computing time complexity of the developed algorithm with state-of-
the-art algorithms, including Tarel’s [11], He’s [14], and Meng’s methods [12].
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Figures 2, 3, 4, 5, and 6 demonstrate the qualitative comparison of different
results on some real-world images, including ‘Road’, ‘Swans’, ‘People’, ‘Manhat-
tan 2’, and ‘Yosemite 1’. As depicted in Figs. 2(e), 3(e), 4(e), 5(e), and 6(e), the
haze-free images recovered by the developed algorithm are much visually pleas-
ing than the other three methods. However, there are several noticeable artifacts
in the outputs using the other approaches. As shown in Figs. 2(b), 3(b), 4(b),
5(b), and 6(b), the restored images by Tarel’s method often suffer from distorted
colors and significant halos. And the recovered images by He’s algorithm are too
dark as depicted in Figs. 2(c), 3(c), 4(c), 5(c), and 6(c). While Meng’s scheme
often tends to produce some geometric distortion and some hazes still remain in
the restored images as illustrated in Figs. 2(d), 3(d), 4(d), 5(d), and 6(d).

To compare with the other three approaches quantitatively, we use the visible
edge gradient [18] metrics. The metrics include the percentage of new visible
edges e, the normalized gradient mean of visible edges r, and the percentage
of saturated black and white pixels σ. The value of e evaluates the ability of
the method to restore edges which were not visible in the hazy image I(x) but
are in the restored image J(x). The value of r expresses the quality of the
contrast restoration. The value of σ measures contrast by detecting the number
of saturated black and white pixels.

The metrics are separately defined as follows:

e =
nr − n0

n0
(6)

Fig. 2. Qualitative comparison of different results on real-world images of ‘Road’ (a)
Input hazy images. (b) Tarel’s results [11]. (c) He’s results [14]. (d) Meng’s results [12].
(e) Proposed method’s results.
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Fig. 3. Qualitative comparison of different results on real-world images of ‘Swans’ (a)
Input hazy images. (b) Tarel’s results [11]. (c) He’s results [14]. (d) Meng’s results [12].
(e) Proposed method’s results.

Fig. 4. Qualitative comparison of different results on real-world images of ‘People’ (a)
Input hazy images. (b) Tarel’s results [11]. (c) He’s results [14]. (d) Meng’s results [12].
(e) Proposed method’s results.
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Fig. 5. Qualitative comparison of different results on real-world images of ‘Manhattan
2’ (a) Input hazy images. (b) Tarel’s results [11]. (c) He’s results [14]. (d) Meng’s results
[12]. (e) Proposed method’s results.

r = exp

⎛
⎝ 1

nr

∑
Pi∈ψr

log ri

⎞
⎠ (7)

σ =
ns

w × h
(8)

where n0 and nr denote the cardinal numbers of the set of visible edges in the
hazy image I(x), respectively in the contrast restored image J(x). ψr represents
the visible edges set in J(x), Pi is the pixel of the visible edge, and ri indicates
the Sobel gradient ratio between Pi and I(x). ns is the number of the saturated
black and white pixels, w and h are separately the width and the height of I(x).

Tables 1 are some results of quantitative measurements. The notations
employed to describe the metrics are the same as that used in [17]. Obviously the
proposed method has shown better performance in most cases. It is reasonable
that the presented scheme can properly describe that the amount of scattering
from one or multiple point light sources is spatial-variant. Therefore the hetero-
geneous atmospheric light can be estimate accurately, and the haze-free image
of high quality with faithful colors and fine edge details can be obtained.

To test the complexity of the discussed approaches, the average comput-
ing time for the algorithms is evaluated for the tested datasets. The computing
time complexity is shown in Table 2. Because the He’s method has the better
use of stronger priors or assumptions for image haze removal, it has the lowest
computation complexity. Meng’s scheme involves time consuming for iterative
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operations to calculate the medium transmission map. Due to applying standard
median filter to obtain a satisfactory dehazed image quality, Tarel’s method has
the highest computation complexity. The proposed algorithm has to employ
extra operations to obtain the heterogeneous atmospheric light map, and hence
demands more run-time. Comparing with the other three methods, the comput-
ing time complexity of the treated way is moderate.

According to these results, the developed methods can work efficiently with
only minor increase of the computational complexity.

Fig. 6. Qualitative comparison of different results on real-world images of ‘Yosemite 1’
(a) Input hazy images. (b) Tarel’s results [11]. (c) He’s results [14]. (d) Meng’s results
[12]. (e) Proposed method’s results.
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Table 1. Quantitative comparisons

Input Metric Tarel [11] He [14] Meng [12] Proposed

Road e 0.7092 0.2847 0.5916 0.8285

r 2.1068 1.5855 2.1972 2.4803

σ 0 0 0.0142 0.0042

Swans e 0.7344 0.2993 0.5119 0.8072

r 3.0743 1.2414 2.1858 3.4336

σ 0.0004 0 0.0085 0

People e 0.5022 0.2358 0.3463 0.6258

r 2.1850 0.9225 1.4441 3.0584

σ 0.0004 0.0064 0.0692 0

Table 2. Computing time

Dehazing method Average computing time (s)

Tarel [10] 13.16

He [13] 1.05

Meng [11] 5.74

Proposed method 1.23

5 Conclusions

In this paper, an improved single image dehazing scheme based on heteroge-
neous atmospheric light estimation is developed to get a better visual quality
of haze-free images. The improvements include two things. One is the hetero-
geneous atmospheric light can be estimated by max-pooling. The other is a
haze-free image is recovered with the obtained atmospheric light. Because the
derived atmospheric light can be adjusted adaptively according to the input
image brightness, some encouraged results are obtained. Experiment results con-
firm the efficiency of the presented algorithms with only minor increase of the
computing time complexity. In the future, more efficient medium transmission
estimation is a very important research topic.
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