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Abstract. Cross-modal retrieval has recently drawn much attention due
to the widespread existence of multi-modal data, and it generally involves
two challenges: how to model the correlations and how to utilize the
class label information to eliminate the heterogeneity between different
modalities. Most previous works mainly focus on solving the first chal-
lenge and often ignore the second one. In this paper, we propose a dis-
criminative deep correspondence model to deal with both problems. By
taking the class label information into consideration, our proposed model
attempts to seamlessly combine the correspondence autoencoder (Corr-
AE) and supervised correspondence neural networks (Super-Corr-NN)
for cross-modal matching. The former model can learn the correspon-
dence representations of data from different modalities, while the latter
model is designed to discriminatively reduce the semantic gap between
the low-level features and high-level descriptions. The extensive exper-
iments tested on three public datasets demonstrate the effectiveness of
the proposed approach in comparison with the state-of-the-art compet-
ing methods.
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1 Introduction

In recent years, cross-modal retrieval has attracted considerable attention due
to the rapid growth of abundant multi-modal data. Unlike uni-modal retrieval,
cross-modal retrieval searches the information of one modality by given infor-
mation of another different modality, and this type of matching problem has
been existing in many fields, e.g., multimedia retrieval. For instance, one often
attempts to seek the picture that best illustrates a given text, or find the text
that best describes a given picture. Since the samples from different modalities
are always heterogeneous, it is still a non-trivial task to bridge the semantic gap,
measure the similarity and establish the connections among different modalities.
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Fig. 1. The difference between the Corr-AE [5] and our proposed model.

In the past, different kinds of cross-modal retrieval approaches have been
exploited, and most of them attempted to learn a common latent subspace to
make all data comparable. That is, these approaches project the representa-
tions of multiple modalities into a common space with same dimension, whereby
the similarity can be easily measured by counting Euclidean or other distances
[13–15]. Along this line, one of the most common subspace learning methods
is Canonical Correlation Analyse (CCA), which learns a pair of linear trans-
formations to maximize the correlations between two different modalities. For
instance, Rasiwasia et al. [13] proposed a semantic correlation matching scheme
for cross-modal retrieval, where the CCA is applied to the maximally correlated
feature representations. Later, some improved versions [12] and extensions [11]
were also exploited to produce an isomorphic semantic space for cross-modal
retrieval. In addition, bilinear model (BLM) [15] and partial least squares (PLS)
[14], were also popularly utilized in cross-modal retrieval. Despite these contri-
butions have been made to the solution of cross-modal retrieval, most of their
performances are still far from satisfactory. A plausible reason is that these tra-
ditional approaches did not fully consider the label information or high-level
featuring mapping for discriminative analysis, thereby the connections of differ-
ent modalities were not well built in practice.

Recently, significant progress has been made in deep learning, and some
deep models have been developed to tackle cross-modal retrieval problem [9].
For instance, Srivastava and Salakhutdinov [17] first utilized two separated
Restricted Boltzmann Machines (RBM) to learn the low-level representations
of different modalities, and then fused them into a joint representation by a
high-level full-connection layer. Similarly, Feng et al. [5] employed a correspon-
dence autoencoder (Corr-AE) to represent different modalities, in which an effi-
cient loss function was designed for minimization of correlation learning error
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and representation learning error synchronously. Although these typical methods
were able to produce considerable performance, their cross-modal retrieval per-
formance were still a bit poor. The main reason lies that these learning models
can only preserve the inter-modal similarity, but which often ignore intra-modal
similarity. As a result, the corresponding retrieval performances were far from
satisfactory.

In general, the more information embedded in a model for discriminative
analysis, the greater performance it reaches. Evidently, label information often
provides discriminative cues for the classification task, and some deep learning
methods [2,19,20] thus attempted to utilize the label information in their mod-
els. For instance, Wang et al. [19] first utilized the label information to learn
the discriminative representation of data from each modality individually, then
investigated the highly non-linear semantic correlation between different modali-
ties. This strategy separates the representation learning and correlation learning,
which can not utilize label information sufficiently.

In this paper, we propose a discriminative deep correspondence model for
cross-modal retrieval, which can learn the representation and correlation of dif-
ferent modalities in an integral model. As shown in Fig. 1, our proposed model
inherently differs from Corr-AE model [5], and improves this method by provid-
ing the following three contributions:

– By using the label information, a supervised correspondence neural networks
(Super-Corr-NN), is proposed to learn the representation and correlation of
different modalities simultaneously, while preserving more intra-modal simi-
larity.

– We propose a supervised Corr-AE (Super-Corr-AE) model and extend it into
another two forms, whereby the data from different modalities can be well
retrieved.

– The proposed discriminative deep correspondence model seamlessly combines
the correspondence autoencoder (Corr-AE) and supervised correspondence
neural networks (Super-Corr-NN) for data representation learning, which can
preserve both inter-modal and intra-modal similarity for efficient cross-modal
matching. The experimental results have shown its outstanding performance.

The rest of this paper is organized as follow. Section 2 presents the detail of
our proposed model. In Sect. 3, we present the experimental results and related
comparisons. Finally, we draw a conclusion in Sect. 4.

2 The Proposed Deep Learning Model

In this section, Corr-AE [5] is simply introduced for illustration, and then the
proposed deep correspondence models are presented in details.

2.1 Correspondence AutoEncoder

As shown in Fig. 2(a), Corr-AE consists of two interdependent autoencoders,
whose hidden layers are connected with each other by defining a similarity met-
ric. Two autoencoders correspond to image and text modalities respectively,
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Fig. 2. (a) Correspondence autoencoder, (b) Supervised correspondence neural net-
works, (c) Supervised correspondence autoencoder, (d) Supervised correspondence
cross-modal autoencoder, (e) Supervised correspondence full-modal autoencoder.

receive data at input layers, reconstruct them at output layers, and extract the
information of hidden layers as final learned representations. Let X1 = {x

(i)
i }n

i=1

and X2 = {x
(i)
2 }n

i=1 denote two different modalities, e.g., image and text,
and share the same label Y = {y(i)}n

i=1, where n is the number of objects,
y(i) ∈ {1, 2, . . . , c} and c is the number of categories. The hidden layers of two
autoencoders are denoted as H1 = f(X1;Wf ) and H2 = g(X2;Wg), where Wf

and Wg are parameters of two autoencoders respectively, f and g are the corre-
sponding activation functions. The similarity metric between two modalities are
defined as follow:

LH(X1,X2;W ) = ||H1 − H2||2F = ||f(X1;Wf ) − g(X2;Wg)||2F (1)

where W = [Wf ,Wg] is the whole parameters. Accordingly, the reconstruction
losses of two modalities can be described as follows:

LI(X1,X2;W ) = ||X1 − X̂
(I)
1 ||2F (2)
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LT (X1,X2;W ) = ||X2 − X̂
(T )
2 ||2F (3)

where X̂
(I)
1 and X̂

(T )
2 are outputs of the image and text autoencoder respectively.

Consequently, the total loss can be derived as follow:

Ltotal = (1 − α)(LI + LT ) + αLH (4)

where α ∈ [0, 1] is balance parameter.

2.2 Supervised Correspondence Neural Networks

In general, label information often provides discriminative cues for the vision
task [18]. Inspired by the theories of Corr-AE, we proposed a Supervised
Correspondence Neural Networks (Super-Corr-NN) by taking the label infor-
mation into the consideration. As shown in Fig. 2(b), two autoencoders are
replaced by two 3-layers multilayer perceptron in Super-Corr-NN. Given data
set X = {x(i)}n

i=1 and its label set L = {l(i)}n
i=1, l(i) ∈ {1, 2, . . . , c} and c is the

number of categories, the softmax loss is presented as follow:

J(X,L;Θ) = − 1
n

n∑

i=1

c∑

j=1

I{l(i) = j}log
eθT

j x(i)

∑c
k=1 eθT

k x(i) j = 1, 2, . . . , c (5)

where Θ is the parameter of network, θi is the i-th column of Θ, and I{z}
equals 1 if z is true, otherwise equals 0. Differing from the autoencoder model,
the output of multilayer perceptron is a probability vector of a sample belonging
to different classes, which can utilize label information to preserve intra-modal
similarities and make results more discriminative. Accordingly, the overall soft-
max loss function in Super-Corr-NN can be described as:

LS = J(X1, Y ;Θ1) + J(X2, Y ;Θ2) (6)

where Θ1 and Θ2 are the parameters of two multilayer perceptrons respectively.
Specifically, the same similarity metric is adopted to learn representation and
correlation simultaneously. By taking the correspondence loss defined in Eq. (1),
the total loss function can be derived by:

Ltotal = (1 − α)LS + αLH (7)

where α ∈ [0, 1] is balance parameter.

2.3 Supervised Correspondence AutoEncoder

In essence, Corr-AE, as an unsupervised learning method, can learn a correspon-
dence representation and correlation between different modalities. In contrast to
this, Super-Corr-NN could learn more discriminative representation by using the
label information, but which performs weak in correlation mining between dif-
ferent modalities. Meanwhile, Corr-AE can preserve more inter-modal similarity
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while Super-Corr-NN can preserve more intra-modal similarity. Inspired by this
finding, As shown in Fig. 2(c), we propose a supervised correspondence autoen-
coder (Super-Corr-AE) by combing the Corr-AE and Super-Corr-NN, which are
complementary to each other. In Super-Corr-AE, Super-Corr-NN and Corr-AE
share their input layer and hidden layer, with their output layers separated
independently. As a result, this model could simultaneously preserve both inter-
modal and intra-modal similarities and make the learned representation more
discriminative. In this model, the total loss consists of three parts: reconstruction
loss LI + LT , correspondence loss LH and softmax loss LS :

Ltotal = (1 − α)(LI + LT ) + αLH + βLS (8)

where α ∈ [0, 1] and β � 0 are balance parameters.

2.4 Supervised Correspondence Cross-modal AutoEncoder

As shown in Fig. 2(d), we further replace the Corr-AE in Super-Corr-AE to
Corr-Cross-AE. Differing from the Corr-AE model, Corr-Cross-AE restricts the
outputs of each autoencoder by the inputs of different modality. Accordingly,
the reconstruction loss is given as:

LIcross(X1,X2;W ) = ||X2 − X̂
(I)
2 ||2F (9)

LTcross(X1,X2;W ) = ||X1 − X̂
(T )
1 ||2F (10)

where X̂
(I)
2 and X̂

(T )
1 are outputs of image autoencoder and text autoencoder,

respectively. Then, the total loss can be derived as follow:

Ltotal = (1 − α)(LIcross + LTcross) + αLH + βLS (11)

where α ∈ [0, 1] and β � 0 are balance parameters.

2.5 Supervised Correspondence Full-modal AutoEncoder

As shown in Fig. 2(e), we replace the Corr-AE in Super-Corr-AE to Corr-Full-
AE. As a combination of Corr-AE and Corr-Cross-AE, Corr-Full-AE utilizes the
inputs of all modalities to restrict the outputs of each autoencoder. Consequently,
the reconstruction loss can be derived as follows:

LIfull(X1,X2;W ) = LI(X1,X2;W ) + LIcross(X1,X2;W )

= ||X1 − X̂
(I)
1 ||2F + ||X2 − X̂

(I)
2 ||2F

(12)

LTfull(X1,X2;W ) = LT (X1,X2;W ) + LTcross(X1,X2;W )

= ||X2 − X̂
(T )
2 ||2F + ||X1 − X̂

(T )
1 ||2F

(13)

where X̂
(I)
1 and X̂

(I)
2 are outputs of image autoencoder, X̂

(T )
1 and X̂

(T )
2 are

outputs of text autoencoder, respectively. Then, the total loss can be derived as
follows:

Ltotal = (1 − α)(LIfull + LTfull) + αLH + βLS (14)

where α ∈ [0, 1] and β � 0 are balance parameters.
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3 Experimental Results

3.1 Datasets

For experimental evaluation, three publicly available datasets are selected:

Wikipedia1. This dataset [13] is collected from “Wikipedia features articles”,
which contains 10 categories and 2,866 image&text pairs. Images are repre-
sented by 2,296-dimensions features, which consists of three type of low-level
features extracted from images, including 1,000-dimensions pyramid histogram of
words (PHOW) [1], 512-dimensions gist descriptor [10], 784-dimensions MPEG-
7 descriptors [8]. And texts are represented by 3,000-dimensions hign-frequency
words vector. These features are all extracted by [5]. We use 2,173 pairs as
training set, 231 pairs as validation set, 462 pairs as test set.

Pascal2. This dataset [4] contains 10 categories and 1,000 image&text pairs.
Image are represented by 2,296-dimensions features, shares the same extraction
with wikipedia dataset. And texts are represented by 1,000-dimensions high-
frequency words vector. We use 800 pairs as training set, 100 pairs as validation
set, 100 pairs as test set.

NUS-WIDE-10k. This dataset is sellected from the real-world web image
dataset NUS-WIDE3 [3], which contains 81 concepts and 269,648 images
with tags. We only choose 10 largest concepts and the corresponding 10,000
image&text pairs, each concept contains 1,000 pairs. Images are represented
by 1134-dimensions features, which consists of six types of low-level fea-
tures extracted from images, including 64-dimensions color histogram, 144-
dimensions color correlogram, 73-dimensions edge direction histogram, 128-
dimensions wavelet texture, 225-dimensions block-wise color moments and 500-
dimensions bag of words based on SIFT descriptions. And texts are represented
by 1,000-dimensions bag-of-words. We use 8,000 pairs as training set, 1,000 pairs
as validation set, and 1,000 pairs as test set.

3.2 Implementation Details

In the experiments, two RBMs were selected to pre-process the data. In the first
RBM, Guassian RBM and replicated softmax RBM were adopted to process
image and text data, respectively. The second RBM was a basic RBM. As a
result, the pre-processed data was utilized as the input of the proposed deep
correspondence models.

In particular, the settings of parameters (α, β) in different datasets were
shown in Table 1, although parameters (α, β) are not sensitive to datasets (more
empirical analysis will be given in the coming sections), to reach best perfor-
mance, we set different (α, β) on three different datasets and different model
and we fixed these values in all related experiments.
1 http://www.svcl.ucsd.edu/projects/crossmodal/.
2 http://vision.cs.uiuc.edu/pascal-sentences/.
3 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

http://www.svcl.ucsd.edu/projects/crossmodal/
http://vision.cs.uiuc.edu/pascal-sentences/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Table 1. Parameters setting on different methods and datasets

Method Wikipedia Pascal NUS-WIDE-10k

α β α β α β

Super-Corr-NN 0.8 - 0.9 - 0.7 -

Super-Corr -AE 0.9 11 0.9 19 0.9 1

Super-Corr-Cross-AE 0.9 50 0.8 30 0.7 3

Super-Corr-Full-AE 0.9 10 0.9 12 0.9 2

3.3 Baseline Methods

Meanwhile, three CCA basic methods: CCA-AE [6], CCA-Cross-AE [5], CCA-
Full-AE [5], two multi-modal methods: Bimodal AE [9], Bimodal DBN [9,16],
and three correspondence autoencoder methods [5]: Corr-AE, Corr-Cross-AE,
Corr-Full-AE, were selected for comparison.

3.4 Evaluation Metric

We perform two kinds of cross-modal retrieval: retrieve text by given image query
and vice verse. Mean average precision (mAP) of R top-rank retrieved data is
employed in our experiments to evaluate the performance of the results:

mAP =
1
M

M∑

i=1

(
1
L

R∑

r=1

P (r) × δ(r)) (15)

where M is the number of queries, L is the number of relevant data in retrieved
dataset, P (r) is precision of top r retrieved data, and δ(r) equals 1 if the
retrieved data shares the same label with the query, otherwise equals 0. We
employ mAP@50 (R = 50) in our experiments.

3.5 Analyse of Results

Typical mAP scores obtained by different methods and respectively tested on
Wikipedia, Pascal and NUS-WIDE-10k datasets, were reported in Table 2. Com-
paring with the baseline methods on image retrieval and text retrieval, it can be
found that our proposed models have significantly improved the performances in
both image and text retrieval. In particular, the retrieval performance obtained
by our proposed Super-Corr-NN was competitive with the results obtained by
Corr-AE. For instance, Super-Corr-NN has produced a better retrieval perfor-
mance than Corr-AE on Wikipedia and NUS-WIDE-10k datasets. Meanwhile,
Super-Corr-AE has achieved the better cross-modal retrieval performances than
Corr-AE models on three datasets, and also produced the better result than
Super-Corr-NN on Wikipedia and Pascal datasets. For instance, Super-Corr-AE
improved the mAP scores, respectively 3.1% and 13.9% on image query and text
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Table 2. mAP scores tested on three different datasets (I: image; T: text).

Method Wikipedia Pascal NUS-WIDE-10k

I→T T→I Avg I→T T→I Avg I→T T→I Avg

CCA-AE [6] 0.213 0.235 0.224 0.161 0.153 0.157 0.199 0.268 0.234

CCA-Cross-AE [5] 0.197 0.230 0.214 0.137 0.182 0.159 0.199 0.344 0.272

CCA-Full-AE [5] 0.293 0.331 0.312 0.148 0.177 0.163 0.241 0.242 0.242

Bimodal AE [9] 0.295 0.307 0.302 0.253 0.278 0.266 0.251 0.295 0.273

Bimodal DBN [9,16] 0.197 0.216 0.207 0.208 0.211 0.210 0.163 0.204 0.184

Corr-AE [5] 0.326 0.361 0.344 0.290 0.279 0.285 0.319 0.375 0.347

Super-Corr-NN 0.330 0.383 0.356 0.202 0.206 0.204 0.337 0.435 0.386

Super-Corr-AE 0.336 0.411 0.379 0.301 0.320 0.310 0.353 0.415 0.384

Corr-Cross-AE [5] 0.336 0.341 0.338 0.271 0.280 0.276 0.349 0.348 0.349

Super-Corr-Cross-AE 0.340 0.446 0.393 0.292 0.295 0.293 0.319 0.395 0.357

Corr-Full-AE [5] 0.335 0.368 0.352 0.281 0.276 0.279 0.331 0.379 0.355

Super-Corr-Full-AE 0.352 0.423 0.387 0.300 0.302 0.301 0.358 0.415 0.386

query than Corr-AE tested on Wikipedia dataset, 3.8% and 14.7% on Pascal
dataset, 10.7% and 10.7% on NUS-WIDE-10k. Further, Super-Corr-Cross-AE
has improved the mAP scores, respectively 1.2% and 30.8% on image query and
text query than Corr-Cross-AE on Wikipedia dataset, 7.7% and 5.4% on Pascal
dataset. This superiority can be attributed to the physical meaning of the model
illustrated in Sect. 2.3, which seamlessly combined the Corr-AE and Super-Corr-
NN by using the class label information. Remarkably, Super-Corr-Full-AE has
achieved the satisfactory performance, and the experimental results have shown
its outstanding performance.

3.6 Visualization

Further, we utilized the t-SNE [7] to visualize the image and text representation
for discrimination illustration intuitively. As shown in Fig. 3, it can be found that
Super-Corr-NN was able to learn discriminative representations, and the data
points of text modality can be well divided into their corresponding classes. In
contrast to this, Corr-Full-AE has failed to separate the text modalities of differ-
ent classes. The main reason lies that the Corr-Full-AE model focuses more on
pairwise data and often fails to preserve any global information in single modal-
ity. As a result, the data points from different classes are distributed disorderly.
Further, the proposed Super-Corr-Full-AE could produce discriminative separa-
tions on both image and text modalities, the data points can be well divided
into different classes visually. Therefore, it can be concluded that our discrimi-
native deep correspondence model could learn discriminative representations of
different modalities for cross-modal matching and retrieval.
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(g) (h) (i)

Fig. 3. Visualization of image, text and image&text pair in Wikipedia dataset, respec-
tively shown in (a)–(c) by Corr-Full-AE, (d)–(f) by Super-Corr-NN, and (g)–(i) by
Super-Corr-Full-AE.

3.7 Analyse of β

In addition, there are two parameters α and β in our models, and the sensitivity
of parameter α is well analysed in work [5]. By fixing α = 0.9, we conduct
various experiments to analyse the effect of different parameter β values. The
mAP values obtained by different models and tested on different datasets were
shown in Fig. 4, it can be easily found that parameters β is not sensitive in our
models and could produce satisfactory performance in a wide range of the values.
Therefore, it is adequate to fix the β with an appropriate value in practice.
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Fig. 4. mAP values obtained by the proposed deep models with different β values.



672 Z. Hu et al.

4 Conclusion

In this paper, we have presented a discriminative deep correspondence model
by seamlessly combining the correspondence autoencoder and supervised corre-
spondence neural networks for cross-modal matching. The proposed deep model
not only can learn the representation and correlation of different modalities
simultaneously, but also could preserve both inter-modal and intra-modal sim-
ilarity for efficient cross-modal matching. The experimental results have shown
its outstanding performance in comparison with existing counterparts.
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