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Abstract. High dynamic range (HDR) images are usually used to cap-
ture more information of natural scenes, because the light intensity of
real world scenes commonly varies in a very large range. Humans visual
system is able to perceive this huge range of intensity benefiting from the
visual adaptation mechanisms. In this paper, we propose a new visual
adaptation model based on the cone- and rod-adaptation mechanisms
in the retina. The input HDR scene is first processed in two separated
channels (i.e., cone and rod channels) with different adaptation parame-
ters. Then, a simple receptive field model is followed to enhance the local
contrast of the visual scene and improve the visibility of details. Finally,
the compressed HDR image is obtained by recovering the fused lumi-
nance distribution to the RGB color space. Experimental results suggest
that the proposed retinal adaptation model can effectively compress the
dynamic range of HDR images and preserve local details well.
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1 Introduction

The range of the light intensity in natural scenes of the real world is so vast
that the illumination intensity of sunlight can be 100 million times higher than
that of starlight. Therefore, high dynamic range (HDR) images are usually used
to capture more information of natural scenes. However, most display devices
available to us have a limited dynamic range [21]. HDR tone mapping or dynamic
range compression methods are usually required to reproduce the HDR images
matching the dynamic range of the standard display devices, so that the details
in both the dark and bright areas are as faithfully visible as possible.

In recent years, many HDR image compression methods have been proposed.
Roughly, the existing methods can be classified into two categories: global oper-
ators and local operators. Global operators apply the same transformation to
each pixel, without considering the spatial position. For example, Tumbling and
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Rushmerier proposed a tone mapping operator in 1993 [25], which uses a sin-
gle spatially invariant level for the scene and another adaptation level for the
display. Although it can preserve the brightness value, but lost the visibility of
high dynamic range scenes [12]. Instead of brightness, Ward [26] and Ferwerda
et al. [8] aimed at preserving the contrast. They used a scaling factor to trans-
form real-world luminance values to displayable range. They believe that a Just
Noticeable Difference (JND) in the real world can be mapped as the JND on
the display device. They built their global models based on the threshold ver-
sus intensity (TVI) function. Different from Ward’s contrast-based scale factor
that only considers the photopic lighting conditions, Ferwerda et al. added a
scotopic component. These models can preserve the contrast well but may lose
visibility of the very high and very low intensity regions [12]. In the year of 2000,
Pattanaik et al. [20] proposed a new time-dependent tone reproduction operator
following the framework proposed by Tumblin and Rushmeier. In short, although
these global models are low computational cost, they are difficult to preserve the
details with high contrast scenes.

In contrast, local operators adapt the mapping functions to the statistics
and contexts of local pixels. In comparison to the global operators, local opera-
tors perform better on preserving details. However, a fundamental problem with
local operators is the halos artifacts appearing around the high-contrast edges.
For example, Pattanaik et al. [19] described a comprehensive computational
model of human visual system adaptation and spatial vision for realistic tone
reproduction. This model is able to display HDR scenes on conventional display
devices, but the dynamic range compression is performed by applying different
gain-control factors to each band-pass, which causes strong halo effects. To solve
this problem, Durand et al. [6] presented a method with edge-preserving filter
(bilateral filer) to integrate local intensities for avoiding halo artifacts.

In 2004, Ledda et al. [13] proposed a local model based on the work of
Pattanaik et al. [20]. The adaptation part of that method tries to model the
mechanisms of human visual adaptation, with the help of a bilateral filer to avoid
halo artifacts. Along this line, there are also some other works that attempt to
build bio-inspired methods for HDR image rendering and dynamic range com-
pression [9,14,28]. Biologically, human visual system can respond to huge lumi-
nance range, depending on the ability of visual adaptation, mainly the dark
adaptation and light adaptation. Dark adaptation refers to how the visual sys-
tem recovers its sensitivity when going from a bright environment to a dark one,
while light adaptation indicates the processing that visual system recovers its
sensitivity when we go from a dark environment to a bright one. In the retina,
cone photoreceptors respond to higher light levels while rods are highly sensi-
tive to the light of the dark and dim condition. Therefore, the light and dark
adaptations is related to the switch of cones and rods.

In this paper, we propose a new visual adaptation model to compress the
dynamic range of HDR images according to the mechanisms of cones and rods
in the retina. We design two separated channels (cone and rod channels) with
different adaptation properties to compress the dynamic range of light and dark
information in the HDR images. The simple receptive field model is further
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used to enhance the local contrast for improving the visibility of details. Finally,
the compressed HDR image is obtained by recovering the fused luminance to
the RGB color space. Experimental results suggest that the proposed retinal
adaptation model can effectively compress the dynamic range of HDR image
and preserve the scene details well.

2 The Proposed Model

In this study, we proposed a new dynamic range compression method aiming at
modeling the mechanisms of visual adaptation. The input image is first separated
into two luminance distribution maps for the rod and cone channels. Then the
responses of rods and cones are obtained with the Naka-Rushton adaptive model
[16] according to the local luminance of the scene. A local enhancement operator
based on the receptive field of ganglion cells is then used to enhance the local
contrast in both the cone and rod channels. Finally, cone and rod channels are
adaptively fused into a unified luminance map with compressed dynamic range
and enhanced local contrast. The flowchart of dynamic range compression in
the proposed model is shown in Fig. 1. Finally, the luminance information is
recovered to the RGB space to obtain the color images.

Fig. 1. The flowchart of dynamic range compression in the proposed model. The spa-
tially varying weighting w(x, y) for fusion is computed with Eq. (10).

2.1 Response of Photoreceptors

According to the visual adaptation mechanisms, cone and rod photoreceptors
vary their response range dynamically to better adapt the available luminance
of the environment. The model proposed by Naka and Rushton [16] has been
widely used to describe the responses of cones [2,11] and rods [4]. It indicates that
the response of a photoreceptor at any adaptation level can be simply described
as R = In/(In + σn), where I is the light intensity and σ is the semi-saturation
parameter determined by the adaptation level, n is a sensitivity-control exponent
which is normally between the range of 0.7–1.0 [3,17]. Thus, the dark and light
adaptations can be explained by changing the value of σ at varying luminance
levels. For example, on a sunny day, we cannot see well at the beginning when we
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Fig. 2. Response to luminance with different adaptation levels.

enter a dark room. It is just because the value of σ is originally set at high adapta-
tion level while I is of low intensity, which makes the response R almost zero. But
after tens of minutes, visual sensitivity is restored after σ changes into a smaller
adaptation level and the response R increases. Figure 2 shows the response curves
changing with different adaptation levels by varying the value of σ.

HDR image compression mainly refers to compress the dynamic range of
luminance information. In this work, we first convert the input HDR image
(RGB) into two different luminance channels for further processing by rods and
cones [19], i.e., the photopic luminance of cones (Lcone) and scotopic luminance
of rods (Lrod):

Lcone = 0.25 · IR
in + 0.67 · IG

in + 0.065 · IB
in (1)

Lrod = 0.702 · X + 1.039 · Y + 0.433 · Z (2)

where, IR
in, IG

in and IB
in are respectively the R, G and B components of the given

HDR image, while X, Y and Z are the three components when transforming the
original RGB space to XYZ color space. Thus, we can obtain the cone and rod
luminance responses referring to Naka-Rushton equation [16] according to

Rcone(x, y) =
Ln

cone(x, y)
Ln

cone(x, y) + σn
cone(x, y)

(3)

Rrod(x, y) =
Ln

rod(x, y)
Ln

rod(x, y) + σn
rod(x, y)

(4)

Following the previous work [27], there is a empirical relation between the
adaptation parameter σ and visual intensity levels as

σcone = Lα
cone · β (5)

σrod = Lα
rod · β (6)
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In this paper, we experimentally set the value of α as 0.69 for both the cone
and rod channels, but β is a constant that differs for the rods and cones, i.e.,
β = 4 for the cone channel and β = 2 for the rod channel.

2.2 Local Enhancement and Fusion

The responses of cones and rods pass through the retina which contains the
bipolar cells, horizontal cells, retinal ganglion cells, etc. In this paper, we just
focus on the role of local enhancement by the retinal ganglion cells. We use
a difference-of-Gaussians (DOG) model [23] to simulate the receptive filed of
ganglion cells for enhancing the local contrast of the visual scene. Thus the
output of ganglion cells (Gcone and Grod) can be computed as:

Gcone(x, y) = Rcone(x, y) ∗ (
g(x, y;σc

rf ) − k · g(x, y;σs
rf )

)
(7)

Grod(x, y) = Rrod(x, y) ∗ (
g(x, y;σc

rf ) − k · g(x, y;σs
rf )

)
(8)

g(x, y;σrf ) =
1

2πσ2
rf

exp(−x2 + y2

2σ2
rf

) (9)

where ∗ denotes the convolution operator, σc
rf and σs

rf are respectively the stan-
dard deviations of Gaussian shaped receptive field center and its surround, which
are experimentally set to be 0.5 and 2.0 in this work. k denotes the sensitivity
of the inhibitory annular surround.

To combine the ganglion cell’s outputs along the cone and rod channels, we
use a sigmoid function to describe the weighting of cone and rod systems when
fusing the two signals.

w(x, y) =
1

0.2 + Lcone(x, y)−0.1 (10)

where the fixed parameters (i.e., 0.2 and −0.1) are experimentally set.
From Eq. (10), the value of w(x, y) is increased with the increasing of lumi-

nance, which basically matches the light and dark adaptation mechanisms. In
the photopic condition, the cone system makes more contribution, while the
rod system is more sensitive in the scotopic range. Thus, the fused luminance
response is given by

Lout(x, y) = w(x, y) · Gcone(x, y) + (1 − w(x, y)) · Grod(x, y) (11)

2.3 Recovering of the Color Image

To recombine the luminance information into a color image and assure color
remains stable, we keep the ratio between the color channels constant before and
after compression [10]. Considering that for some input images with high satu-
ration, the output images may appears over saturation when using this simple
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rule, we add an exponent s to control the saturation of the output image [21],
which is described as

Ic
out(x, y) = Lout(x, y)

(
Ic
in(x, y)

Lin(x, y)

)s

, c ∈ {R,G,B} (12)

where Ic
out(x, y), c ∈ {R,G,B} are the RGB channels of the output image,

Lin(x, y) is replaced using Lcone(x, y). The exponent s is given as a parame-
ter between 0 and 1, and we set s = 0.8 for the most scenes.

3 Experimental Results

In this section, we evaluated the performance of the proposed method by com-
paring our method with some existing algorithms. We considered two representa-
tive local algorithms including the methods proposed by Durand and Dorsey [18]
and Meylan et al. [15], and one typical global algorithm proposed by Pattanaik
et al. [20]. The model of Durand et al. uses a bilateral filter to integrate the local
intensity. The algorithm proposed by Meylan et al. is an adaptive Retinex model.
The method of Pattanaik et al. is aimed at simulating certain mechanisms of
human visual system, but with a global operation.

Experimental results are shown in Figs. 3, 4, 5, 6 and 7. In Fig. 3, we tested
the methods with an indoor HDR scene named as “office”. Figure 3(a)–(d) lists

Fig. 3. Comparison of the results with local algorithms on the indoor “office” image.
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Fig. 4. Comparing the results with local algorithms (inside scenes).

Fig. 5. Comparison of the results with local algorithms on four outdoor scenes.

the results of the whole image (the first row), the local details in the dark area
(the second row), and the local details in the bright area (the third row). For
the dark regions, our and Meylan’s results are better than that of the Durand’s
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Fig. 6. Comparing the results with a global algorithm.

method. For the bright region, our method obtains good luminance compression
and preserves more details. The last row (Fig. 3(e)) shows different exposure
levels of the HDR image, it clearly shows that our model and Durand’s method
still keep the wall a little blue which is similar to the original HDR image, but
the Meylan’s result has serious color cast, e.g., the wall appears even a little
yellow. Other two inside HDR scenes are also shown in Fig. 4. Durand’s model
has serious contrast reversals artifacts around high contrast edges. For instance,
unlocked lamps on the ceiling in top image of Fig. 4, their edges are out of shape.

We also selected four outdoor HDR scenes to give more comparisons. The
results are shown in Fig. 5. In some situations, Durand’s algorithm could lose
some information, while our method preserves more clear details in both the
dark and light situations with less color cast.

We also compared our model with the method of Pattanaik et al. [20], a global
tone reproduction operator (shown in Fig. 6). The results of Pattanaik et al. are
cited from pfstools (http://pfstools.sourceforge.net/tmo gallery/). We can see
that Pattanaik’s results lose much color information and have lower contrast.

We further compared our method with Ashikhmin’s tone mapping algo-
rithm [1], Drago’s adaptive logarithmic mapping [5], Durand’s bilateral filter-
ing [6], Fattal’s gradient domain compression [7], Reinhard’s photographic tone
reproduction [22], Tumblin’s fovea interactive method [24] and Ward’s contrast-
based operator [26]. The results of these methods are downloaded from the
Max Planck Institut Informatik (MPII) (http://resources.mpi-inf.mpg.de/tmo/
NewExperiment/TmoOverview.html). Two examples of Napa Valley and Hotel
Room scenes in MPII dataset are shown in Fig. 7. We calculated the entropy

http://pfstools.sourceforge.net/tmo_gallery/
http://resources.mpi-inf.mpg.de/tmo/NewExperiment/TmoOverview.html
http://resources.mpi-inf.mpg.de/tmo/NewExperiment/TmoOverview.html
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Fig. 7. comparison on Napa Valley and Hotel Room from MPII. In every scene from top
to bottom and left to right there are the original HDR image, our results, Ashikhmin
[1], Drago [5], Durand [6], Fattal [7], Reinhard [22], Drago’s Retinex, Tumblin [24] and
Ward [26] respectively.

Table 1. Quantitative comparison on images from MPII with entropy as metric.

Napa Valley Hotel Room Atrium Morning Atrium Night Memorial

Ashikmin [1] 7.416 6.966 7.778 7.972 7.769

Drago [5] 7.381 6.756 7.421 7.907 7.753

Durand [6] 7.182 6.695 7.046 7.424 7.291

Fattal [7] 7.600 7.445 8.031 7.455 8.504

Reinhard [22] 7.232 6.817 7.375 7.860 7.837

Tumblin [24] 7.016 6.391 6.995 7.491 7.668

Ward [26] 7.416 6.694 7.251 7.915 7.783

Proposed 7.941 7.267 7.830 8.309 8.030
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values as quantitative metric. The entropy of our method and the seven com-
pared methods on five scenes are listed in Table 1. A higher entropy score means
the richer information contained in an image, indicating the better performance
of the method.

4 Conclusion

In this paper, we proposed a visual adaptation model based on the retinal adap-
tation mechanisms to compress the dynamic range of HDR images. The model
has considered the sensitivity changes based on the light and dark adaptation
mechanisms and the receptive field property of retinal ganglion cells. We have
compared our results with several typical compression operators, on both indoor
and outdoor scenes. In general, the proposed model can efficiently compress the
dynamic range and enhance the local contrast. Considering that some high level
information in the visual system can usually serve as an important guidance to
improve the low level visual processing, in the future work we will consider to
add the global visual effect when compressing the dynamic range.
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