
Chapter 14
Toward a Realistic Modeling of Epidemic
Spreading with Activity Driven Networks

Alessandro Rizzo and Maurizio Porfiri

Abstract Models of epidemic spreading are widely used to predict the evolution
of an outbreak, test specific intervention scenarios, and steer interventions in the
field. Compartmental models are the most common class of models. They are
very effective for qualitative analysis, but they rely on simplifying assumptions,
such as homogeneous mixing and time scale separation. On the other end of the
spectrum, detailed agent-based models, based on realistic mobility pattern models,
provide extremely accurate predictions. However, these models require significant
computing power and are not suitable for analytical treatment. Our research aims
at bridging the gap between these two approaches, toward time-varying network
models that are sufficiently accurate to make predictions for real-world applications,
while being computationally affordable and amenable to analytical treatment. We
leverage the novel paradigm of activity driven networks (ADNs), a particular
type of time-varying network that accounts for inherent inhomogeinities within
a population. Starting from the basic incarnation of ADNs, we expand on the
framework to include behavioral factors triggered by health status and spreading
awareness. The enriched paradigm is then utilized to model the 2014–2015 Ebola
Virus Disease (EVD) spreading in Liberia, and perform a what-if analysis on
the timely application of sanitary interventions in the field. Finally, we propose
a new formulation, which is amenable to analytical treatment, beyond the mere
computation of the epidemic threshold.
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14.1 Introduction

Models for the spreading of infectious diseases have opened unprecedented
scenarios in management and containment of epidemics. The assessment of the
effect of vaccination campaigns, travel bans, and prophylaxis campaigns is now
possible, partly due to the availability of such models. Models are also effective in
providing valuable information to steer interventions in the field, when therapeutical
protocols might not be available [1].

The most common and valuable modeling tools are mean-field compartmen-
tal [2–4] and agent-based models [5]. Even though such models are widely used
and effective under several aspects, they suffer from a number of key limitations that
may hamper their effectiveness in forecasting epidemics dynamics and assessing the
effect of intervention policies.

Mean-field compartmental models are based on deterministic or stochastic differ-
ential equations, in which relevant variables, called compartments, evolve in time to
describe the fraction of the population in a given state of the epidemic model [2, 4].
These models are usually calibrated through least-squares optimization on available
epidemic data [6]. Then, several instances of the model are studied, varying one or
more parameters, to anticipate plausible scenarios for the evolution of the outbreak
in terms of the total number of infections and casualties. Mean-field approximations
are effective to enable a first, mathematically rigorous understanding of epidemic
spreading, but suffer from several limitations.

While these models are computationally simple and theoretically tractable, they
do not take into account the inherently time-varying nature of human behavior,
which is influenced by several factors, such as health status or risk perception [7–9].
In their basic incarnation, they rely on the assumption of homogeneous mixing,
whereby each individual contacts every other. This assumption typically yields
an overestimation of cases [10, 11], since social interactions in populations are
heterogeneous both in number and intensity [12–14]. Although heterogeneities
could be included by refining and increasing the spectrum of compartments [15, 16],
such an approach may challenge rigorous analytical treatment and parameter
identification.

In terms of complexity, agent-based models are located at the opposite side
of the spectrum from mean-field compartmental models. Stochastic simulation of
individuals’ motion and interaction is the basic component of such models. Several
spatial constraints and specific mobility patterns are contemplated to reproduce
realistic conditions in the model simulations [17]. The Global Epidemic and
Mobility Model (GLEAMviz) [5] is a comprehensive agent-based framework for
wordlwide simulation. Several infectious outbreaks have been simulated through
this model, assessing related risks in a systematic manner [18, 19]. Although very
refined, agent-based models require extensive simulation campaigns based on a
detailed knowledge of human behavior, and their structure and working principle
do not allow any analytical treatment to be carried out.
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The present lifestyle, with frequent and fast short- and long-haul travels, yields a
reconsideration of typical time scales of the progress of infectious diseases and the
dynamics of human contact patterns. Thus, the assumption of homogeneous mixing,
according to which every individual contacts everyone else in a population, should
be overcome toward approaches that explicitly account for the concurrent evolution
of the diseases dynamics and the time-varying formation of the network of contacts.

To enable the study of diffusion models on time-varying networks, it is very
often assumed that links between nodes have a much longer or much shorter life
span than the epidemic dynamics [20–24], resulting in the separation between the
time scales of the dynamics of the network and the process evolution. On the other
hand, activity driven networks (ADNs) describe contact processes that evolve over
time-varying networks [25], when timing and duration of connections happen over
short time scales [14, 26–29], comparable with the dynamics of the process running
on the network nodes.

Disease spreading in susceptible-infected-susceptible (SIS) and susceptible-
infected-removed (SIR) models has been recently studied through ADNs [30],
and spreading and immunization thresholds have been computed using a heteroge-
neous mean-field approach [25, 30]. The substantial difference in these thresholds
compared to those on static networks calls for further investigations on epidemic
spreading over time-varying networks. ADNs seem a viable tool, providing accurate
and mathematically tractable models of epidemic spreading, which overcome
key limitations of mean-field compartmental and agent-based models. Although
promising, research on ADNs is in its early stages, and several efforts are being
conducted to advance the state of knowledge [31–34].

In this chapter, we describe our research effort to improve the ADN paradigm
toward a more realistic modeling of epidemic spreading, with the objective to
achieve realistic models that remain computationally affordable and analytically
tractable. The chapter is organized as follows. In Sect. 14.2, we offer a review of
the working principles of the original ADN formulation. Toward a more realistic
treatment of behavioral factors, in Sect. 14.3 we study the effect of individual
behavior on the spreading of the epidemic in an SIS process, summarizing our
published work [35]. Our findings are then successfully applied in Sect. 14.4 to
model the 2014–2015 outbreak of Ebola Virus Disease (EVD) in Liberia. After
a calibration phase, the model is used to offer a one-year prediction of the case
count, which is confirmed by field data. A what-if analysis on the effect of timely
sanitary intervention is also presented, borrowing from our published work [36].
In Sect. 14.5, we examine a mathematical framework that we recently established
in [37] for the analytical treatment of ADNs, which enables the analysis of the
network dynamics beyond the computation of the epidemic threshold. Finally,
conclusions and potential lines of future work are presented in Sect. 14.6.
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14.2 Activity Driven Networks: The Original Formulation

ADNs have originally been introduced to model spreading phenomena where the
time scales of the epidemic dynamics and of connection formation are comparable,
and to simulate such phenomena without relying to the time scale separation
hypothesis [25, 30, 38].

The approach is based on an activity potential, which is the probability per
unit time that a node will establish contacts with other nodes in the network. We
consider a network with N nodes. Each individual is associated with a network
node i that is characterized by its activity potential xi, with i D 1; : : : ; N. In the
original formulation in [25], the xis do not change in time and are independent
and identically distributed realizations of a random variable x, with a probability
density function F.x/. The selection of F.x/ is a crucial point of the approach, since
it determines the interactions within the network. In [25], an analysis of three large,
time-resolved datasets of contacts in social networks suggests the use of heavy-tail
density functions of the form F.x/ / x�� , with 2 � � � 3.

In its original incarnation [25], an activity firing rate ai D �xi is assigned to
each individual, where � is a constant scaling factor that regulates the average
number of active nodes in the network in a unit time. Starting from a disconnected
network of N nodes, in a time increment �t, the epidemic model evolves as follows
(see Fig. 14.1):
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Fig. 14.1 (From [36]) An SIS epidemic model evolving on an ADN with N D 5 nodes and m D 2

links per active node. Nodes’ health states are encircled, and active nodes are shaded. (a) At the last
phase of time t, the ADN is disconnected and nodes 2 and 3 are infected. Between t and t C�t: (b)
nodes 3 and 4 become active and contact nodes 4 and 1, and 5 and 1, respectively; (c) the epidemic
process evolves, so that node 3 infects node 1, nodes 2, 4, and 5 remain in the susceptible state,
and node 2 recovers; and (d) time �t has elapsed and all the links are removed before a new time
increment is initiated
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1. Node i, with i D 1; : : : ; N becomes active with probability ai�t. If the node is
active, it contacts m other nodes drawn at random from a uniform distribution,
creating undirected links. If it is not active, no connections are created. At the
end of this step, an undirected graph is assembled;

2. The algorithmic rules of the epidemic model are run on the obtained graph. For
example, for an SIS model: (i) each infected node can infect its susceptible
neighbors with a per-contact transmission probability �, and (ii) each infected
node recovers to the susceptible state with probability per unit time �; and

3. At the next time step t C �t, all the network links are removed and the process
resumes.

In [25, 30], SIS and SIR processes on ADNs are studied and the epidemic
threshold is computed through a heterogeneous mean-field approach [39, 40].
In particular, for the SIS model the epidemic threshold for �=� beyond which there
is an epidemic is

�0 � 1

m

1

hai C pha2i ; (14.1)

where a D �x is the random variable whose realizations define the probabilities of
activation; h�i denotes statistical expectation; and the superscript “0” refers to this
baseline formulation. In addition, control strategies for selective immunization have
been implemented in [30] and assessed via a mean-field approach.

14.3 Behavioral Epidemic Models on Activity Driven
Networks

The role of individual behavior on the spreading of epidemic diseases is becoming
increasingly important due to increased travel activity, both on short (commuting)
and long (leisure or business trips) space and time scales [41–48]. Moreover, the
wide availability of data through mass media grants people access to information
that could influence their behavior in response to an epidemic outbreak. For exam-
ple, individuals may modify travel plans, opt for self-quarantine, decide to avoid
infected individuals, or get vaccinated. The search of disease-related information
on the Internet is so widespread that search engine query data have been utilized to
detect the spreading of influenza [49]. Finally, the behavior of individuals is very
often modified by their health status, which may reduce or even prevent their ability
to move and, consequently, contact and infect others.

Different approaches have been used to model behavioral changes in epidemic
models, namely: introducing changes in the contact rates as a function of health
status [50–53]; considering additional compartments or classes in compartmental
models [54–57]; and suitably coupling models of the disease and information
spreading [58]. Surprising, counter-intuitive phenomena may emerge when
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behavioral changes are considered. An important example is the increase in the
likely of a global spreading when introducing travel restrictions to locations with a
high prevalence of the infection [46].

Here, we focus on the effects of changes of individual behavior in an SIS
epidemic model [35]. We consider two salient instances of behavioral modification.
The former instance deals with the reduction of activity of infected individuals due
to the contraction of the infection. This behavior includes the cases of quarantine,
as well as the natural reduction in activity of infected individuals, caused by the
illness. This activity limitation is common in the cases of MERS-CoV [59] or
SARS [41, 60, 61].

The second instance deals with changes in the activity of susceptible individuals,
on the basis of their risk perception. Susceptible individuals tend to avoid contacts
with others when they perceive a risk of infection; yet upon contracting the infection,
they resume their usual behavior, contacting, and possibly infecting, susceptible
individuals. This “selfish” behavior is typical of infections that do not prevent daily
habits, such as syphilis, HIV, or gonorrhoea [62–67]. We assume that risk perception
is based on the knowledge of two different pieces of information, namely, the
prevalence of the epidemic and its rate of growth.

Using ADNs, our results confirm that individual behavior may drastically affect
the epidemic spreading both in terms of the epidemic threshold and of the steady
state fraction of infected individuals. Specifically, we find that a reduction in the
activity rate of either susceptible or infected individuals yields a higher epidemic
threshold and a lower steady state fraction of infected individuals. Nevertheless, the
reduction of activity of the infected individuals seems to be a more relevant factor,
confirming the effectiveness of quarantine-like policies.

In particular, in the case of a reduction of activity of the infected individuals, the
relative activity of infected individuals with respect to susceptible ones is a key
predictor of the epidemic spreading. We consistently observe that the epidemic
threshold benefits from differences in the activity of susceptible and infected
individuals. Finally, when the activity of the infected individuals is drastically
reduced, we find that the epidemic threshold depends only on the activity of the
susceptible individuals and on the network characteristics. On the other hand, in
the case of a reduction of activity of the susceptible individuals, the possibility
of susceptible individuals spontaneously reducing their activity yields an increase
in the epidemic threshold and a decrease in the steady state infected fraction.
Nevertheless, such a modulation is more effective when the risk perception is related
to the prevalence of the epidemic, rather than to its rate of growth.
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14.3.1 Behavioral Changes of Infected Individuals Due
to Their Health Status

To model behavioral changes in individuals due to their health status, we change
the activity potential xi of each individual through two different scaling constants,
according to their health status [35]. To this aim, the parameter � defined in
Sect. 14.2 is replaced with two different scaling factors: �S, for individuals in the
susceptible state; and �I , for those in the infected state. Thus, two different activity
firing rates are assigned to individuals: ai D �Sxi, if individual i is in the susceptible
state, and ai D �Ixi, if it is in the infected state. Apart from this operation, the ADN
works exactly as in its original incarnation described in Sect. 14.2. We consider
the case in which individuals reduce activity as they contract the infection, as a
consequence of a self-initiated behavior, or due to a health condition. Thus, we
assume that the activity rate parameters of susceptible and infected individuals
differ, and, specifically, that �I < �S.

The epidemic threshold can be computed analytically through a heterogeneous
mean-field approach inspired by [30] and detailed in [35]. The threshold is

�AR � 1

m

2

.�S C �I/hxi C p
.�S � �I/2hxi2 C 4�S�Ihx2i ; (14.2)

where the superscript “AR” stands for activity reduction. From Eq. (14.2), we note
that the epidemic threshold depends on the interplay between the activity rates of
susceptible and infected individuals, and on the first and second statistical moments
of the activity potential distribution. Moreover, similar to [25, 30], the epidemic
threshold does not depend on any parameter that is representative of the time-
aggregated network of contacts.

Two limit cases are of particular interest. When the activity rates are homoge-
neous, that is, �S D �I D �, the threshold coincides with that found in [30] and
reported in Eq. (14.1). On the other hand, when �I � �S, the threshold is

�SAR � 1

m�Shxi ; (14.3)

where the superscript “SAR” stands for strong activity reduction of the infected
individuals. Thus, when the infection severely limits the individual activity, the
epidemic threshold depends only on the activity of the susceptible individuals and on
the first statistical moment of the activity potential distribution. In this case, activity
fluctuations have no effect on the threshold value, and the spreading is independent
of the activity of the infected individuals. The ratio �I=�S should be considered as a
valid indicator of the process heterogeneity. Figure 14.2 displays the threshold �AR

in Eq. (14.2) as a function of the ratio �I=�S, for �S D 15, � D 0:1, and a network
of N D 10;000 nodes with m D 5. A distribution F.x/ / x�� , with � D 2:1 is
selected for the activity potentials and a lower cutoff � D 10�3 on the x variable is
adopted to avoid the singularity of F.x/ for x close to zero. Such parameter values
are maintained along the rest of this section, unless otherwise specified.
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Fig. 14.2 (From [35])
Epidemic threshold �AR as a
function of the activity ratio
�I=�S from Eq. (14.2)
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Fig. 14.3 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) as a
function of �=� and �I=�S. The white solid line defines the theoretical threshold computed
according to Eq. (14.2), and the white dashed line offers a conservative estimate of the epidemic
threshold computed on the steady state data, by setting the fraction of infected individuals to 0.001.
Results are averaged over 50 independent trials with an initial infected number of 0:01N random
individuals

The trend of the steady state fraction of infected individuals exhibits a pattern
that is consistent with that of the epidemic threshold. Figure 14.3 displays the steady
state fraction of infected individuals, I1=N, for the same network described above,
as a function of �=� and �I=�S. We find that the level curves show a trend that is
similar to that of the threshold, superimposed on the plot with a white solid line. We
comment that a higher value of �=� is required to obtain a given steady state ratio
I1=N, when the ratio �I=�S is small; conversely, a smaller value of �=� suffices for
a large value of �I=�S.
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14.3.2 Behavioral Changes of Susceptible Individuals Due
to Risk Perception

A further source of behavioral change may be offered by the risk perception about
the epidemic propagation. In this case, individuals may try to protect themselves
by reducing their activity, aiming at reducing the chances of contact with others,
irrespective of their health status.

We assume that individuals have access to global information about the disease
spreading [53] and, to this aim, we contemplate two modeling strategies for risk
perception: the former is informed by the epidemic prevalence, that is the number of
infected individuals in the population; and the latter is informed by the growth of the
epidemic. When no risk is perceived, all the susceptible individuals have the same
activity parameter N�S. When the epidemic starts to spread, the activity parameter of
susceptible individuals is modulated in time as a function of their perceived risk of
infection. We denote such a time-varying activity parameter with �t

S. To simplify the
analysis, we assume that individuals act egoistically, by not reducing their activity
when infected, only seeking to minimize their chance to contract the infection. As a
consequence, the activity parameter for infected individuals is held fixed at the same
value of the disease-free parameter of susceptible individuals, that is �I D N�S.

To model risk perception as a function of the prevalence of the epidemic, we
posit the following behavioral rule

�t
S D

(
N�S.1 � It=NI/; if It � NI
0; if It > NI ; (14.4)

where It is the number of infected individuals at time t. In Eq. (14.4), NI regulates the
intensity of the reduction in activity related to risk perception, so that �t

S D N�S when
It D 0, and �t

S D 0 when It D NI. In particular, the smaller NI is, the more intense the
activity reduction is (a few infected individuals are sufficient to drop the activity of
susceptible individuals to zero).

Figure 14.4 illustrates the steady state fraction I1=N of infected individuals in
the case of a risk perception behavior based on Eq. (14.4), as a function of 1=NI
and �=�. Importantly, the epidemic threshold is higher than in the case where
susceptible individuals do not change their behavior as in Eq. (14.1). Also, this
threshold tends to increase with 1=NI, even though for wide ranges of NI, the epidemic
threshold is largely independent of its value. The steady state value of the infected
fraction decreases as 1=NI increases, even though such a variation is quite secondary.

These findings suggest that the adoption of a self-protective behavior related to
risk perception is beneficial both to the individual and to the community. Indeed,
even in the examined case in which individuals resume their usual activity once
infected, this behavior still benefits the whole population, in terms both of increasing
the epidemic threshold and decreasing the steady state value of the infected fraction.
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Fig. 14.4 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) with a
risk perception behavior as in Eq. (14.4), as a function of 1=NI and �=�, for N�S D �I D 15. The
white solid line defines the epidemic threshold for uniform and constant activity �S D �I D 15,
computed according to Eq. (14.1), and the white dashed line offers a conservative estimate of the
epidemic threshold with the inclusion of risk perception behavior, computed by setting the fraction
of infected individuals to 0.001. Results are averaged over 50 independent trials with an initial
infected number of 0:01N random individuals

The second behavioral strategy is based on the assumption that risk perception is
related to the rate of growth of the infection in time. We introduce �t

I D It � It��t as
the time difference of the number of infected individuals between two consecutive
iterations and N� as a select threshold for such a time difference. Our behavioral rule
for the parameter �t

S is as follows:

�t
S D

8
ˆ̂<

ˆ̂:

N�S; if �t
I � 0

N�S.1 � �t
I=

N�/; if 0 < �t
I < N�

0; if �t
I � N�

: (14.5)

Thus, N� regulates the intensity of the behavioral change with respect to the risk
perception (the lower N� is, the stronger the action in response to a growth in the
epidemic spreading is).

Figure 14.5 illustrates the steady state fraction I1=N of infected individuals as
a function of 1= N� and �=�, with the same parameters used to assess the previous
behavioral strategy. As expected, a more severe activity reduction (lower N�) yields
a higher epidemic threshold together with a lower steady state fraction of infected
individuals. Comparing the two risk perception models, we note that variations of NI
have a more significant role on the first behavioral strategy than N� has on the second
behavioral strategy.
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Fig. 14.5 (From [35]) Steady state fraction I1=N of infected individuals (color-coded) with a
risk perception behavior as in Eq. (14.5), as a function of 1= N� and �=�, for N�S D �I D 15. The
white solid line defines the epidemic threshold for uniform and constant activity �S D �I D 15,
computed according to Eq. (14.1), and the white dashed line offers a conservative estimate of the
epidemic threshold with the inclusion of risk perception behavior, computed by setting the fraction
of infected individuals to 0.001. Network and simulation parameters are the same as in Fig. 14.4

14.4 Modeling the 2014–2015 Ebola Virus Disease (EVD)
Spreading in Liberia

The introduction of behavioral phenomena has been of fundamental importance
for the development of realistic epidemic models. In this section, we present a
model of the 2014–2015 spreading of EVD in Liberia [36]. Behavioral phenomena
are of fundamental importance to account for the reduced activity of infected and
hospitalized individuals, as well as the zero activity of dead yet extremely infectious
corpses that are not safely buried. We calibrate the model from field data of the
2014 April-to-December spreading in Liberia and use the model as a predictive
tool, to emulate the dynamics of EVD in Liberia and offer a one year projection,
until December 2015. Also, we perform a what-if analysis to assess the efficacy of
timely intervention policies. In particular, we show that an earlier application of the
same intervention policy would have greatly reduced the number of EVD cases, the
duration of the outbreak, and the infrastructures needed for the implementation of
the intervention.

The motivation for the selection of ADNs to model EVD is twofold. First, the
incubation time of EVD, with a minimum of 2 and a maximum of 21 days [68],
is compatible with the time scale of individual mobility patterns [69, 70]. This
implies that time scale separation assumptions may yield incorrect predictions on
the spread of the epidemic [11]. Second, ADNs can be adapted to account for
realistic phenomena that may be critical to the assessment of the severity and
duration of an EVD outbreak. The epidemic model used in this work is based on
the seminal Legrand’s model for EVD spreading [71], on which most of the recent
research body on EVD rests [10, 18, 19, 72–76].
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Fig. 14.6 (From [36]) State transitions in a seven-state EVD model. The states are: S, susceptible;
E, exposed (infected, non-symptomatic); I, infected (symptomatic); H, hospitalized; F, dead but
not buried; RR, recovered; and RD, dead and safely buried

Legrand’s model is a variant of the Susceptible-Exposed-Infected-Recovered
model, which accounts for additional states to describe the specific dynamics of
EVD. These additional states include hospitalized individuals and individuals who
are dead but unsafely buried. In line with previous works, model parameters have
been in part hypothesized from the existing literature [11, 18, 71, 74, 77–79], and in
part identified through a least square technique on the available dataset of the case
count provided by the World Health Organization (WHO) [79–81].

14.4.1 The ADN-Based EVD Model

Figure 14.6 illustrates the dynamics of the state transition of the proposed model.
According to [71], two states related to hospitalization (H) and death followed by
a traditional funeral, without immediate safe burial (F) are added. The removed
state (R) indicates individuals that cannot contribute any more to the dynamics of
the epidemic spreading. This state contains individuals who have recovered and are
immune, and those who have died and have been safely buried. In our EVD model,
we partition the removed state into two states: recovered (RR); and dead and safely
buried (RD). Similar to [35], we assume that people infected with EVD and not
hospitalized have a lower probability to come in contact with other individuals, as
they will move less due to their debilitated health. Yet, such probability is non-zero,
as they may infect those who take care of them, that is, friends, parents, and relatives.
Thus, we differentiate the activity of susceptible and exposed individuals from that
of infected ones, using two different activity rates, namely, �SE and �I .
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Table 14.1 (From [36]) Parameters of the activity driven EVD model

Parameter Meaning

�SE , �I Activity rate

�I , �H , �F Probability of infection

�EI , �IH , �IF , �IRR , �IRD , �HRR , �HRD , �FRD Transition rate

ıIH , ıIF , ıIRR , ıIRD , ıHRR , ıHRD Transition fraction

Model parameters belong to three categories: probabilities of infection, transition
rates, and transition fractions. Probabilities of infection are indicated with ��, where
the subscript identifies (I), (H), or (F) states. These parameters indicate the per-
contact probability of a susceptible individual to contract the epidemic by contacting
an infected (I), hospitalized (H), or a dead and not safely buried (F) individual.
Transition rates are indicated with ���, where subscripts indicate any two different
states of the epidemic model. The inverse of a transition rate 1=��� quantifies the
average time for an individual to transition from state � to state 	. Similarly, a
transition fraction is denoted with ı�� and quantifies the fraction of individuals in
state � that transition to state 	. Table 14.1 summarizes the parameters of the model.

The state transitions of our ADN-based model, describing the dynamics of EVD
spreading, are:

1. If a susceptible (S) individual is in contact with an infected (I), hospitalized (H),
or dead and not safely buried (F) individual, he/she will contract the infection
and transition to the exposed (E) state with per-contact transmission probability
�I , �H , and �F, respectively;

2. An exposed individual (E) transitions to the infected and symptomatic (I) state
with rate �I ;

3. An infected and symptomatic individual (I) transitions to one of the three states:
hospitalized (H), dead and not safely buried (F), recovered (RR), and dead and
safely buried (RD). A fraction ıIH of infected individuals is hospitalized with
rate �IH; a fraction ıIF remains in the community, eventually dies, and receives
traditional funeral rituals, without safe burial, with rate �IF; a fraction ıIRR

recovers with rate �IRR ; and a fraction ıIRD dies in the community and is safely
buried by a burial team with a rate �IRD . The constraint ıIH CıIF CıIRR CıIRD D 1

holds;
4. A hospitalized individual (H) transitions to the recovered (RR) or the dead and

safely buried (RD) state. A fraction ıHRR will recover with rate �HRR , whereas a
fraction ıHRD will die with rate �HRD and then is safely buried. The constraint
ıHRR C ıHRD D 1 holds; and

5. Dead people who have not been handled by a burial team will remain infectious
until burial. Individuals in the dead and not safely buried (F) state will be buried
with a rate �FRD and transition to the dead and buried (RD) state.
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Table 14.2 (From [36])
Time-invariant parameters of
the activity driven EVD
model.

Parameter Value

�I 0.16

�F 0.49

�EI 0.09 days�1

�IF 0.13 days�1

�IRR 0.13 days�1

�IRD 0.13 days�1

�HRR 0.22 days�1

�HRD 0.24 days�1

�FRD 0.5 days�1

ıIRR 0

ıHRR 0.46

ıHRD 0.54

Table 14.3 (From [36]) Time-varying parameters of the activity driven EVD model. Phase 1:
before mid-August 2014 (day 0 to 130); Phase 2: between mid-August and mid-October 2014
(day 131 to 180); and Phase3: after mid-October 2014 (from day 181 onward)

Parameter Phase 1 Phase 2 Phase 3

�H 0.33 0.02 0.02

�IH 0.1 days�1 0.2 days�1 0.43 days�1

ıIH 0.51 0.80 0.89

ıIF 0.1 0.05 0.01

ıIRD 0.39 0.15 0.10

14.4.2 Model Calibration

The WHO count of confirmed EVD cases in Liberia, from April 8, 2014 to
December 31, 2014, has been used to calibrate our model. The data utilized
cover a time span of 268 days [79–81]. Literature on the 2014–2015 EVD
outbreak and field reports are utilized to set epidemic-specific parameters, while
those related to the network activity are obtained through an identification strat-
egy. Three different approaches have been considered to calibrate the model
parameters.

Table 14.2 lists a set of parameters that are independent of the application of
intervention measurements and are, therefore, considered constant in time. Their
values are obtained from the literature on the EVD outbreak [11, 74, 79]. On the
other hand, parameters listed in Table 14.3 are regarded as time-varying, since they
depend on the level of intervention. The literature reports that such a level has
constantly increased from mid-August 2014 [11]. Interventions can be summarized
as: (i) an increase in the number of hospital beds for EVD patients; (ii) the
exclusive admission of patients in symptomatic states to Ebola treatment units, with
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a consequent reduction of the probability of infection; (iii) an increase in the number
of safe burial procedures; and (iv) improvements in the implementation of contact
tracing procedures [11].

In an effort to minimize the complexity of the model, time-varying parameters
are set to different constant values, changing in a step-like manner. The time instants
at which such changes occur are: before mid-August (day 0 to 120), between
mid-August and mid-October (day 121 to 180), and after mid-October (day 181
onward). The parameters for the first two phases are selected from the available
literature [11, 74, 79], while those in the third phase reflect the further increase
in the efficiency of the intervention level, which we know has occurred in many
districts of Liberia, especially in Montserrado (the Capital County), where a strong
improvement in hospitalization, laboratory testing and body collection in October
has been reported by the Centers for Disease Control and Prevention (CDC) [82].
Although the parameter set for the third phase has not been confirmed in the
literature, our selection reflects the application of an almost ideal intervention in
the field confirmed by relevant WHO statements [83].

The remaining ADN-related parameters, that is, the number of contacts per
unit time of active nodes, m, the scaling factor of the activity of susceptible and
exposed individuals, �SE, and that of infected and symptomatic individuals, �I ,
have been identified using a least square optimization technique on the epidemic
curve of cumulative WHO-confirmed EVD cases in Liberia [80] from April 8, 2014
to December 31, 2014 (268 days). The identified parameter values are m D 7,
�SE D 4:5, and �I D 3:2. These parameters have been then used to validate the
model on a further portion of the epidemic curve, related to confirmed cases from
January 1, 2015, to December 2, 2015. Additional simulations have been performed
to assess the role of the exponent of the activity distribution, � , on the evolution
of the epidemic. A good fit has been found by setting � D 2:1. This value is
consistent with other findings in the literature, which posit that social interactions
follow heavy-tailed or skewed statistical distributions [84–87].

14.4.3 Model Validation, Predictions, and What-If Analysis

A validation phase has been run on the model through Monte Carlo simulations over
50 randomized trials. While model parameters and the size of the initial seed of
infected individuals are held constant to the values determined by the identification
phase, the trials are randomized over the initial locations of the infectious seed
cases. The averaged epidemic curve is then compared with the WHO-confirmed
cumulative curve of EVD cases [80], and results are illustrated in Fig. 14.7. As
anticipated, the model replicates with good accuracy the epidemic curve during the
first 268 days used for calibration, while predicting a modest increase in the case
count for the remaining 337 days, until December 2, 2015.

The model can be effectively used to estimate the efficacy of timely intervention
policies. To this aim, we contemplate the possibility of shifting the time when we
have seen an increase in the level of field interventions (day 121 in Table 14.3) to an
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Fig. 14.7 (From [36]) Calibration of the model on real data and model predictions. In (a), the
comparison between model predictions and field data involved the entire duration of the spreading
from 4/8/2014 to 12/2/2015. The solid line shows model results in terms of the cumulative
number of cases, and the dashed line shows the cumulative case count reported by WHO and
CDC in Liberia [80]. The three regions in (a) identify the three phases of the intervention policy
hypothesized in Table 14.3. The step-like discontinuity in the case count around sample 200 is
likely due to data corruption. This observation is supported by the corresponding death count,
which decreases correspondingly (while it should always increase) [88]. In (b)–(d), the three
phases of the intervention policies are separately illustrated. Model predictions are illustrated
in (d), from day 268 onwards

earlier day. In other words, we run our EVD model by only changing the time when
the transition between Phase 1 and Phase 2 takes place. We consider the following
possible dates: early July (day 76), early June (day 46), and early May (day 16).
Figure 14.8a displays the forecasted cumulative case counts associated with the
selected times. As expected, anticipating the implementation of more effective
intervention policies drastically reduces the epidemic spreading. For example, the
outbreak would have ended with a 72% reduction of the total Ebola cases (i.e., 2,830
rather than 9,922) by anticipating the increase in the level of interventions to day 76.

The beneficial effect of an earlier implementation of superior intervention
policies is also noted in the timing of the epidemic peak. Figure 14.8b displays
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Fig. 14.8 (From [36]) Prediction of the (a) cumulative number of cases; (b) instantaneous number
of cases; and (c) instantaneous number of hospitalized patients in Liberia between 4/8/2014 and
8/20/2015, by varying the time of the transition between Phase 1 and Phase 2, defining when
the level of interventions is increased. The dates of such transitions are detailed in the legend.
Simulations are averaged over 50 independent trials
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the trend of the instantaneous number of infected individuals for the same instances
considered in Fig. 14.8a. We observe that the occurrence of the peak recedes when
these superior intervention policies are applied earlier. A timely implementation
would thus also be beneficial to a faster resolution of the outbreak.

The model can also be used to estimate the needed infrastructure to face the
outbreak, in the form of the number of beds available for EVD patients. Figure 14.8c
shows the number of hospitalized persons as a function of time for the same
instances considered in Figs. 14.8a,b. To implement a desired intervention policy
at a given time, the number of available hospital beds must be larger than or
equal to the number of persons that should be theoretically hospitalized. Therefore,
the peak value of the number of hospitalized persons predicted by the model
can be used to estimate the numbers of beds that should be made available in
the country. Figure 14.8c suggests that anticipating the implementation of more
effective intervention policies reduces the size of the infrastructure that should
be available. While the mid-August timing is estimated to require 331 beds,
anticipating it to early in July would have only required 91 beds.

14.5 Toward Analytical Treatment of ADNs: A
Continuous-Time, Discrete-Distribution Theory

Apart from the computation of the epidemic threshold [25, 30, 35, 38], previous
studies on ADNs largely carry out their analysis based on extensive Monte Carlo
simulations [25, 30, 31, 35, 36, 38, 89–94]. In this section, we establish an analytical
framework to study the entire dynamics of the epidemic spreading at the population
level (from the zero-infected condition to the endemic equilibrium) [37]. Differently
from the original ADN formulation, where a discrete-time epidemic model is
implemented with a continuous probability distribution for the nodes’ activities, we
formulate a continuous-time model with a discrete distribution.

The advantages of our approach are manifold. First, it does not rely on extensive
Monte Carlo simulations, but requires the integration of simple ordinary differential
equations (ODEs). Second, it is not necessary to select a time step, a required
procedure for discrete-time models that can lead to confounds in the correct
reproduction of the system dynamics [95]. Third, it is based on a reduced number of
parameters with respect to traditional instances of ADNs [25, 30, 31, 35, 36, 38, 89–
93].

In our new framework, we consider a (large) population of N individuals, each
associated with a node of a time-varying undirected graph G .t/ D .V ;E .t//, with
t 2 R

C. V D f1; : : : ; Ng is the node set and E .t/ is the time-varying link set. We
focus on an SIS process [4]. Each node v 2 V is assigned a time-invariant activity
rate av , which represents the expected number of contacts that node v generates in
a unit time interval. Starting from t D 0, node v becomes active after a time that is
sampled from an exponentially distributed random variable with parameter av [96].
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When a node activates, it contacts exactly one node uniformly at random in V ,
generating a single link. If this link connects an infected node with a susceptible one,
then the epidemic propagates with a fixed probability �, otherwise nothing happens.
We suppose that the duration of the contact is instantaneous, so that � is considered
a per-contact infection probability. The link is instantaneously removed, and the
node may activate again according to the same rule. Each infected node recovers
after a time that is drawn from an exponentially distributed random variable with
parameter �, becoming susceptible again. Thus, ��1 is the expected time needed
by a individual to recover.

The relationship with discrete-time ADN models is straightforward. In a time
step �t, the continuous-time model establishes as many links as in a realization of
the discrete-time model. The activity rate of a node in continuous-time corresponds
to the product of its activity potential and the number of contacts it can establish
in the time step. The probability that an infected node recovers in a discrete-time
step is 1 � e���t. The per-contact infection probability does not change between
continuous- and discrete-time.

The proposed discrete activity distribution follows a power-law with k equidistant
activation classes, each characterized by an activity rate ai (a1 < � � � < ak). For the
generic i-th class, we denote with ni its number of nodes and we let ni / a��

i . The
parameter � controls the heterogeneity among individuals, similar to the classical
ADN paradigm with a continuous distribution of activity potentials.

With reference to an SIS epidemic process, Yv.t/ 2 fS; Ig denotes the susceptible
(S) or infected (I) state of node v at time t. All the states are encapsulated in a
vector Y.t/ 2 fS; IgV . The analysis is executed by mapping Y.t/ to a k-dimensional
stochastic process Z.t/ WD ZŒY.t/	, comprising the fraction of infected nodes in each
activation class. Variable Zi.t/ indicates the fraction of infected nodes with activity
rate ai, at time t.

In the thermodynamic limit N ! 1, the fraction of nodes .n1=N; : : : ; nk=N/ in
each of the activation classes converges to .�1; : : : ; �k/, independent of N, due to the
central limit theorem. Then, Kurtz’ theorem [97] ensures that for every finite time
horizon, the stochastic process Z.t/ is close to a deterministic dynamical system
with vector variable 
.t/, solution of the following set of ODEs:

P
i D ��
i C �.1 � 
i/.aix1 C x2/; (14.6)

with i D 1; : : : ; k and 
i.0/ D Zi.0/. Here, the macroscopic variable x1 D P
�h
h

represents the fraction of infected individuals across all classes, which is the main
observable in the study of epidemic spreading. The macroscopic variable x2 DP

�hah
h takes into consideration the fraction of infected nodes weighted by their
individual activity rates. In general, we define xj D P

�haj�1
h 
h.

From Eq. (14.6), we appreciate that the drift in the fraction of infected nodes in
each class is determined by three effects: the recovery of infected nodes (��
i); the
spreading associated with active nodes in the i-th class generating contacts toward
infected nodes (�.1 � 
i/aix1); and the spreading related to active infected nodes
generating contacts with the nodes of the i-th class (�.1 � 
i/x2).
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Fig. 14.9 (From [37]) Time evolution of the fraction of infected nodes for the flu (a) and Twitter
(b) case studies. Comparison between discrete-time continuous-distribution ADN process (blue,
dashed), our continuous-time discrete-distribution approach (green, dotted) model, and theoretical
predictions (red, solid) from Eq. (14.6)

Integrating Eq. (14.6) allows to closely simulate the epidemic spreading without
the need of Monte Carlo simulations. To verify this claim and demonstrate the
correspondence between continuous- and discrete-time epidemic models, we con-
sider two different dynamics on real-world phenomena, modeled through ADNs: flu
spreading in a university campus and trend diffusion on Twitter. System parameters
are obtained from case studies [25, 98–101], as detailed in [37]. We compare
the outcome of Monte Carlo simulations averaged over 200 trials for both the
continuous- and the discrete-time processes, along with the integration of the
deterministic ODE system (14.6). In both examples, the activity distribution is
discretized over k D 59 equidistant activation classes. Figure 14.9 demonstrates
the equivalence of our approach with respect to traditional ADNs in Monte Carlo
simulations, along with the validity of system (14.6) to exactly predict the epidemic
spreading.

The study of the k-dimensional system (14.6) is more amenable to analytical
treatment if it is rewritten in terms of the first k macroscopic variables, x1; : : : ; xk,
resulting in the following system of ODEs:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Px1 D .�˛1 � �/x1 C �x2 � 2�x1x2;

Px2 D �˛2x1 C .�˛1 � �/x2 � �x1x3 � �x2
2;

Px3 D �˛3x1 C �˛2x2 � �x3 � �x1x4 � �x2x3;

: : :

Pxk D �˛kx1 C �˛k�1x2 � �xk � �x1

P
�hak

h
h � �x2xk;

(14.7)

where ˛j D P
�haj

h are the moments of the activity rates distribution. This system
is well-posed since the term

P
�hak

h
h in the k-th equation is a linear combination
of the linearly independent variables x1; : : : ; xk.

Studying system (14.7) leads to a significant characterization of the epidemic
spreading, beyond the computation of the epidemic threshold in Eq. (14.1) obtained
from linear stability analysis [37]. However, the selection of power-laws with
exponent between 2 and 3 in the activity distribution induces numerical instabilities,
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since statistical moments of the distribution blow up from the second onwards.
Moreover, the prescription of initial conditions for macroscopic variables of order
greater than 1 may result unfeasible in real-world applications.

A possible approach to address these issues is to project the k-dimensional
dynamics to a lower dimensional space consisting of only k� � k equations. We
approximate the term xk�C1 using two elementary bounds: a1xk� � xk�C1 � akxk�

and xk�C1 � ˛k� . Using these bounds, we can reduce the system of k ODEs (14.7)
to a system of k� ordinary differential inclusions (ODIs) [102], consisting of one
inclusion and k� � 1 equations.

If k� D 1, we bound a1x1 � x2 � minf˛1; akx1g, reducing system (14.7) to a
single ODI. This one-dimensional system should not be contemplated to accurately
predict the evolution of the process during the transient, between the zero-infected
condition and the endemic equilibrium, due to the conservativeness of the bounds
during such a transient phase. However, it can be effectively used to analytically
determine an interval I for the endemic equilibrium Nx1, which is

�
max

�
�˛1

�˛1 C �
;

�.ak C ˛1/ � �

2�ak

�
;

�.a1 C ˛1/ � �

2�a1

�
; (14.8a)

if �˛1 > �, and

�
�.a1 C ˛1/ � �

2�a1

; min

�
�˛1

�˛1 C �
;

�.ak C ˛1/ � �

2�a1

��
; (14.8b)

if �˛1 < �. Notice that, if �˛1 D �, we analytically compute Nx1 D 1=2.
We demonstrate the use of these two bounds through the two real-world case

studies on flu spreading and Twitter [37]. Figure 14.10 illustrates the prediction
of the endemic state using the bounds for k� D 1, for the two case studies.
Our simulations indicate that the accuracy of the bounds depends on the system
parameters. Specifically, our results suggest that the closer is the endemic state to
Nx1 D 1=2 (that is, ˛1� D �), the more precise the bounds are.

An improved prediction of the transient phase is obtained with k� D 2, which
leads to an ODI for the evolution of x2, coupled to the first ODE in system (14.7).
As detailed in [37], we establish the two following ancillary ODEs:

Px2 D �.˛2 � �";x2 .x1//x1 C .�˛1 � �/x2 � �x2
2; (14.9a)

Px2 D �.˛2 � �";x2 .1 � x1//x1 C .�˛1 � �/x2 � �x2
2; (14.9b)

where �";x2 .x1/, is a continuous function that, in the limit " ! 0, tends to the
Heaviside function

�";x2 .x1/ !
�

a1x2 if x1 < 1=2;

minfakx2; ˛2g if x1 > 1=2:
(14.10)
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Fig. 14.10 (From [37]) Averaged Monte Carlo simulations of a discrete-time continuous-
distribution ADN process (blue) and theoretical bounds on the endemic equilibrium state
(computed for k� D 1, in red), for flu (a) and Twitter (b) case studies. From data in [37], ˛1�=�

is equal to 0.988 in (a) and 1.785 in (b)
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Fig. 14.11 (From [37]) Averaged Monte Carlo simulations of a discrete-time continuous-
distribution ADN process (blue) and theoretical bounds on the dynamics of the epidemic spreading
(computed for k� D 2 with " D 10�3, in red), for flu (a) and Twitter (b) case studies

The upper- and lower-bounds for x1 are obtained by coupling the first ODE
in system (14.7) with Eqs. (14.9a) and (14.9b), and integrating in the limit as
" ! 0. Simulation results in Fig. 14.11 demonstrate the accuracy of the bounds
in capturing the transient response. Higher endemic equilibria seem manifest into
tighter prediction bounds during the transient, albeit the upper bound becomes
conservative as time progresses. In general, the predictions of the endemic state
from k� D 2 are less precise than the simpler closed-form results for k� D 1.
This is related to the solutions of the ancillary ODEs (14.9a) and (14.9b) leaving
the bounds for k� D 1. With this in mind, the overall prediction accuracy could be
improved by combining the bounds in Figs. 14.10 and 14.11.

Toward a further improvement in the prediction of the epidemic spreading, our
framework can be utilized to produce accurate finite-time-horizon predictions, based
on the availability of low-frequency epidemic data at the population level, such as
the cumulative count case or the epidemic incidence [37].
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14.6 Conclusions

Modeling of epidemic spreading has greatly advanced in the last decades, due to
the availability of powerful models and computing power. However, much effort
is needed to obtain models that are accurate and realistic, yet computationally
affordable. To this aim, ADNs are a valuable tool to encapsulate the inherent
heterogeneity in the characteristics of a population and to embrace the concurrent
evolution of epidemic dynamics and the formation of the network of contacts on
the present hyperconnected world. This chapter has presented our research effort,
which aims at including realistic factors in epidemic modeling, while keeping the
model computationally affordable and analytically tractable.

However, further work is needed toward steering the theoretical models presented
herein toward effective tools for predicting epidemic spreading prediction and
assisting interventions in the field. Future efforts will aim at tackling spatial and
temporal memory in the network formation, which will help in encapsulating spatial
locality and temporal recurrence in human contacts. Finally, effective techniques to
achieve an analytical solution of the framework presented in the last section should
be put forward.
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