Skip to main content

Role of Clothing in Exposure to Indoor Pollutants

  • Living reference work entry
  • First Online:
  • 246 Accesses

Abstract

There is growing evidence that the clothing is an important source of exposure to various chemicals and particles on a daily basis. Emerging knowledge suggests that everyday clothing harbors various contaminants, which if inhaled, ingested, or dermally absorbed, could carry significant health risks. This chapter summarizes the state of the most recent knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing, the nature of the contaminant, and by wear, care, and storage practices. This chapter also summarizes the most pressing knowledge gaps that are important for better quantification, prediction, and control of clothing-mediated exposures.

This is a preview of subscription content, log in via an institution.

References

  • Antal B, Kuki Á, Nagy L, Nagy T, Zsuga M, Kéki S (2016) Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS). Anal Bioanal Chem 408(19):5189–5198

    Article  CAS  Google Scholar 

  • Bekö G, Morrison G, Weschler CJ, Koch H, Pälmke C, Salthammer T, Schripp T, Eftekhari A, Toftum J, Clausen G (2018) Dermal uptake of nicotine from air and clothing: experimental verification. Indoor Air 28(2):247–257

    Article  CAS  Google Scholar 

  • Bekö G, Wargocki P, Wang N, Li M, Weschler CJ, Morrison G, Langer S, Ernle L, Licina D, Yang S (2020) The Indoor Chemical Human Emissions and Reactivity project (ICHEAR): overview of experimental methodology and preliminary results. Indoor Air 30(6):1213–1228

    Article  CAS  Google Scholar 

  • Berge M, Munir A, Dreborg S (1998) Concentrations of cat (Fel d 1), dog (Can f 1) and mite (Der f 1 and Der p 1) allergens in the clothing and school environment of Swedish schoolchildren with and without pets at home. Pediatr Allergy Immunol 9(1):25–30

    Article  CAS  Google Scholar 

  • BfR (2012) Introduction to the Problems Surrounding Garment Textiles. Updated BfR Opinion No. 041/2012, Bundesinstitut für Risikobewertung. http://www.bfr.bund.de/cm/349/introduction-to-the-problems-surrounding-garment-textiles.pdf. Accessed 20 Jan 2021

  • Bhangar S, Huffman JA, Nazaroff W (2014) Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air 24(6):604–617

    Article  CAS  Google Scholar 

  • Bhangar S, Adams RI, Pasut W, Huffman JA, Arens EA, Taylor JW, Bruns TD, Nazaroff WW (2016) Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles. Indoor Air 26(2):193–206

    Article  CAS  Google Scholar 

  • Blum A, Gold M, Ames B, Jones F, Hett E, Dougherty R, Horning E, Dzidic I, Carroll D, Stillwell R (1978) Children absorb tris-BP flame retardant from sleepwear: urine contains the mutagenic metabolite, 2,3-dibromopropanol. Science 201(4360):1020–1023

    Article  CAS  Google Scholar 

  • Bradman ASA, Schwartz JM, Fenster L, Barr DB, Holland NT, Eskenazi B (2007) Factors predicting organochlorine pesticide levels in pregnant Latina women living in a United States agricultural area. J Expo Sci Environ Epidemiol 17(4):388–399

    Article  CAS  Google Scholar 

  • Brown BW (1970) Fatal phenol poisoning from improperly laundered diapers. Am J Public Health Nations Health 60(5):901–902

    Article  CAS  Google Scholar 

  • Callewaert C, De Maeseneire E, Kerckhof F-M, Verliefde A, Van de Wiele T, Boon N (2014) Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80(21):6611–6619

    Article  CAS  Google Scholar 

  • Callewaert C, Van Nevel S, Kerckhof F-M, Granitsiotis MS, Boon N (2015) Bacterial exchange in household washing machines. Front Microbiol 6:1381

    Article  Google Scholar 

  • Cao J, Weschler CJ, Luo J, Zhang Y (2016) C m-history method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates. Environ Sci Technol 50(2):825–834

    Article  CAS  Google Scholar 

  • Cao J, Zhang X, Zhang Y (2018) Predicting dermal exposure to gas-phase semivolatile organic compounds (SVOCs): a further study of SVOC mass transfer between clothing and skin surface lipids. Environ Sci Technol 52(8):4676–4683

    Article  CAS  Google Scholar 

  • Clarke D, Burke D, Gormally M, Byrne M (2015) Dynamics of house dust mite transfer in modern clothing fabrics. Ann Allergy Asthma Immunol 114(4):335–340

    Article  Google Scholar 

  • Cohen BS, Positano R (1986) Resuspension of dust from work clothing as a source of inhalation exposure. Am Ind Hyg Assoc J 47(5):255–258

    Article  CAS  Google Scholar 

  • D’Amato G, Liccardi G, Russo M, Barber D, D’Amato M, Carreira J (1997) Clothing is a carrier of cat allergens. J Allergy Clin Immunol 99(4):577–578

    Article  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces 79(1):5–18

    Article  CAS  Google Scholar 

  • De Groot AC, Maibach HI (2010) Does allergic contact dermatitis from formaldehyde in clothes treated with durable-press chemical finishes exist in the USA? Contact Dermatitis 62(3):127–136

    Article  Google Scholar 

  • Doig CM (1972) The effect of clothing on the dissemination of bacteria in operating theatres. Br J Surg 59(11):878–881

    Article  CAS  Google Scholar 

  • Donovan EP, Donovan BL, McKinley MA, Cowan DM, Paustenbach DJ (2012) Evaluation of take home (para-occupational) exposure to asbestos and disease: a review of the literature. Crit Rev Toxicol 42(9):703–731

    Article  Google Scholar 

  • Duguid JP, Wallace AT (1948) Air infection with dust liberated from clothing. Lancet 252(6535):845–849

    Article  Google Scholar 

  • European Commission (2018) Commission Regulation (EU) 2018/1513 of 10 October 2018 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards certain substances classified as carcinogenic, mutagenic or toxic for reproduction (CMR), category 1A or 1B (Text with EEA relevance). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1513. Accessed 21 Jan 2021

  • Faulde MK, Uedelhoven WM, Malerius M, Robbins RG (2006) Factory-based permethrin impregnation of uniforms: residual activity against Aedes aegypti and Ixodes ricinus in battle dress uniforms worn under field conditions, and cross-contamination during the laundering and storage process. Mil Med 171(6):472–477

    Article  Google Scholar 

  • Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72(2):310–322

    Article  CAS  Google Scholar 

  • Gaskin S, Heath L, Pisaniello D, Edwards JW, Logan M, Baxter C (2017) Dermal absorption of fumigant gases during HAZMAT incident exposure scenarios – methyl bromide, sulfuryl fluoride, and chloropicrin. Toxicol Ind Health 33(7):547–554

    Article  CAS  Google Scholar 

  • Gerba CP, Kennedy D (2007) Enteric virus survival during household laundering and impact of disinfection with sodium hypochlorite. Appl Environ Microbiol 73(14):4425–4428

    Article  CAS  Google Scholar 

  • Gong M, Weschler CJ, Zhang Y (2016) Impact of clothing on dermal exposure to phthalates: observations and insights from sampling both skin and clothing. Environ Sci Technol 50(8):4350–4357

    Article  CAS  Google Scholar 

  • Goswami E, Craven V, Dahlstrom DL, Alexander D, Mowat F (2013) Domestic asbestos exposure: a review of epidemiologic and exposure data. Int J Environ Res Public Health 10(11):5629–5670

    Article  CAS  Google Scholar 

  • Gulson B, Wong H, Korsch M, Gomez L, Casey P, McCall M, McCulloch M, Trotter J, Stauber J, Greenoak G (2012) Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci Total Environ 420:313–318

    Article  CAS  Google Scholar 

  • Hall G, Mackintosh C, Hoffman P (1986) The dispersal of bacteria and skin scales from the body after showering and after application of a skin lotion. Epidemiol Infect 97(2):289–298

    CAS  Google Scholar 

  • Hambraeus A (1973) Dispersal and transfer of Staphylococcus aureus in an isolation ward for burned patients. Epidemiol Infect 71(4):787–797

    Article  CAS  Google Scholar 

  • Handorean A, Robertson CE, Harris JK, Frank D, Hull N, Kotter C, Stevens MJ, Baumgardner D, Pace NR, Hernandez M (2015) Microbial aerosol liberation from soiled textiles isolated during routine residuals handling in a modern health care setting. Microbiome 3(1):1–10

    Article  Google Scholar 

  • Hill J, Howell A, Blowers R (1974) Effect of clothing on dispersal of Staphylococcus aureus by males and females. Lancet 304(7889):1131–1133

    Article  Google Scholar 

  • Homaira N, Sheils J, Stelzer-Braid S, Lui K, Oie JL, Snelling T, Jaffe A, Rawlinson W (2016) Respiratory syncytial virus is present in the neonatal intensive care unit. J Med Virol 88(2):196–201

    Article  Google Scholar 

  • Horstmann M, McLachlan MS (1994) Textiles as a source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) in human skin and sewage sludge. Environ Sci Pollut Res 1(1):15–20

    Article  CAS  Google Scholar 

  • Iadaresta F, Manniello MD, Östman C, Crescenzi C, Holmbäck J, Russo P (2018) Chemicals from textiles to skin: an in vitro permeation study of benzothiazole. Environ Sci Pollut Res 25(25):24629–24638

    Article  CAS  Google Scholar 

  • Jantunen J, Saarinen K (2011) Pollen transport by clothes. Aerobiologia 27(4):339–343

    Article  Google Scholar 

  • Jurewicz J, Hanke W (2011) Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health 24(2):115–141

    Article  Google Scholar 

  • Kajiwara N, Desborough J, Harrad S, Takigami H (2013) Photolysis of brominated flame retardants in textiles exposed to natural sunlight. Environ Sci: Processes Impacts 15(3):653–660

    CAS  Google Scholar 

  • Karlsson A-S, Andersson B, Renström A, Svedmyr J, Larsson K, Borres MP (2004) Airborne cat allergen reduction in classrooms that use special school clothing or ban pet ownership. J Allergy Clin Immunol 113(6):1172–1177

    Article  Google Scholar 

  • Kawakami T, Isama K, Nakashima H, Tsuchiya T, Matsuoka A (2010) Analysis of primary aromatic amines originated from azo dyes in commercial textile products in Japan. J Environ Sci Health A 45(10):1281–1295

    Article  CAS  Google Scholar 

  • KEMI (2014) Chemicals in textile – risks to human health and the environment. Report from a government assignment, REPORT 6/14, Swedish Chemicals Agency. https://www.kemi.se/download/18.6df1d3df171c243fb23a98f3/1591454110491/rapport-6-14-chemicals-in-textiles.pdf. Accessed 20 Jan 2021

  • Klasmeier J, Mühlebach A, McLachlan MS (1999) PCDD/Fs in textiles – Part II: Transfer from clothing to human skin. Chemosphere 38(1):97–108

    Article  CAS  Google Scholar 

  • Lakdawala N, Pham J, Shah M, Holton J (2011) Effectiveness of low-temperature domestic laundry on the decontamination of healthcare workers’ uniforms. Infect Control Hosp Epidemiol 32(11):1103–1108

    Article  CAS  Google Scholar 

  • Lao J-Y, Xie S-Y, Wu C-C, Bao L-J, Tao S, Zeng EY (2018) Importance of dermal absorption of polycyclic aromatic hydrocarbons derived from barbecue fumes. Environ Sci Technol 52(15):8330–8338

    Article  CAS  Google Scholar 

  • Laursen S, Hansen J, Pommer K (2003) Survey of chemical compounds in textile fabrics. Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Lentini JJ, Dolan JA, Cherry C (2000) The petroleum-laced background. J Forensic Sci 45(5):968–989

    Article  CAS  Google Scholar 

  • Licina D, Nazaroff W (2018) Clothing as a transport vector for airborne particles: chamber study. Indoor Air 28(3):404–414

    Article  CAS  Google Scholar 

  • Licina D, Melikov A, Sekhar C, Tham KW (2015) Transport of gaseous pollutants by convective boundary layer around a human body. Sci Technol Built Environ 21(8):1175–1186

    Article  Google Scholar 

  • Licina D, Bhangar S, Brooks B, Baker R, Firek B, Tang X, Morowitz MJ, Banfield JF, Nazaroff WW (2016) Concentrations and sources of airborne particles in a neonatal intensive care unit. PLoS One 11(5):e0154991

    Article  CAS  Google Scholar 

  • Licina D, Tian Y, Nazaroff WW (2017) Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air 27(4):791–802

    Article  CAS  Google Scholar 

  • Licina D, Morrison GC, Bekö G, Weschler CJ, Nazaroff WW (2019) Clothing-mediated exposures to chemicals and particles. Environ Sci Technol 53(10):5559–5575

    Article  CAS  Google Scholar 

  • Liljegren JC, Brown DF, Lunden MM, Silcott D (2016) Particle deposition onto people in a transit venue. Health Secur 14(4):237–249

    Article  Google Scholar 

  • Liu X, Guo Z, Krebs KA, Pope RH, Roache NF (2014) Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. Chemosphere 98:51–57

    Article  CAS  Google Scholar 

  • Liu N, Cao J, Huang J, Zhang Y (2021) Role of clothing in skin exposure to di(n-butyl) phthalate and tris(1-chloro-2-propyl) phosphate: experimental observations via skin wipes. Environ Sci Technol Lett. Just accepted (January 20, 2021)

    Google Scholar 

  • Lopez P-J, Ron O, Parthasarathy P, Soothill J, Spitz L (2009) Bacterial counts from hospital doctors’ ties are higher than those from shirts. Am J Infect Control 37(1):79–80

    Article  Google Scholar 

  • Luongo G, Avagyan R, Hongyu R, Östman C (2016) The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environ Sci Pollut Res 23(3):2537–2548

    Article  CAS  Google Scholar 

  • McDonagh A, Byrne M (2014a) The influence of human physical activity and contaminated clothing type on particle resuspension. J Environ Radioact 127:119–126

    Article  CAS  Google Scholar 

  • McDonagh A, Byrne M (2014b) A study of the size distribution of aerosol particles resuspended from clothing surfaces. J Aerosol Sci 75:94–103

    Article  CAS  Google Scholar 

  • Meinke M, Abdollahnia M, Ghr F, Platzek T, Lademann J (2009) Migration and penetration of a fluorescent textile dye into the skin – in vivo versus in vitro methods. Exp Dermatol 18(9):789–792

    Article  CAS  Google Scholar 

  • Moore C, Wilkinson S, Blain P, Dunn M, Aust G, Williams F (2014) Use of a human skin in vitro model to investigate the influence of ‘every-day’ clothing and skin surface decontamination on the percutaneous penetration of organophosphates. Toxicol Lett 229(1):257–264

    Article  CAS  Google Scholar 

  • Morrison G, Shakila N, Parker K (2015) Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil. Indoor Air 25(4):405–414

    Article  CAS  Google Scholar 

  • Morrison GC, Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G (2016) Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs. J Expo Sci Environ Epidemiol 26(1):113–118

    Article  CAS  Google Scholar 

  • Morrison G, Weschler CJ, Bekö G (2017a) Dermal uptake of phthalates from clothing: comparison of model to human participant results. Indoor Air 27(3):642–649

    Article  CAS  Google Scholar 

  • Morrison GC, Bekö G, Weschler CJ, Schripp T, Salthammer T, Hill J, Andersson A-M, Toftum J, Clausen G, Frederiksen H (2017b) Dermal uptake of benzophenone-3 from clothing. Environ Sci Technol 51(19):11371–11379

    Article  CAS  Google Scholar 

  • Morrison GC, Andersen HV, Gunnarsen L, Varol D, Uhde E, Kolarik B (2018) Partitioning of PCB s from air to clothing materials in a Danish apartment. Indoor Air 28(1):188–197

    Article  CAS  Google Scholar 

  • Neely AN, Maley MP (2000) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38(2):724–726

    Article  CAS  Google Scholar 

  • Neely AN, Orloff MM (2001) Survival of some medically important fungi on hospital fabrics and plastics. J Clin Microbiol 39(9):3360–3361

    Article  CAS  Google Scholar 

  • Noble RE (2000) Environmental tobacco smoke uptake by clothing fabrics. Sci Total Environ 262(1–2):1–3

    Article  CAS  Google Scholar 

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37(3):251–277

    Article  CAS  Google Scholar 

  • Nordstrom JM, Reynolds KA, Gerba CP (2012) Comparison of bacteria on new, disposable, laundered, and unlaundered hospital scrubs. Am J Infect Control 40(6):539–543

    Article  Google Scholar 

  • Park J-S, Voss RW, McNeel S, Wu N, Guo T, Wang Y, Israel L, Das R, Petreas M (2015) High exposure of California firefighters to polybrominated diphenyl ethers. Environ Sci Technol 49(5):2948–2958

    Article  CAS  Google Scholar 

  • Perry C, Marshall R, Jones E (2001) Bacterial contamination of uniforms. J Hosp Infect 48(3):238–241

    Article  CAS  Google Scholar 

  • Piadé JJ, D’André S, Sanders EB (1999) Sorption phenomena of nicotine and ethenylpyridine vapors on different materials in a test chamber. Environ Sci Technol 33(12):2046–2052

    Article  Google Scholar 

  • Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22(4):339–351

    Article  CAS  Google Scholar 

  • Qian J, Peccia J, Ferro AR (2014) Walking-induced particle resuspension in indoor environments. Atmos Environ 89:464–481

    Article  CAS  Google Scholar 

  • Rai AC, Guo B, Lin C-H, Zhang J, Pei J, Chen Q (2013) Ozone reaction with clothing and its initiated particle generation in an environmental chamber. Atmos Environ 77:885–892

    Article  CAS  Google Scholar 

  • Rim D, Novoselec A, Morrison G (2009) The influence of chemical interactions at the human surface on breathing zone levels of reactants and products. Indoor Air 19(4):324

    Article  CAS  Google Scholar 

  • Rossbach B, Kegel P, Süß H, Letzel S (2016) Biomonitoring and evaluation of permethrin uptake in forestry workers using permethrin-treated tick-proof pants. J Expo Sci Environ Epidemiol 26(1):95–103

    Article  CAS  Google Scholar 

  • Rovira J, Domingo JL (2019) Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ Res 168:62–69

    Article  CAS  Google Scholar 

  • Rovira J, Nadal M, Schuhmacher M, Domingo JL (2017) Trace elements in skin-contact clothes and migration to artificial sweat: risk assessment of human dermal exposure. Text Res J 87(6):726–738

    Article  CAS  Google Scholar 

  • Sahmel J, Barlow C, Simmons B, Gaffney S, Avens H, Madl A, Henshaw J, Lee R, Van Orden D, Sanchez M (2014) Evaluation of take-home exposure and risk associated with the handling of clothing contaminated with chrysotile asbestos. Risk Anal 34(8):1448–1468

    Article  CAS  Google Scholar 

  • Saleh MA, Kamel A, El-Demerdash A, Jones J (1998) Penetration of household insecticides through different types of textile fabrics. Chemosphere 36(7):1543–1552

    Article  CAS  Google Scholar 

  • Savolainen K, Pylkkänen L, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Hämeri K, Koivisto J (2010) Nanotechnologies, engineered nanomaterials and occupational health and safety–a review. Saf Sci 48(8):957–963

    Article  Google Scholar 

  • Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29(1):134–139

    Article  CAS  Google Scholar 

  • Schwartz-Narbonne H, Wang C, Zhou S, Abbatt JP, Faust J (2018) Heterogeneous chlorination of squalene and oleic acid. Environ Sci Technol 53(3):1217–1224

    Article  CAS  Google Scholar 

  • Scott E, Goodyear N, Nicoloro JM, Marika DJ, Killion E, Duty SM (2015) Laundering habits of student nurses and correlation with the presence of Staphylococcus aureus on nursing scrub tops pre-and postlaundering. Am J Infect Control 43(9):1006–1008

    Article  Google Scholar 

  • Sidwell RW, Dixon GJ, Mcneil E (1966) Quantitative studies on fabrics as disseminators of viruses: I. Persistence of vaccinia virus on cotton and wool fabrics. Appl Microbiol 14(1):55–59

    Article  CAS  Google Scholar 

  • Snyder GM, Thorn KA, Furuno JP, Perencevich EN, Roghmann M-C, Strauss SM, Netzer G, Harris AD (2008) Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol 29(7):583–589

    Article  Google Scholar 

  • Spadaro JT, Isabelle L, Renganathan V (1994) Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol 28(7):1389–1393

    Article  CAS  Google Scholar 

  • Speers R Jr, Bernard H, O’grady F, Shooter R (1965) Increased dispersal of skin bacteria into the air after shower-baths. Lancet 285(7383):478–480

    Article  Google Scholar 

  • Tovey ER, Mahmic A, McDonald LG (1995) Clothing – an important source of mite allergen exposure. J Allergy Clin Immunol 96(6):999–1001

    Article  CAS  Google Scholar 

  • Vikke HS, Giebner M (2015) UniStatus-a cross-sectional study on the contamination of uniforms in the Danish ambulance service. BMC Res Notes 8(1):95

    Article  Google Scholar 

  • Wang Y, Zeng Z, Liu M (2011) Analysis of naphthalene residues in textile samples by GC-FID using sol-gel-derived SPME fiber. J Chromatogr Sci 49(1):29–34

    Article  Google Scholar 

  • Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G (2015) Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123(10):928–934

    Article  CAS  Google Scholar 

  • Whyte W, Hejab M (2007) Particle and microbial airborne dispersion from people. Eur J Parenteral Pharm Sci 12(2):39–46

    Google Scholar 

  • Wiener-Well Y, Galuty M, Rudensky B, Schlesinger Y, Attias D, Yinnon AM (2011) Nursing and physician attire as possible source of nosocomial infections. Am J Infect Control 39(7):555–559

    Article  Google Scholar 

  • Wisthaler A, Weschler CJ (2010) Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci 107(15):6568–6575

    Article  CAS  Google Scholar 

  • Xue J, Liu W, Kannan K (2017) Bisphenols, benzophenones, and bisphenol a diglycidyl ethers in textiles and infant clothing. Environ Sci Technol 51(9):5279–5286

    Article  CAS  Google Scholar 

  • Yang S, Bekö G, Wargocki P, Williams J, Licina D (2021) Human emissions of size-resolved fluorescent aerosol particles: influence of personal and environmental factors. Environ Sci Technol 55(1):509–518

    Article  CAS  Google Scholar 

  • Yoon YH, Brimblecombe P (2000) Clothing as a source of fibres within museums. J Cult Herit 1(4):445–454

    Article  Google Scholar 

  • You R, Cui W, Chen C, Zhao B (2012) Measuring the short-term emission rates of particles in the “personal cloud” with different clothes and activity intensities in a sealed chamber. Aerosol Air Qual Res 13(3):911–921

    Article  Google Scholar 

  • Zhou J, Fang W, Cao Q, Yang L, Chang VC, Nazaroff WW (2017) Influence of moisturizer and relative humidity on human emissions of fluorescent biological aerosol particles. Indoor Air 27(3):587–598

    Article  CAS  Google Scholar 

  • Zhu F, Ruan W, He M, Zeng F, Luan T, Tong Y, Lu T, Ouyang G (2009) Application of solid-phase microextraction for the determination of organophosphorus pesticides in textiles by gas chromatography with mass spectrometry. Anal Chim Acta 650(2):202–206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the substantial contribution of Glenn C. Morrison, Charles J. Weschler and William W Nazaroff to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Licina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Licina, D., Bekӧ, G., Cao, J. (2021). Role of Clothing in Exposure to Indoor Pollutants. In: Zhang, Y., HOPKE, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics