Skip to main content

Analytical Tools in Indoor Chemistry

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

The chemical complexity of indoor surfaces and air creates challenges for quantitative analysis. The air includes inert trace gases, reactive trace gases, oxidants and radicals in the gas-phase, as well as particles across many orders of magnitude in size distribution. Measurements techniques must be able to capture the dynamic range and rapidly changing nature of indoor concentrations. Both passive and active sampling approaches are available, and chemical measurements may focus on speciated or bulk composition. The outdoor atmospheric chemistry community has established numerous on-line techniques for detecting trace gases and particles, and many of these techniques have been successfully applied to indoor environments. However, some of these techniques are subject to interferences in the indoor environment, requiring careful intercomparison. New frontiers in indoor analytical chemistry include development of new surface chemistry measurements, application of in situ chemical kinetics studies, development of low cost sensors, and closer linkage between health-relevant measurements and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbatt JPD, Wang C (2020) The atmospheric chemistry of indoor environments. Environ Sci Process Impacts 22(1):25–48. https://doi.org/10.1039/C9EM00386J

    Article  CAS  Google Scholar 

  • Abeleira A, Pollack IB, Sive B, Zhou Y, Fischer EV, Farmer DK (2017) Source characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during spring and summer 2015. J Geophys Res-Atmos 122(6):3595–3613. https://doi.org/10.1002/2016jd026227

    Article  Google Scholar 

  • Alvarez EG, Amedro D, Afif C, Gligorovski S, Schoemaecker C, Fittschen C, Doussin JF, Wortham H (2013) Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid (vol 110, pg 13294, 2013). Proc Natl Acad Sci USA 110(39):15848–15848. https://doi.org/10.1073/pnas.1314629110

    Article  CAS  Google Scholar 

  • Ampollini L, Katz EF, Bourne S, Tian Y, Novoselac A, Goldstein AH, Lucic G, Waring MS, DeCarlo PF (2019) Observations and contributions of real-time indoor ammonia concentrations during HOMEChem. Environ Sci Technol 53(15):8591–8598

    Article  CAS  Google Scholar 

  • Arata C, Zarzana KJ, Misztal PK, Liu Y, Brown SS, Nazaroff WW, Goldstein AH (2018) Measurement of NO3 and N2O5 in a residential kitchen. Environ Sci Tech Let 5(10):595–599. https://doi.org/10.1021/acs.estlett.8b00415

    Article  CAS  Google Scholar 

  • Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, Donaldson DJ, Farmer DK, Jimenez JL, McNeill VF, Morrison GC, O’Brien RE, Shiraiwa M, Vance ME, Wells JR, Xiong W (2020) Indoor surface chemistry: developing a molecular picture of reactions on indoor interfaces. Chem 6(12):3203–3218. https://doi.org/10.1016/j.chempr.2020.08.023

    Article  CAS  Google Scholar 

  • Avery AM, Waring MS, DeCarlo PF (2019) Human occupant contribution to secondary aerosol mass in the indoor environment. Environ Sci Process Impacts. https://doi.org/10.1039/C9EM00097F

  • Boedicker EK, Emerson EW, McMeeking GR, Patel S, Vance ME, Farmer DK (2021) Fates and spatial variations of accumulation mode particles in a multi-zone indoor environment during the HOMEChem campaign. Environ Sci Process Impacts 23(7):1029–1039. https://doi.org/10.1039/D1EM00087J

    Article  CAS  Google Scholar 

  • Brophy P, Farmer D (2015) A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study. Atmos Meas Tech 8(7):2945–2959

    Article  CAS  Google Scholar 

  • Brophy P, Farmer DK (2016) Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry. Atmos Meas Tech 9(8):3969–3986. https://doi.org/10.5194/amt-9-3969-2016

    Article  CAS  Google Scholar 

  • Brown WL, Day DA, Stark H, Pagonis D, Krechmer JE, Liu X, Price DJ, Katz EF, DeCarlo PF, Masoud CG, Wang DS, Hildebrandt Ruiz L, Arata C, Lunderberg DM, Goldstein AH, Farmer DK, Vance ME, Jimenez JL (2021) Real-time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air 31(1):141–155. https://doi.org/10.1111/ina.12721

    Article  CAS  Google Scholar 

  • Cai J, Yan B, Kinney PL, Perzanowski MS, Jung K-H, Li T, Xiu G, Zhang D, Olivo C, Ross J, Miller RL, Chillrud SN (2013) Optimization approaches to ameliorate humidity and vibration related issues using the MicroAeth black carbon monitor for personal exposure measurement. Aerosol Sci Technol 47(11):1196–1204. https://doi.org/10.1080/02786826.2013.829551

    Article  CAS  Google Scholar 

  • Carslaw N, Fletcher L, Heard D, Ingham T, Walker H (2017) Significant OH production under surface cleaning and air cleaning conditions: impact on indoor air quality. Indoor Air 27(6):1091–1100. https://doi.org/10.1111/ina.12394

    Article  CAS  Google Scholar 

  • Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK (2020) Dry deposition of ozone over land: processes, measurement, and modeling. Rev Geophys 58(1):e2019RG000670. https://doi.org/10.1029/2019RG000670

    Article  Google Scholar 

  • Collins DB, Hems RF, Zhou S, Wang C, Grignon E, Alavy M, Siegel JA, Abbatt JP (2018) Evidence for gas–surface equilibrium control of indoor nitrous acid. Environ Sci Technol 52(21):12419–12427

    Article  CAS  Google Scholar 

  • Dall’Osto M, Harrison RM, Charpantidou E, Loupa G, Rapsomanikis S (2007) Characterisation of indoor airborne particles by using real-time aerosol mass spectrometry. Sci Total Environ 384(1–3):120–133

    Article  Google Scholar 

  • Dawe KER, Furlani TC, Kowal SF, Kahan TF, VandenBoer TC, Young CJ (2019) Formation and emission of hydrogen chloride in indoor air. Indoor Air 29(1):70–78. https://doi.org/10.1111/ina.12509

    Article  CAS  Google Scholar 

  • DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol 38(12):1185–1205

    Article  CAS  Google Scholar 

  • DeCarlo PF, Avery AM, Waring MS (2018) Thirdhand smoke uptake to aerosol particles in the indoor environment. Sci Adv 4 (5). ARTN eaap8368. https://doi.org/10.1126/sciadv.aap8368

  • Drinovec L, Močnik G, Zotter P, Prévôt A, Ruckstuhl C, Coz E, Rupakheti M, Sciare J, Müller T, Wiedensohler A (2015) The “dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos Meas Tech 8(5):1965–1979

    Article  CAS  Google Scholar 

  • Duncan SM, Tomaz S, Morrison G, Webb M, Atkin JM, Surratt JD, Turpin BJ (2019) Dynamics of residential water-soluble organic gases: insights into sources and sinks. Environ Sci Technol 53:1812–1821. https://doi.org/10.1021/acs.est.8b05852

    Article  CAS  Google Scholar 

  • Farmer DK (2019) Analytical challenges and opportunities for indoor air chemistry field studies. Anal Chem 91(6):3761–3767. https://doi.org/10.1021/acs.analchem.9b00277

    Article  CAS  Google Scholar 

  • Farmer DK, Jimenez JL (2010) Real-time atmospheric chemistry field instrumentation. Anal Chem 82:7879–7884. https://doi.org/10.1021/ac1010603

    Article  CAS  Google Scholar 

  • Farmer DK, Vance ME, Abbatt JP, Abeleira A, Alves MR, Arata C, Boedicker E, Bourne S, Cardoso-Saldaña F, Corsi R (2019a) Overview of HOMEChem: house observations of microbial and environmental chemistry. Environ Sci Process Impacts 21(8):1280–1300

    Article  CAS  Google Scholar 

  • Farmer DK, Vance ME, Abbatt JPD, Abeleira A, Alves MR, Arata C, Boedicker E, Bourne S, Cardoso-Saldaña F, Corsi R, DeCarlo PF, Goldstein AH, Grassian VH, Hildebrandt Ruiz L, Jimenez JL, Kahan TF, Katz EF, Mattila JM, Nazaroff WW, Novoselac A, O’Brien RE, Or VW, Patel S, Sankhyan S, Stevens PS, Tian Y, Wade M, Wang C, Zhou S, Zhou Y (2019b) Overview of HOMEChem: house observations of microbial and environmental chemistry. Environ Sci Process Impacts 21(8):1280–1300. https://doi.org/10.1039/C9EM00228F

    Article  CAS  Google Scholar 

  • Finewax Z, Pagonis D, Claflin MS, Handschy AV, Brown WL, Jenks O, Nault BA, Day DA, Lerner BM, Jimenez JL, Ziemann PJ, de Gouw JA (2021) Quantification and source characterization of volatile organic compounds from exercising and application of chlorine-based cleaning products in a university athletic center. Indoor Air 31(5):1323–1339. https://doi.org/10.1111/ina.12781

    Article  CAS  Google Scholar 

  • Fortenberry C, Walker M, Dang A, Loka A, Date G, Cysneiros de Carvalho K, Morrison G, Williams B (2019) Analysis of indoor particles and gases and their evolution with natural ventilation. Indoor Air 29(5):761–779

    Article  CAS  Google Scholar 

  • Gard E, Mayer JE, Morrical BD, Dienes T, Fergenson DP, Prather KA (1997) Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS. Anal Chem 69(20):4083–4091

    Article  CAS  Google Scholar 

  • Gillett R, Kreibich H, Ayers G (2000) Measurement of indoor formaldehyde concentrations with a passive sampler. Environ Sci Technol 34(10):2051–2056

    Article  CAS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9(14):5155–5236

    Article  CAS  Google Scholar 

  • Holzinger R, Acton WJF, Bloss WJ, Breitenlechner M, Crilley LR, Dusanter S, Gonin M, Gros V, Keutsch FN, Kiendler-Scharr A, Kramer LJ, Krechmer JE, Languille B, Locoge N, Lopez-Hilfiker F, Materić D, Moreno S, Nemitz E, Quéléver LLJ, Sarda Esteve R, Sauvage S, Schallhart S, Sommariva R, Tillmann R, Wedel S, Worton DR, Xu K, Zaytsev A (2019) Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmos Meas Tech 12(11):6193–6208. https://doi.org/10.5194/amt-12-6193-2019

    Article  CAS  Google Scholar 

  • Isaacman-VanWertz G, Massoli P, O’Brien RE, Nowak JB, Canagaratna MR, Jayne JT, Worsnop DR, Su L, Knopf DA, Misztal PK, Arata C, Goldstein AH, Kroll JH (2017) Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discuss 200:579–598. https://doi.org/10.1039/C7FD00021A

    Article  CAS  Google Scholar 

  • Johnson AM, Waring MS, DeCarlo PF (2017) Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. Indoor Air 27(1):230–240

    Article  CAS  Google Scholar 

  • Joo T, Rivera-Rios JC, Alvarado-Velez D, Westgate S, Ng NL (2021) Formation of oxidized gases and secondary organic aerosol from a commercial oxidant-generating electronic air cleaner. Environ Sci Tech Let 8(8):691–698. https://doi.org/10.1021/acs.estlett.1c00416

    Article  CAS  Google Scholar 

  • Katz EF, Guo H, Campuzano-Jost P, Day DA, Brown WL, Boedicker E, Pothier M, Lunderberg DM, Patel S, Patel K, Hayes PL, Avery A, Hildebrandt Ruiz L, Goldstein AH, Vance ME, Farmer DK, Jimenez JL, DeCarlo PF (2021) Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Sci Tech 1–16 https://doi.org/10.1080/02786826.2021.1931013

  • Klein F, Farren NJ, Bozzetti C, Daellenbach KR, Kilic D, Kumar NK, Pieber SM, Slowik JG, Tuthill RN, Hamilton JF (2016) Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Sci Rep-Uk 6(1):1–7

    Article  Google Scholar 

  • Kondo Y, Sahu L, Moteki N, Khan F, Takegawa N, Liu X, Koike M, Miyakawa T (2011) Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci Technol 45(2):295–312. https://doi.org/10.1080/02786826.2010.533215

    Article  CAS  Google Scholar 

  • Lee BH, Lopez-Hilfiker FD, Mohr C, Kurten T, Worsnop DR, Thornton JA (2014) An iodide-adduct high-resolution time of flight chemical ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ Sci Technol 48(11):6309–6317

    Article  CAS  Google Scholar 

  • Li J, Mattewal SK, Patel S, Biswas P (2020) Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual Res 20(2):254–270. https://doi.org/10.4209/aaqr.2018.12.0485

    Article  CAS  Google Scholar 

  • Liang Y, Sengupta D, Campmier MJ, Lunderberg DM, Apte JS, Goldstein AH (2021) Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc Natl Acad Sci 118(36):e2106478118. https://doi.org/10.1073/pnas.2106478118

    Article  CAS  Google Scholar 

  • Liu Y, Misztal PK, Xiong J, Tian Y, Arata C, Weber RJ, Nazaroff WW, Goldstein AH (2019) Characterizing sources and emissions of volatile organic compounds in a northern California residence using space-and time-resolved measurements. Indoor Air 29(4):630–644

    CAS  Google Scholar 

  • Liu Y, Bé AG, Or VW, Alves MR, Grassian VH, Geiger FM (2020) Challenges and opportunities in molecular-level indoor surface chemistry and physics. Cell Rep Phys Sci 1(11):100256. https://doi.org/10.1016/j.xcrp.2020.100256

    Article  Google Scholar 

  • Lopez-Hilfiker FD, Iyer S, Mohr C, Lee BH, D’Ambro EL, Kurten T, Thornton JA (2016) Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmos Meas Tech 9(4):1505–1512. https://doi.org/10.5194/amt-9-1505-2016

    Article  CAS  Google Scholar 

  • Lunderberg DM, Kristensen K, Tian Y, Arata C, Misztal PK, Liu Y, Kreisberg N, Katz EF, DeCarlo PF, Patel S, Vance ME, Nazaroff WW, Goldstein AH (2020) Surface emissions modulate indoor SVOC concentrations through volatility-dependent partitioning. Environ Sci Technol 54(11):6751–6760. https://doi.org/10.1021/acs.est.0c00966

    Article  CAS  Google Scholar 

  • Maruo Y, Yamada T, Nakamura J, Izumi K, Uchiyama M (2010) Formaldehyde measurements in residential indoor air using a developed sensor element in the Kanto area of Japan. Indoor Air 20(6):486–493

    Article  CAS  Google Scholar 

  • Mattila JM, Arata C, Wang C, Katz EF, Abeleira A, Zhou Y, Zhou S, Goldstein AH, Abbatt JPD, DeCarlo PF, Farmer DK (2020a) Dark chemistry during bleach cleaning enhances oxidation of organics and secondary organic aerosol production indoors. Environ Sci Tech Let. https://doi.org/10.1021/acs.estlett.0c00573

  • Mattila JM, Lakey PS, Shiraiwa M, Wang C, Abbatt JP, Arata C, Goldstein AH, Ampollini L, Katz EF, DeCarlo PF (2020b) Multiphase chemistry controls inorganic chlorinated and nitrogenated compounds in indoor air during bleach cleaning. Environ Sci Technol 54(3):1730–1739

    Article  CAS  Google Scholar 

  • Patel S, Sankhyan S, Boedicker EK, DeCarlo PF, Farmer DK, Goldstein AH, Katz EF, Nazaroff WW, Tian Y, Vanhanen J (2020) Indoor particulate matter during HOMEChem: concentrations, size distributions, and exposures. Environ Sci Technol 54(12):7107–7116

    Article  CAS  Google Scholar 

  • Pollack IB, Lindaas J, Roscioli JR, Agnese M, Permar W, Hu L, Fischer EV (2019) Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-TILDAS operated with active continuous passivation. Atmos Meas Tech 12(7):3717–3742. https://doi.org/10.5194/amt-12-3717-2019

    Article  CAS  Google Scholar 

  • Pratt KA, Prather KA (2012) Mass spectrometry of atmospheric aerosols—recent developments and applications. Part II: on-line mass spectrometry techniques. Mass Spectrom Rev 31(1):17–48

    Article  CAS  Google Scholar 

  • Price DJ, Day DA, Pagonis D, Stark H, Algrim LB, Handschy AV, Liu S, Krechmer JE, Miller SL, Hunter JF (2019) Budgets of organic carbon composition and oxidation in indoor air. Environ Sci Technol 53(22):13053–13063

    Article  CAS  Google Scholar 

  • Rollins AW, Browne EC, Min KE, Pusede SE, Wooldridge PJ, Gentner DR, Goldstein AH, Liu S, Day DA, Russell LM, Cohen RC (2012) Evidence for NOx control over nighttime SOA formation. Science 337(6099):1210–1212. https://doi.org/10.1126/science.1221520

    Article  CAS  Google Scholar 

  • Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110(4):2536–2572. https://doi.org/10.1021/cr800399g

    Article  CAS  Google Scholar 

  • Sankhyan S, Patel S, Katz E, DeCarlo PF, Farmer D, Nazaroff WW, Vance ME (2021) Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. Environ Sci Process Impacts. https://doi.org/10.1039/D1EM00283J

  • Schlink U, Rehwagen M, Damm M, Richter M, Borte M, Herbarth O (2004) Seasonal cycle of indoor-VOCs: comparison of apartments and cities. Atmos Environ 38(8):1181–1190. https://doi.org/10.1016/j.atmosenv.2003.11.003

    Article  CAS  Google Scholar 

  • Slowik JG, Stainken K, Davidovits P, Williams L, Jayne J, Kolb C, Worsnop DR, Rudich Y, DeCarlo PF, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Sci Technol 38(12):1206–1222

    Article  CAS  Google Scholar 

  • Tian Y, Arata C, Boedicker E, Lunderberg DM, Patel S, Sankhyan S, Kristensen K, Misztal PK, Farmer DK, Vance M (2021) Indoor emissions of total and fluorescent supermicron particles during HOMEChem. Indoor Air 31(1):88–98

    Article  CAS  Google Scholar 

  • Tryner J, L’Orange C, Mehaffy J, Miller-Lionberg D, Hofstetter JC, Wilson A, Volckens J (2020) Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos Environ 220:117067. https://doi.org/10.1016/j.atmosenv.2019.117067

    Article  CAS  Google Scholar 

  • Van den Broek J, Cerrejon DK, Pratsinis SE, Güntner AT (2020) Selective formaldehyde detection at ppb in indoor air with a portable sensor. J Hazard Mater 399:123052

    Article  Google Scholar 

  • Vlasenko A, Macdonald AM, Sjostedt SJ, Abbatt JPD (2010) Formaldehyde measurements by proton transfer reaction – mass spectrometry (PTR-MS): correction for humidity effects. Atmos Meas Tech 3(4):1055–1062. https://doi.org/10.5194/amt-3-1055-2010

    Article  CAS  Google Scholar 

  • Wang C, Collins DB, Abbatt JP (2019) Indoor illumination of terpenes and bleach emissions leads to particle formation and growth. Environ Sci Technol 53(20):11792–11800

    Article  CAS  Google Scholar 

  • Wang C, Bottorff B, Reidy E, Rosales CMF, Collins DB, Novoselac A, Farmer DK, Vance ME, Stevens PS, Abbatt JP (2020a) Cooking, bleach cleaning, and air conditioning strongly impact levels of HONO in a house. Environ Sci Technol 54(21):13488–13497

    Article  CAS  Google Scholar 

  • Wang C, Collins DB, Arata C, Goldstein AH, Mattila JM, Farmer DK, Ampollini L, DeCarlo PF, Novoselac A, Vance ME (2020b) Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Sci Adv 6(8):eaay8973

    Article  CAS  Google Scholar 

  • Wang Z, Delp WW, Singer BC (2020c) Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Build Environ 171:106654. https://doi.org/10.1016/j.buildenv.2020.106654

    Article  Google Scholar 

  • Wang Z, Delp WW, Singer BC (2020d) Performance of low-cost indoor air quality monitors for PM2. 5 and PM10 from residential sources. Build Environ 171:106654

    Google Scholar 

  • Wang N, Zannoni N, Ernle L, Bekö G, Wargocki P, Li M, Weschler CJ, Williams J (2021) Total OH reactivity of emissions from humans: in situ measurement and budget analysis. Environ Sci Technol 55(1):149–159. https://doi.org/10.1021/acs.est.0c04206

    Article  CAS  Google Scholar 

  • Wisthaler A, Weschler CJ (2010) Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci 107(15):6568–6575

    Article  CAS  Google Scholar 

  • Wong JPS, Carslaw N, Zhao R, Zhou S, Abbatt JPD (2017) Observations and impacts of bleach washing on indoor chlorine chemistry. Indoor Air 27(6):1082–1090. https://doi.org/10.1111/ina.12402

    Article  CAS  Google Scholar 

  • Young CJ, Furdui VI, Franklin J, Koerner RM, Muir DC, Mabury SA (2007) Perfluorinated acids in arctic snow: new evidence for atmospheric formation. Environ Sci Technol 41(10):3455–3461

    Article  CAS  Google Scholar 

  • Young CJ, Zhou S, Siegel JA, Kahan TF (2019) Illuminating the dark side of indoor oxidants. Environ Sci Process Impacts 21(8):1229–1239. https://doi.org/10.1039/C9EM00111E

    Article  CAS  Google Scholar 

  • Youssefi S, Waring M (2012) Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. Indoor Air 22(5):415–426

    Article  CAS  Google Scholar 

  • Zhang Z, Lin YH, Zhang H, Surratt JD, Ball LM, Gold A (2012) Technical note: synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran. Atmos Chem Phys 12(18):8529–8535. https://doi.org/10.5194/acp-12-8529-2012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Alfred P. Sloan Foundation (Grant G-2018-11130) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine K. Farmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Farmer, D.K., Pothier, M., Mattila, J.M. (2022). Analytical Tools in Indoor Chemistry. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics