
Chapter 6

Spatial Variation in Boundary Conditions Can
Govern Selection and Location of Eyespots
in Butterfly Wings

Toshio Sekimura and Chandrasekhar Venkataraman

Abstract Despite being the subject of widespread study, many aspects of the

development of eyespot patterns in butterfly wings remain poorly understood. In

this work, we examine, through numerical simulations, a mathematical model for

eyespot focus point formation in which a reaction-diffusion system is assumed to

play the role of the patterning mechanism. In the model, changes in the boundary

conditions at the veins at the proximal boundary alone are capable of determining

whether or not an eyespot focus forms in a given wing cell and the eventual position

of focus points within the wing cell. Furthermore, an auxiliary surface reaction-

diffusion system posed along the entire proximal boundary of the wing cells is

proposed as the mechanism that generates the necessary changes in the proximal

boundary profiles. In order to illustrate the robustness of the model, we perform

simulations on a curved wing geometry that is somewhat closer to a biological

realistic domain than the rectangular wing cells previously considered, and we also

illustrate the ability of the model to reproduce experimental results on artificial

selection of eyespots.
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6.1 Introduction

Eyespots, concentric bands of pigment patterning, constitute one of the most

studied pattern elements on the wings of butterflies (c.f., Fig. 6.3 for an example).

Each eyespot develops around a focus, a small group of cells that sends out a

morphogenetic signal that determines the synthesis of circular patterns of pigments

in their surroundings. In this work, we consider a model that provides a possible

mechanism underlying the determination of the number and locations of eyespots

on the wing surface. The model we consider, first described by Sekimura et al.

(2015), provides a mechanism that places the foci around which eyespots form in

various locations on the entire wing surface. We do not address here subsequent

stages of eyespot formation that occurs after the development of the foci.

The model we consider is based on that of Nijhout (1990). The main novelty of

the work in Sekimura et al. (2015) was to illustrate that simply changing the

conditions assumed to hold at the proximal veins was sufficient to determine

whether or not an eyespot formed in a given wing cell. In the present work, we

extend the investigations of the models proposed in Sekimura et al. (2015). We

show that it is possible to determine the location of eyespots within a wing cell

simply by changing the conditions that are assumed to hold at the lateral wing veins

that bound the wing cell. Furthermore, we illustrate that it is possible, using a

two-stage model, to recapitulate the results of artificial selection experiments in

terms of selection and location of eyespots in butterfly wings.

6.2 Modelling

In this section, we describe the mathematical model for focus point formation that

we consider in the present work.

6.2.1 Setting

As butterfly wing patterns form in two layers that are thought to be separated

completely by the middle tissue (e.g. Sekimura et al. 1998), we assume that the

formation of eyespots takes place in a single layer of the wing disc. Hence, we

model the domain in which eyespot formation occurs as a two-dimensional region.

Furthermore, we assume that this two-dimensional region consists of several wing

cells, regions bounded by the wing veins, and we consider a region of up to seven

wing cells sufficient to represent the entire surface (front or back) of the wing disc.

For the sake of simplicity, we assume that each of the wing cells is of the same

shape and size.
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The model we consider for the formation of focus points is based on that

proposed by Nijhout (1990) and consists of a reaction-diffusion system of

activator-inhibitor type (Gierer and Meinhardt 1972) posed in each wing cell with

time-independent Dirichlet boundary conditions (i.e. a source of chemicals) on the

wing veins and Neumann (zero flux) boundary conditions (i.e. no flux of chemicals)

at the wing margin.

6.2.2 Mathematical Model

We denote by nseg the number of wing cells. We denote by Ωi the ith wing cell with
boundaries Γm , i (wing margin), Γv , i ,Γv , i+ 1 (veins) and Γp , i (proximal boundary).

The boundary conditions for the activator (a1) are Dirichlet (fixed) on the proximal

boundary Γp , i and the wing veins Γv , i ,Γv , i+ 1 and Neumann (zero flux) on the wing

margin Γm , i (c.f., Fig. 6.1). The boundary conditions for the inhibitor (a2) are zero

Fig. 6.1 A sketch of the domain on which we model the formation of eyespot focus points
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flux on all four boundaries of each wing cell. The Dirichlet boundary condition on

each vein Γv , i is the same for each vein. We take the initial data for both activator

and inhibitor to be the positive spatially homogeneous steady state of the Gierer-

Meinhardt (GM) equation. Thus, our model for focus pattern formation consists of

nseg-independent GM equations. The model system equations may be stated as

follows:

For i¼ 1 , . . . , nseg, find ~a ~x; tð Þ, ~x; tð Þ2Ω� 0; Tð Þ, such that

∂t~a ~x; tð Þ � DΔ~a ~x; tð Þ ¼ ~f ~a ~x; tð Þð Þ ~x; tð Þ2Ωi � 0; Tð Þ
a1 ~x; tð Þ ¼ u ~xð Þ ~x2∂Ωi=Γm, i

∇a1 ~x; tð Þ � ~n ~x; tð Þ ¼ 0 ~x; tð Þ2Γm, i � 0; Tð Þ
∇a2 ~x; tð Þ � ~n ~x; tð Þ ¼ 0 ~x; tð Þ2∂Ωi � 0; Tð Þ
~a ~x; tð Þ ¼ ~ass ~x2Ωi,

ð6:1Þ

where D is a diagonal matrix of positive diffusion coefficients and the reaction

kinetic vector ~f ~vð Þ is given by f 1 ~vð Þ ¼ α κ1v21=v2
� �� κ2v1
� �

and

f 2 ~vð Þ ¼ α κ1v21 � κ3v2
� �

, with κ1 , κ2 , κ3> 0. The choice of kinetics yields that the

corresponding ODE system has a positive steady ~ass ¼ κ2=κ2; κ1κ3=κ2ð ÞT .
Nijhout (1990, 1994) showed that the above model was capable of generating

source profiles consistent with the formation of an eyespot focus within a wing cell.

In Sekimura et al. (2015), we showed that changes in the Dirichlet boundary

condition for a1 at the proximal boundary Γp , i alone were sufficient to determine

whether or not an eyespot focus forms in a wing cell. For the proximal boundary

profile, we consider two different cases firstly, prescribed boundary conditions, and

secondly, in order to propose a full model, we consider that the boundary profiles

are themselves generated by a patterning mechanism that is posed along the entire

proximal boundary, i.e. the curved surface Γp≔[iΓp , i. For this one-dimensional

patterning mechanism, for consistency with the two-dimensional model above, we

consider a surface reaction-diffusion system which for illustrative purposes we

choose to be the activator-depleted substrate model of Schnakenberg (1979), stated

as follows:

Find ~u ~x; tð Þ such that

∂t~u ~x; tð Þ � DuΔΓ~u ~x; tð Þ ¼ ~h ~u ~x; tð Þð Þ on Γp, ð6:2Þ

where Du is a diagonal matrix of positive diffusion coefficients, ΔΓ is the Laplace-

Beltrami operator (the analogue to the usual Cartesian Laplacian on the surface)

and the function ~h ~uð Þ is given by h1 ~uð Þ ¼ γ ~xð Þ a� u1 þ u21 u2
� �

and h2 ~uð Þ ¼ γ ~xð Þ
b� u21 u2
� �

, with a , b> 0. u1 and u2 are the concentrations of two chemicals (the

activator and substrate, respectively). The function γ can be thought of as a reaction
rate and is typically taken to be constant in most studies that employ such systems to

model biological pattern formation. However, if such an approach is adopted,

patterns with a constant wavelength across Γp are to be expected. In the present
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context, this would be insufficient to explain butterfly wing patterning in which the

distribution of eyespots occurs with differing frequency in different parts of the

wing. For this reason, we allow the reaction rate to be a function of space, which

appears to provide sufficient freedom to generate the necessary source profiles from

this one-dimensional model that produces any arbitrary eyespot configuration

observed on butterfly wings. The resulting model is a two-stage model for focus

point formation in which the first stage corresponds to solving the Schnakenberg

surface reaction-diffusion system Eq. (6.2) to steady state and in the second stage

the solution u2 to this model is used to determine the proximal boundary profiles for

a1 in the eyespot reaction-diffusion system model Eq. (6.1) within each of the wing

cells.

6.3 Computational Approximation

For the approximation of the eyespot reaction-diffusion system models posed

within each of the wing cells, we employ an implicit-explicit finite element method

developed and analysed in Lakkis et al. (2013). An advantage of such an approach

is that arbitrary, potentially evolving, geometries can be considered. In particular,

one does not need to assume that the wing cells are rectangular, and indeed using

open-source meshing software, it is even possible to solve the systems on geome-

tries obtained from image data, which may be a worthwhile extension. For the

approximation of the surface reaction-diffusion system, we employ the surface

finite element method (Dziuk and Elliott 2013). We refer to the above two refer-

ences for further details on the numerical approach.

6.4 Results

6.4.1 Gradients in Source Strength on the Wing Veins Can
Determine Eyespot Location in the Wing Cell

We start by illustrating that in the eyespot focus point formation model of Sect. 6.2,

it is possible to change the location of eyespots by allowing the Dirichlet boundary

condition at the wing veins to vary in space. To this end, we suppose that the wing

cells are trapezoidal with parallel sides corresponding to the proximal and marginal

boundaries that are chosen to be of length 1.5 and 2.5, respectively and are such that

the height (proximal-marginal) is 3. We set the proximal boundary condition to be a

convex profile of the form u ~xð Þ ¼ 2ass
1 1� sin 2 πd ~xð Þ=1:5ð Þð Þ where d ~xð Þ is the

distance from the boundary points of the proximal boundary. The boundary
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condition thus takes the value 2ass
1 at the boundary points of Γp , i and decays to 0 at

the centre of the proximal boundary. For the wing veins, we consider a gradient in

the Dirichlet boundary condition by considering a linear boundary condition of the

form u ~xð Þ ¼ 2ass
1 1� s1x2=3ð Þ, where x2 denotes the distance in the proximal-distal

direction from the wing margin and s1> 0 is a parameter that governs the magni-

tude of the gradient. Thus the boundary condition takes the value 2ass
1 at the point

where the vein meets the marginal boundary and decays towards the proximal

boundary with slope given by s1> 0. The remaining parameter values we select are

given in Table 6.1. For the discretisation we used linear finite elements on a grid

with 2145 degrees of freedom (DOFs) and a time step of 0.01. The system was

solved until the discrete solution was (approximately) at steady state.

Figure 6.2a–d shows snapshots of the activator a1 concentration at different

times for different values of s1. In each of the subfigures, the value of

s1¼ 0 , 0.15 , 0.25 , 0.35 , 0.45 , 0.5 reading from left to right. We see that in the

case of constant boundary conditions or if the gradient is small

(s1¼ 0 , 0.15 , 0.25 , 0.35), the centreline peak, characteristic of the Nijhout model,

does not extend very far from the margin. The focus point forms near the middle of

the wing cell and migrates towards the wing margin with the steady state

corresponding to a single focus near the margin. For larger values of the gradient

(s1¼ 0.45 , 0.5), the centreline peak extends much further, almost reaching the

proximal boundary, and the resulting focus point forms close to the proximal

boundary. The focus point migrates downwards only until around the centre of

the wing cell, and the resulting steady state is a single focus point around the centre

of the wing cell.

6.4.2 A Surface Reaction-Diffusion System Model
with Piecewise Constant Reaction Rate Generates
Boundary Profiles and Resulting Eyespot Foci
Recapitulate Those Observed in Artificial Selection

We now report on simulations in which we illustrate that the two-stage model

proposed in Sect. 6.2 (see also, Sekimura et al. 2015) is capable of reproducing the

differing selection of dorsal forewing eyespots observed in artificial selection

experiments on Bicyclus anynana. Beldade et al. (2002) showed that, through

artificial selection, it is possible to generate different phenotypes of B. anynana
with either zero, one (anterior or posterior) or two forewing eyespots (anterior and

posterior) (c.f., Fig. 6.3). To investigate whether our two-stage model is capable of

Table 6.1 Parameter values

for simulations of Sect. 6.4.1
D1 D2 α κ1 κ2 κ3
0.0031 0.03 20 0.03 0.03 0.0125
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Fig. 6.2 Eyespot focus point formation on a trapezoidal domain. On the wing veins we take a

Dirichlet boundary condition of the form u ~xð Þ ¼ 2ass
1 1� s1x2=3ð Þ: In each of the subfigures, the

gradient in the Dirichlet boundary condition is increasing with s1¼ 0 , 0.15 , 0.25 , 0.35 , 0.45 , 0.5

reading from left to right. Thus the leftmost snapshot in each subfigure corresponds to constant

Dirichlet boundary conditions on the wing veins, whilst the rightmost snapshot in each subfigure

corresponds to the steepest linear gradient with u ~xð Þ ¼ 2ass
1 at the point where the wing veins meet

the margin and u ~xð Þ ¼ ass
1 at the point where the wing veins meet the proximal boundary. In all the

subfigures, we only display snapshots of the activator a1 concentration; the inhibitor concentra-

tions are in phase with those of the activator and are thus omitted. For remaining parameter values,

see text. (a) t¼0.1. (b) t¼ 0.2. (c) t¼0.5. (d) Steady state
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reproducing these observations, we consider a wing as shown in Fig. 6.4. The

proximal (Γp) and marginal (Γm) boundaries are curves corresponding to a portion

of the circumference of two concentric circles of radius 9 and 12, respectively. The

wing veins (Γv , i) are assumed to be radial and of length 3, whilst the proximal and

marginal boundaries of each of the wing cells are approximately of length 1.88 and

3.35, respectively. We consider the two-stage model described in Sect. 6.2. In the

first stage, we solve the surface reaction-diffusion system with the Schnakenberg

kinetics to steady state. We select Dirichlet (prescribed) boundary conditions for u1
with u1¼ u1

ss on one boundary and u1¼ 2u1
ss at the other boundary point. For u2 we

set zero-flux boundary conditions. The initial data is taken to be the steady state

value for both u1 and u2. We consider the case that the function γ is piecewise

Fig. 6.3 Eyespot

phenotypes of B. anynana
produced in artificial

selection experiments

(Beldade et al. 2002)

(Figure reproduced with

permission of the publisher)

Fig. 6.4 Sketch of the geometry used to model the entire region of the wing disc on which eyespot

formation occurs for the experiments of Sect. 6.4.2
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constant (e.g. McMillan et al. 2002); in particular, we allow it to take two distinct

values on either side of the midpoint (anterior-posterior) of the proximal boundary

curve. The remaining parameter values we employed are shown in Table 6.2. After

solving the Schnakenberg system to steady state, we assume the Dirichlet boundary

condition at the proximal boundary for the reaction-diffusion system posed in each

wing cell is of the form

a1 ~x; tð Þ ¼ 1:9�u2 ~xð ÞaSS
1 ~x2Γp, i,

where �u 2 ~xð Þ is the spatially inhomogeneous steady state of the substrate in the

Schnakenberg equation. At the veins, we set Dirichlet boundary conditions for the

activator equal to twice the steady state value. The remaining parameter values are

given in Table 6.2. We note that each wing cell in this simulation is slightly larger in

area than those considered in Sect. 6.4.1, and it is due to this fact that we require a

slightly larger activator diffusivity, D1, than that which was used in Sect. 6.4.1.

For the numerical parameters, we used a mesh with 3927 DOFs to represent the

entire wing disc. The surface reaction-diffusion system was solved on the trace

mesh corresponding to the boundary edges of the bulk mesh; the corresponding

one-dimensional mesh had 1793 DOFs. We used a piecewise linear finite element

method for both the surface and bulk reaction-diffusion systems with a time step of

0.05, and we solved the system until the concentration profiles were (approxi-

mately) at steady state. Figure 6.5 shows the steady state values obtained for

simulations in which we vary the value of the piecewise constant reaction rate γ.
We see that when γ is zero in both the anterior and posterior, as expected the

substrate concentration (that satisfies zero-flux boundary conditions) in the

one-dimensional system simply converges to a constant. Using this profile in the

proximal boundary conditions for the model posed in each wing cell, we generate a

wing with no foci similar to the ap case of Fig. 6.3. If we allow γ to be large on one
half of the proximal boundary and small on the other half, then we generate

boundary profiles from the one-dimensional system that results in a single eyespot

in the half of the wing in which γ is large, similar to the Ap and aP phenotypes of

Fig. 6.3. Finally, if γ is large and constant across the entire proximal boundary, we

generate a profile that leads to both the anterior and posterior foci forming as in the

AP phenotype of Fig. 6.3. The choice of Dirichlet boundary conditions for u1 leads
the substrate troughs to form in the correct locations for the eventual eyespots

dependent on whether they are anterior or posterior; as for zero-flux or symmetric

Dirichlet boundary conditions, we would expect solutions that are symmetric along

the midpoint of the proximal boundary. We note that this asymmetry need not be

Table 6.2 Parameter values for simulations of Sect. 6.4.2

Du1 Du2 a b D1 D2 α κ1 κ2 κ3
1 15 0.1 0.9 0.005 0.03 20 0.03 0.03 0.0125
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Fig. 6.5 Simulations of eyespot focus point formation using a two-stage model. Initially a

reaction-diffusion system with the Schnakenberg kinetics is solved to steady state on the curved
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through Dirichlet boundary conditions and could be the result of differences

between individual wing cells or some other aspect which is thus far neglected in

the modelling.

6.5 Discussion

In this study, we reported on further investigations of a model for the selection and

distribution of eyespot foci, originally presented in the paper (Sekimura et al. 2015).

The basic idea of the model is that whether an eyespot focus forms in a given wing

cell and its eventual position in the wing cell can be determined through changing

only the boundary conditions that are assumed to hold at the veins. Furthermore, we

considered a two-stage model consisting of two related pattern-forming mecha-

nisms, one posed along the proximal vein and the other posed in each wing cell. The

two-stage model appears capable of reproducing the results of artificial selection

experiments in terms of eyespot selection. A hypothesis within the two-stage model

is that patterning in the first stage could be governed by a reaction-diffusion

mechanism in which the reaction rate is dependent on the spatial position. Such

an assumption is consistent with assuming different levels of gene activation in

different regions of the wing (e.g. McMillan et al. 2002). We note however that the

present model is still sensitive to changes in the parameter values and crucially,

changes in the geometry. In particular, the naturally observed variations in wing

cell size across butterflies appear too large for the present model to be applicable.

Hence a potentially attractive avenue for future studies is to investigate Turing

systems with a degree of scale invariance as has been attempted in other contexts

(e.g. Othmer and Pate 1980).

⁄�

Fig. 6.5 (continued) proximal boundary using a piecewise constant value for the parameter γ,
Dirichlet boundary conditions for u1 and zero-flux boundary conditions for u2 (see text for further
details). The Dirichlet boundary condition on the proximal boundary is taken to be proportional to

the substrate concentration u2 of the Schnakenberg equation. The remaining boundary conditions

and parameter values are given in the text. (a) Steady state values of u2 and a1 for constant γ ¼
0, corresponding to no eyespot foci. (b) Steady state values of u2 and a1 for piecewise constant γ ¼
500 on one half of the wing and γ ¼ 10 on the other half, corresponding to one eyespot focus on the

half of the wing with increased γ. (c) Steady state values of u2 and a1 for piecewise constant γ ¼
10 on one half of the wing and γ ¼ 500 on the other half, corresponding to one eyespot focus on the

half of the wing with increased γ. (d) Steady state values of u2 and a1 for constant γ ¼
500, corresponding to two eyespot foci
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