Skip to main content

Formation of New Cardiomyocytes in Exercise

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 999))

Abstract

Heart failure is a life-threatening disorder associated with the loss of cardiomyocytes. The heart has some endogenous although limited regenerative capacity, thus enhancing cardiac regeneration or stimulating endogenous repair mechanism after cardiac injury is of great interest. The benefits of exercise in heart diseases have been recognized for centuries. Besides the promotion of a favorable cardiac function, exercise is also associated with new cardiomyocytes formation. Exercise may lead to cardiomyocytes renewal from pre-existing cardiomyocytes proliferation or cardiac stem/progenitor cells differentiation. A deep understanding of exercise-induced formation of new cardiomyocytes will enable us to develop novel therapeutics for heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madonna R, Van Laake LW, Davidson SM et al (2016) Position paper of the European Society of Cardiology Working Group Cellular Biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J 37(23):1789–1798

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maracy MR, Isfahani MT, Kelishadi R et al (2015) Burden of ischemic heart diseases in Iran, 1990-2010: findings from the global burden of disease study 2010. J Res Med Sci 20(11):1077–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785

    Article  PubMed  Google Scholar 

  5. Palojoki E, Saraste A, Eriksson A et al (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280(6):H2726–H2731

    CAS  PubMed  Google Scholar 

  6. van den Borne SW, Diez J, Blankesteijn WM et al (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37

    Article  PubMed  Google Scholar 

  7. Barandon L, Couffinhal T, Dufourcq P et al (2004) Study of postmyocardial infarction scar-formation mechanisms: advantage of an experimental myocardial infarction model in mice. Can J Cardiol 20(14):1467–1475

    PubMed  Google Scholar 

  8. Mill JG, Stefanon I, dos Santos L et al (2011) Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res 44(9):890–898

    Article  CAS  PubMed  Google Scholar 

  9. Lin Z, Pu WT (2014) Strategies for cardiac regeneration and repair. Sci Transl Med 6(239):239rv231

    Article  Google Scholar 

  10. Powers SK, Lennon SL, Quindry J et al (2002) Exercise and cardioprotection. Curr Opin Cardiol 17(5):495–502

    Article  PubMed  Google Scholar 

  11. Golbidi S, Laher I (2011) Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011:972807

    Article  PubMed  PubMed Central  Google Scholar 

  12. Powers SK, Smuder AJ, Kavazis AN et al (2014) Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 29(1):27–38

    CAS  Google Scholar 

  13. Erokhina IL, Rumyantsev PP (1986) Ultrastructure of DNA-synthesizing and mitotically dividing myocytes in sinoatrial node of mouse embryonal heart. J Mol Cell Cardiol 18(12):1219–1231

    Article  CAS  PubMed  Google Scholar 

  14. Zak R (1974) Development and proliferative capacity of cardiac muscle cells. Circ Res 35(2 Suppl II):17–26

    CAS  Google Scholar 

  15. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leu M, Ehler E, Perriard JC (2001) Characterisation of postnatal growth of the murine heart. Anat Embryol (Berl) 204(3):217–224

    Article  CAS  Google Scholar 

  17. Hirschy A, Schatzmann F, Ehler E et al (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441

    Article  CAS  PubMed  Google Scholar 

  18. Lopaschuk GD, Collins-Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26(12):1172–1180

    Article  CAS  PubMed  Google Scholar 

  19. Bloomekatz J, Galvez-Santisteban M, Chi NC (2016) Myocardial plasticity: cardiac development, regeneration and disease. Curr Opin Genet Dev 40:120–130

    Article  CAS  PubMed  Google Scholar 

  20. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87(2):521–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  CAS  PubMed  Google Scholar 

  22. Kajstura J, Leri A, Finato N et al (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95(15):8801–8805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  CAS  PubMed  Google Scholar 

  24. Kajstura J, Urbanek K, Perl S et al (2010) Cardiomyogenesis in the adult human heart. Circ Res 107(2):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Phys 272(1 Pt 2):H220–H226

    CAS  Google Scholar 

  26. Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Senyo SE, Steinhauser ML, Pizzimenti CL et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436

    Article  CAS  PubMed  Google Scholar 

  29. Bersell K, Arab S, Haring B et al (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270

    Article  CAS  PubMed  Google Scholar 

  30. Soonpaa MH, Rubart M, Field LJ (2013) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta 1833(4):799–803

    Article  CAS  PubMed  Google Scholar 

  31. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103(24):9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuchs E, Horsley V (2011) Ferreting out stem cells from their niches. Nat Cell Biol 13(5):513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo Celso C, Scadden DT (2011) The haematopoietic stem cell niche at a glance. J Cell Sci 124(Pt 21):3529–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anversa P, Kajstura J, Rota M et al (2013) Regenerating new heart with stem cells. J Clin Invest 123(1):62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  PubMed  Google Scholar 

  38. Matsuura K, Honda A, Nagai T et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119(8):2204–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bu L, Jiang X, Martin-Puig S et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460(7251):113–117

    Article  CAS  PubMed  Google Scholar 

  40. Santini MP, Forte E, Harvey RP et al (2016) Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 143(8):1242–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  CAS  PubMed  Google Scholar 

  42. Kocher AA, Schlechta B, Gasparovicova A et al (2007) Stem cells and cardiac regeneration. Transpl Int 20(9):731–746

    Article  PubMed  Google Scholar 

  43. Mathur A, Martin JF (2004) Stem cells and repair of the heart. Lancet 364(9429):183–192

    Article  CAS  PubMed  Google Scholar 

  44. Olson LE, Soriano P (2009) Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell 16(2):303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torella D, Ellison GM, Nadal-Ginard B et al (2005) Cardiac stem and progenitor cell biology for regenerative medicine. Trends Cardiovasc Med 15(6):229–236

    Article  CAS  PubMed  Google Scholar 

  47. Ellison GM, Galuppo V, Vicinanza C et al (2010) Cardiac stem and progenitor cell identification: different markers for the same cell? Front Biosci (Schol Ed) 2:641–652

    Google Scholar 

  48. Kajstura J, Gurusamy N, Ogorek B et al (2010) Myocyte turnover in the aging human heart. Circ Res 107(11):1374–1386

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez A, Rota M, Nurzynska D et al (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102(5):597–606

    Article  CAS  PubMed  Google Scholar 

  50. Urbanek K, Torella D, Sheikh F et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102(24):8692–8697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urbanek K, Quaini F, Tasca G et al (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 100(18):10440–10445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li F, Wang X, Bunger PC et al (1997) Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J Mol Cell Cardiol 29(6):1541–1551

    Article  CAS  PubMed  Google Scholar 

  54. Li F, Wang X, Gerdes AM (1997) Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J Mol Cell Cardiol 29(6):1553–1565

    Article  CAS  PubMed  Google Scholar 

  55. Mollova M, Bersell K, Walsh S et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110(4):1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malliaras K, Terrovitis J (2013) Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: the debate continues. Glob Cardiol Sci Pract 2013(3):303–315

    PubMed  PubMed Central  Google Scholar 

  57. Ali SR, Hippenmeyer S, Saadat LV et al (2014) Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A 111(24):8850–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chimenti C, Kajstura J, Torella D et al (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93(7):604–613

    Article  CAS  PubMed  Google Scholar 

  59. Wahl P, Brixius K, Bloch W (2008) Exercise-induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration. Minim Invasive Ther Allied Technol 17(2):91–99

    Article  PubMed  Google Scholar 

  60. Bei Y, Zhou Q, Sun Q et al (2015) Exercise as a platform for pharmacotherapy development in cardiac diseases. Curr Pharm Des 21(30):4409–4416

    Article  CAS  PubMed  Google Scholar 

  61. Waring CD, Vicinanza C, Papalamprou A et al (2014) The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J 35(39):2722–2731

    Article  CAS  PubMed  Google Scholar 

  62. Xiao J, Xu T, Li J et al (2014) Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. Int J Clin Exp Pathol 7(2):663–669

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bezzerides VJ, Platt C, Lerchenmuller C et al (2016) CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury. JCI Insight 1(9)

    Google Scholar 

  65. Liu X, Xiao J, Zhu H et al (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7(3):664–676

    Article  PubMed  PubMed Central  Google Scholar 

  67. Weeks KL, McMullen JR (2011) The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda) 26(2):97–105

    Article  CAS  Google Scholar 

  68. Ellison GM, Waring CD, Vicinanza C et al (2012) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 98(1):5–10

    Article  CAS  PubMed  Google Scholar 

  69. Kwak HB (2013) Aging, exercise, and extracellular matrix in the heart. J Exerc Rehabil 9(3):338–347

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schuler G, Adams V, Goto Y (2013) Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 34(24):1790–1799

    Article  CAS  PubMed  Google Scholar 

  71. Sheikh N, Sharma S (2014) Impact of ethnicity on cardiac adaptation to exercise. Nat Rev Cardiol 11(4):198–217

    Article  PubMed  Google Scholar 

  72. Metkus TS Jr, Baughman KL, Thompson PD (2010) Exercise prescription and primary prevention of cardiovascular disease. Circulation 121(23):2601–2604

    Article  PubMed  Google Scholar 

  73. Hu G, Barengo NC, Tuomilehto J et al (2004) Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 43(1):25–30

    Article  CAS  PubMed  Google Scholar 

  74. Kriska AM, Saremi A, Hanson RL et al (2003) Physical activity, obesity, and the incidence of type 2 diabetes in a high-risk population. Am J Epidemiol 158(7):669–675

    Article  PubMed  Google Scholar 

  75. Rennie KL, McCarthy N, Yazdgerdi S et al (2003) Association of the metabolic syndrome with both vigorous and moderate physical activity. Int J Epidemiol 32(4):600–606

    Article  CAS  PubMed  Google Scholar 

  76. Benton JG, Rusk HA (1954) The relation of physical activity and occupation to coronary artery heart disease. Ann Intern Med 41(5):910–917

    Article  CAS  PubMed  Google Scholar 

  77. Pina IL, Apstein CS, Balady GJ et al (2003) Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation 107(8):1210–1225

    Article  PubMed  Google Scholar 

  78. Lee DC, Artero EG, Sui X et al (2010) Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol 24(4 Suppl):27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Connor CM, Whellan DJ, Lee KL et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301(14):1439–1450

    Article  PubMed  PubMed Central  Google Scholar 

  80. Crimi E, Ignarro LJ, Cacciatore F et al (2009) Mechanisms by which exercise training benefits patients with heart failure. Nat Rev Cardiol 6(4):292–300

    Article  PubMed  Google Scholar 

  81. Bei Y, Fu S, Chen X, et al (2017) Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury. J Cell Mol Med

    Google Scholar 

  82. Senyo SE, Lee RT, Kuhn B (2014) Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 13(3 Pt B):532–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosenzweig A (2012) Medicine. Cardiac regeneration. Science 338(6114):1549–1550

    Article  PubMed  Google Scholar 

  84. Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly. Eur Heart J 36(23):1445–1453

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (81570362, 91639101 and 81200169 to JJ Xiao and 81400647 to Y Bei), and the development fund for Shanghai talents (to JJ Xiao), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042), the grant from Science and Technology Commission of Shanghai Municipality (17010500100).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shen, L., Wang, H., Bei, Y., Cretoiu, D., Cretoiu, S.M., Xiao, J. (2017). Formation of New Cardiomyocytes in Exercise. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_6

Download citation

Publish with us

Policies and ethics