Skip to main content

Cancer Genomics and Precision Medicine: A Way Toward Early Diagnosis and Effective Cancer Treatment

  • Chapter
  • First Online:
Genome Analysis and Human Health
  • 785 Accesses

Abstract

Since the first draft of the Human Genome Project was completed in April 2003, biomedical researchers have been mining and extrapolating genomic data toward the goal of improving human health and realizing medical benefits. The promise of “personalized oncomedicine,” the matching of therapeutics to appropriate molecular targets in individual cancer patients, lies in the convergence of cancer researchers, computational biologist, and clinicians to identify the driving mutations involved in tumor progression and metastasis and pursue appropriate therapies. The virtual concept of “cancer genome” in the development of uncontrolled cell growth was conceived as early as late nineteenth and early twentieth century by Theodor Boveri (Boveri 2008). Boveri hypothesized that malignant tumors could be the result of a certain abnormal condition of the chromosomes arising from multipolar mitosis. Several decades later the discovery of the Philadelphia chromosome as the genetic driver of chronic myeloid leukemia (CML) provided the experimental evidence for Boveri’s hypothesis (Nowell and Hungerford 1961).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9.

    Article  CAS  PubMed  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11:384–400.

    Article  CAS  PubMed  Google Scholar 

  • Ateeq B, Unterberger A, Szyf M, Rabbani SA. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia. 2008;10:266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Harris H. J Cell Sci. 2008;121 Suppl 1:1–84.

    Google Scholar 

  • Cao Q, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazier JB, et al. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun. 2014;5:3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnaiyan AM, Palanisamy N. Chromosomal aberrations in solid tumors. Prog Mol Biol Transl Sci. 2010;95:55–94.

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452:215–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crea F, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Druker BJ, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  • Eswaran J, et al. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep. 2013;3:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong PC, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  • Forbes SA, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:D945–50.

    Article  CAS  PubMed  Google Scholar 

  • Frommer M, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA. 1992;89:1827–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasso CS, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.

    Article  CAS  PubMed  Google Scholar 

  • Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–2.

    Article  CAS  PubMed  Google Scholar 

  • Kalyana-Sundaram S, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149:1622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SN, et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia. 2013;27:1301–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, et al. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res. 2011;21:1028–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogo R, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol. 2009;175:1246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18:1851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247:1079–82.

    Article  CAS  PubMed  Google Scholar 

  • Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  • Maher CA, et al. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458:97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER, Wilson RK. Cancer genome sequencing: a review. Hum Mol Genet. 2009;18:R163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martelli MP, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F. Recurrent chromosome aberrations in cancer. Mutat Res. 2000;462:247–53.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42:181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natrajan R, et al. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol. 2014;232:553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowell PC, Hungerford DA. Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst. 1961;27:1013–35.

    CAS  PubMed  Google Scholar 

  • Palanisamy N, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16:793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101:13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pong RC, et al. Epigenetic regulation of coxsackie and adenovirus receptor (CAR) gene promoter in urogenital cancer cells. Cancer Res. 2003;63:8680–6.

    CAS  PubMed  Google Scholar 

  • Robertson D. Genentech’s anticancer Mab expected by November. Nat Biotechnol. 1998;16:615.

    Article  CAS  PubMed  Google Scholar 

  • Robinson DR, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013a;45:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DR, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013b;45:1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley JD. Ph1-positive leukaemia, including chronic myelogenous leukaemia. Clin Haematol. 1980;9:55–86.

    CAS  PubMed  Google Scholar 

  • Schechter AL, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984;312:513–6.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462:1005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321:956–60.

    Article  CAS  PubMed  Google Scholar 

  • Szyf M. Therapeutic implications of DNA methylation. Future Oncol. 2005;1:125–35.

    Article  CAS  PubMed  Google Scholar 

  • Tan M, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlins SA, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.

    Article  CAS  PubMed  Google Scholar 

  • van Haaften G, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41:521–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varambally S, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jyoti Athanikar for critically reading the manuscript. B.A. is an Intermediate Fellow of the Wellcome Trust-DBT India Alliance [IA/I(S)/12/2/500635 to BA] and a Young Investigator of the DST-FAST Track scheme.

Competing Interests

No competing interests to be disclosed.

Dr. Bushra Ateeq

Dr. Bushra Ateeq is an Assistant Professor at Department of Biological Sciences and Bioengineering (BSBE), IIT, Kanpur, India. The primary research focus of Dr. Bushra’s laboratory is to understand the complex molecular events involved in prostate and breast cancer, identify early diagnostic markers and valuable therapeutic targets. Her lab focuses on experimental evaluation of the functional relevance of the genetic rearrangements, copy number changes, and somatic alterations identified by genomic approaches, using molecular and cellular approaches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Ateeq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tiwari, R., Ateeq, B. (2017). Cancer Genomics and Precision Medicine: A Way Toward Early Diagnosis and Effective Cancer Treatment. In: Rawal, L., Ali, S. (eds) Genome Analysis and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-4298-0_2

Download citation

Publish with us

Policies and ethics