Skip to main content

Silver-Mediated Fluorination for Preparing Aryl Fluorides

  • Reference work entry
  • First Online:
Fluorination

Part of the book series: Synthetic Organofluorine Chemistry ((SYOC))

  • 732 Accesses

Introduction

Aryl fluorides display unique chemical, physical, and pharmaceutical properties such as increased metabolic stability, solubility, and bioavailability [1, 2]. Functionalized aryl fluorides are wildly used in the fields of materials [3, 4], pharmaceuticals [5, 6], agrochemicals [7, 8], and position emission tomography (PET) [9, 10]. Although many researches have been done, the formation of aromatic C–F bond is still more challenging compared to the formation of other carbon–halogen bond [9, 11, 12]. Traditional methods to construct aryl fluorides such as nucleophilic aromatic substitution and Balz-Schiemann reaction often require harsh reaction conditions and are limited to narrow substrate scopes. In nucleophilic aromatic substitution, only electron-deficient aromatics can give good to well yields. And the tetrafluoroborate salts used in Balz-Schiemann are potentially explosive species and not easy to be prepared in mild conditions [13, 14, 15].

Compared with other...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G (2012) The fluorous effect in biomolecular applications. Chem Soc Rev 41: 31–42

    CAS  PubMed  Google Scholar 

  2. O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev 37: 308–319

    PubMed  Google Scholar 

  3. Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J (2011) Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem Soc Rev 40: 3496–3508

    CAS  PubMed  Google Scholar 

  4. Babudri F, Farinola GM, Naso F, Ragni R (2007) Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem Commun 2007: 1003–1022

    Google Scholar 

  5. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58: 8315–8359

    CAS  PubMed  Google Scholar 

  6. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37: 320–330

    CAS  PubMed  Google Scholar 

  7. Fujiwara T, O’Hagan D (2014) Successful fluorine-containing herbicide agrochemicals. J Fluorine Chem 167: 16–29

    CAS  Google Scholar 

  8. Jeschke P (2004) The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem 5: 570–589

    CAS  Google Scholar 

  9. Preshlock S, Tredwell M, Gouverneur V (2016) 18F-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev 116: 719–766

    CAS  PubMed  Google Scholar 

  10. Tredwell M, Gouverneur V (2012) 18F-Labeling of arenes. Angew Chem Int Ed 51:11426–11437

    CAS  Google Scholar 

  11. Campbell MG, Ritter T (2014) Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem Rev 115: 612–633

    PubMed  Google Scholar 

  12. Furuya T, Klein JE, Ritter T (2010) Carbon–fluorine bond formation for the synthesis of aryl fluorides. Synthesis 2010:1804–1821

    PubMed  PubMed Central  Google Scholar 

  13. Balz G, Schiemann G (1927) Über aromatische fluoroverbindungen, I.: ein neues varfahren zu ihrer darstellung. Ber Dtsch Chem Ges B 60: 1186−1190

    Google Scholar 

  14. Adams D, Clark J (1999) Nucleophilic routes to selectively fluorinated aromatics. Chem Soc Rev 28: 225–231

    CAS  Google Scholar 

  15. Laali KK, Gettwert VJ (2001). Fluorodediazoniation in ionic liquid solvents: new life for the Balz–Schiemann reaction. J Fluorine Chem 107: 31–34

    CAS  Google Scholar 

  16. Alvarez-Corral M, Munoz-Dorado M, Rodriguez-Garcia I (2008) Silver-mediated synthesis of heterocycles. Chem Rev 108: 3174–3198

    CAS  PubMed  Google Scholar 

  17. Fang G, Bi X (2015) Silver-catalysed reactions of alkynes: recent advances. Chem Soc Rev 44: 8124–8173

    CAS  PubMed  Google Scholar 

  18. Naodovic M, Yamamoto H (2008) Asymmetric silver-catalyzed reactions. Chem Rev 108: 3132–3148

    CAS  PubMed  Google Scholar 

  19. Tius MA, Kawakami JK (1992). Vinyl fluorides from vinyl stannanes. Synthetic Commun 22: 1461–1471

    CAS  Google Scholar 

  20. Tius MA, Kawakami JK (1993) Rapid fluorination of alkenyl stannanes with silver triflate and xenon difluoride. Synlett 1993: 207–208

    Google Scholar 

  21. Tius MA, Kawakami, JK (1995) The reaction of XeF2 with trialkylvinylstannanes: scope and some mechanistic observations. Tetrahedron 51: 3997–4010

    CAS  Google Scholar 

  22. Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles [new synthetic methods (58)]. Angew Chem Int Ed Engl 25: 508–524

    Google Scholar 

  23. Beverwijk CDM, Van der Kerk G JM (1972) The synthesis and properties of phenylsilver. J Organometallic Chem 43: 7–10.

    Google Scholar 

  24. Krause E, Schmitz M (1919) Gemischte blei- und zinn-aryle und -aryl-alkyl und ihre verwendung zur darstellung von silber-organoverbindungen, zugleich beispiele für den einfluß des symmetriegrades auf die eigenschaften chemischer verbindungen. Ber Dtsch Chem Ges 52: 2150–2164

    Google Scholar 

  25. Furuya T, Strom AE, Ritter T (2009) Silver-mediated fluorination of functionalized aryl stannanes. J Am Chem Soc 131: 1662–1663

    CAS  PubMed  Google Scholar 

  26. Tang P, Furuya T, Ritter, T. (2010). Silver-catalyzed late-stage fluorination. J Am Chem Soc 132: 12150–12154

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. (2010). Radiosynthesis and evaluation of [18F]Selectfluor bis(triflate). Angew Chem Int Ed 49: 6821–6824

    CAS  Google Scholar 

  28. Stenhagen IS, Kirjavainen AK, Forsback SJ, Jørgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur, V (2013) [18F]Fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun 49: 1386–1388

    CAS  Google Scholar 

  29. Lennox AJ, Lloyd-Jones GC (2014) Selection of boron reagents for Suzuki–Miyaura coupling. Chem Soc Rev 43: 412–443

    CAS  PubMed  Google Scholar 

  30. Furuya T, Ritter T (2009) Fluorination of boronic acids mediated by silver (I) triflate. Org Lett 11: 2860–2863

    CAS  PubMed  Google Scholar 

  31. Dubbaka SR, Narreddula VR, Gadde S, Mathew T (2014) Silver-mediated fluorination of potassium aryltrifluoroborates with Selectfluor®. Tetrahedron 70: 9676–9681

    CAS  Google Scholar 

  32. Nakao Y, Hiyama T (2011) Silicon-based cross-coupling reaction: an environmentally benign version. Chem Soc Rev 40: 4893–4901

    CAS  PubMed  Google Scholar 

  33. Denmark SE, Sweis RF (2002) Design and implementation of new, silicon-based, cross-coupling reactions: importance of silicon–oxygen bonds. Acc. Chem. Res. 35: 835–846

    CAS  PubMed  Google Scholar 

  34. Tang P, Ritter T (2011) Silver-mediated fluorination of aryl silanes. Tetrahedron 67: 4449–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Der Puy, M. (1987). Direct fluorination of substituted pyridines. Tetrahedron Lett 28 255–258

    Google Scholar 

  36. Chambers RD, Parsons M, Sandford G, Skinner CJ, Atherton MJ, Moilliet JS (1999) Elemental fluorine. Part 10.1 Selective fluorination of pyridine, quinoline and quinoxaline derivatives with fluorine–iodine mixtures. J Chem Soc Perkin Trans 1: 803–810

    Google Scholar 

  37. Zweig A, Fischer RG, Lancaster JE (1980) New method for selective monofluorination of aromactics using silver difluoride. J Org Chem 1980: 3597–3603

    Google Scholar 

  38. Fier PS, Hartwig JF (2013) Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342: 956–960

    CAS  PubMed  Google Scholar 

  39. Fier PS, Hartwig JF (2014) Synthesis and late-stage functionalization of complex molecules through C–H fluorination and nucleophilic aromatic substitution. J Am Chem Soc 136: 10139–10147

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang C, Cai J, Zhang M, Zhao X (2017) Ag-assisted fluorination of unprotected 4,6-disubstituted 2-aminopyrimidines with Selectfluor. J Org Chem 82: 1260–1265

    CAS  PubMed  Google Scholar 

  41. Kober E, Schroeder H, RÄtz RFW, Ulrich H, Grundmann C (1961) Synthesis of polyfluorinated heterocycles by indirect fluorination with silver fluorides. I. fluoro-s-triazines and reactions of cyanuric fluoride. J Org Chem 27: 2577–2580

    Google Scholar 

  42. Schroeder H, Kober E, Ulrich H, RÄtz R, Agahigian H, Grundmann C (1961) Synthesis of polyfluorinated heterocycles by indirect fluorination with silver fluorides. II. fluoropyrimidines. J Org Chem 27: 2580–2584

    Google Scholar 

  43. Ulrich H, Kober E, Schroeder H, RÄtz R, Grundmann C (1961) Synthesis of polyfluorinated heterocycles by indirect fluorination with silver fluorides. III. fluoropiperideines, fluoropyrrolines, and fluoropyrrolenine. J Org Chem 27: 2585–2589

    Google Scholar 

  44. Schroeder H, RÄtz R, Schnabel W, Ulrich H, Kober E, Grundmann C (1961) Synthesis of polyfluorinated heterocycles by indirect fluorination with silver fluorides. IV. Fluorothiadiazoles. J Org Chem 27: 2589–2592

    Google Scholar 

  45. Ulrich H, Kober E, RÄtz R, Schroeder H, Grundmann C (1961) Synthesis of polyfluorinated heterocycles by indirect fluorination with silver fluorides. V. fluorothiophene. J Org Chem 27: 2593–2595

    Google Scholar 

  46. Font M, Acuña-Parés F, Parella T, Serra J, Luis JM, Lloret-Fillol J, Costas M, Ribas X (2014) Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis. Nat Commun 5: 4373–4383

    CAS  PubMed  Google Scholar 

  47. Wang D, Sun W, Chu T (2015) Synthesis of 5-fluorotriazoles by silver-mediated fluorination of 5-iodotriazoles. Eur J Org Chem 2015: 4114–4118

    CAS  Google Scholar 

  48. Worrell BT, Hein JE, Fokin VV (2012) Halogen exchange (halex) reaction of 5-iodo-1,2,3-triazoles: synthesis and applications of 5-fluorotriazoles. Angew Chem Int Ed 51: 11791–11794

    CAS  Google Scholar 

  49. Liu Q, Yuan Z, Wang H Y, Li Y, Wu Y, Xu T, Leng X. Chen P, Guo Y, Lin Z, Liu, G. (2015). Abnormal mesoionic carbene silver complex: synthesis, reactivity, and mechanistic insight on oxidative fluorination. ACS Catal 5: 6732–6737

    CAS  Google Scholar 

  50. Xu T, Wu Y, Yuan Z, Guan H, Liu G (2016) Mechanistic investigation on the silver-catalyzed oxidative intramolecular aminofluorination of alkynes. Organometallics 35: 1347–1349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Pingping .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, P., Pingping, T. (2020). Silver-Mediated Fluorination for Preparing Aryl Fluorides. In: Hu, J., Umemoto, T. (eds) Fluorination. Synthetic Organofluorine Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3896-9_9

Download citation

Publish with us

Policies and ethics