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Abstract The last decade has witnessed fast growing applications of Monte-Carlo
methodology to a wide range of problems in financial economics. This chapter con-
sists of two topics: market microstructure modeling and Monte-Carlo dimension
reduction in option pricing. Market microstructure concerns how different trading
mechanisms affect asset price formation. It generalizes the classical asset pricing
theory under perfect market conditions by incorporating various friction factors,
such as asymmetric information shared by different market participants (informed
traders, market makers, liquidity traders, et al.), and transaction costs reflected in
bid-ask spreads. The complexity of those more realistic dynamic models presents
significant challenges to empirical studies formarketmicrostructure. In this work, we
consider some extensions of the seminal sequential trade model in Glosten and Mil-
grom (Journal of Financial Economics, 14(1), 71–100, 1985) and perform Bayesian
Markov chain Monte-Carlo (MCMC) inference based on the trade and quote (TAQ)
database in Wharton Research Data Services (WRDS). As more and more security
derivatives are constructed and traded in financial markets, it becomes crucial to price
those derivatives, such as futures and options. There are two popular approaches for
derivative pricing: the analytical approach sets the price function as the solution
to a PDE with boundary conditions and solves it numerically by finite difference
etc.; the probabilistic approach expresses the price of a derivative as the conditional
expectation under a risk neutral measure and computes it via numerical integration.
Adopting the second approach, we notice the required integration is often performed
over a high dimensional state space in which state variables are financial time series.
A key observation is for a broad class of stochastic volatility (SV) models, the con-
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ditional expectations representing related option prices depend on high-dimensional
volatility sample paths through only some 2D or 3D summary statistics whose sam-
ples, if generated, would enable us to avoid brute force Monte-Carlo simulation for
the underlying volatility sample paths. Although the exact joint distributions of the
summary statistics are usually not known, they could be approximated by distribu-
tion families such as multivariate Gaussian, gammamixture of Gaussian, log-normal
mixture of Gaussian, etc. Parameters in those families can be specified by calculat-
ing the moments and expressing them as functions of parameters in the original SV
models. This method improves the computational efficiency dramatically. It is par-
ticularly useful when prices of those derivatives need to be calculated repeatedly as
a part of Bayesian MCMC calibration for SV models.

1 Hierarchical Modeling in Market Microstructure Studies

The research in financial economics becomes more necessary after the financial
crisis, with statistics playing an important role in such studies. Several milestones in
modern finance, such as capital asset pricing model (CAPM), Black-Scholes-Merton
derivatives pricing, hold under certain perfect market conditions, i.e. the market is
fully efficient with no taxes, no transaction costs, no bid-ask spreads, unlimited
short-selling, and all market participants sharing the same information, to name just
a few. Those assumptions are clearly violated in real financial markets, evidenced
by many empirical studies. Market microstructure concerns friction factors, aims to
understand how asset price formation is affected by various trading mechanisms.

In this work, we will focus on two aspects of market microstructure that attract
most attentions from financial economists: asymmetric information and bid/ask
spreads. We will follow the model-based approach in the seminal work of Glosten
andMilgrom (1985), referred to asG-Mmodel inwhat follows. It is a sequential trade
model assuming risk neutrality and a quote-driven protocol. The market maker posts
bid and ask prices in every (discrete) time unit based on which traders place their
orders. There are certain informed traders among other uninformed traders in the
market, and the proportion of informed traders is represented by a parameter α. The
information asymmetry induces adverse selection costs that force the market maker
to quote different prices for buying and selling, leading to the bid-ask spread. The
spread is a premium the market maker demands for trading with informed traders. A
special feature in G-M model is to present explicitly how bid and ask prices change
over time and are influenced by different trading orders.

Our research concerns empirical studies for G-M model and its extensions using
real market data. Due to the complexity of many market microstructure models such
as G-M, systematic model-based empirical studies are relatively lacking compared
to the development of theoretical models and model-free descriptive data analysis.
A noticeable contribution is Hasbrouck (2009) which considers an extension of Roll
model (cf. Roll 1984) and uses theGibbs sampler to estimate the effective trading cost
and trading direction. To validate the method, a high correlation 0.965 is calculated
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between the Gibbs sampler estimates of the effective cost and the descriptive esti-
mates based on high frequency TAQ data. The sophisticated hierarchical dynamic
structure in G-M model presents a challenge to model-based inference using real
market data. Little has been done in this direction. Das (2005) takes a useful step by
presenting an algorithm for computing approximate solutions to the bid/ask prices
and runs a simulation study under a modified G-M model. It helps us learn from the
market maker’s perspective, and paves a road for further studies.

In this work, we consider further extensions of G-Mmodel and perform Bayesian
MCMC inference based on the TAQ database in WRDS. Both the asymmetric infor-
mation and bid-ask spread issues are addressed. To the best of our knowledge, our
work is the first attempt at inference on market microstructure models of G-M type
based on intra-day data. Since the main focus of this chapter is implementation of
MCMC algorithms, some other useful results we developed along this line are not
included here, such as incorporation of GARCH (1,1) model for the volatility of asset
returns which furthermore improves the model fitting. More details are available in
Tao Wang’s Ph.D. thesis (cf Wang 2014) upon request.

1.1 The Model

The following setting for market microstructure is assumed:

• Let Vt denote the true underlying value (logarithmic share price) of a stock at time
t = 0, 1, ... The stock dynamics follows a randomwalk Vt = Vt−1 + εt , where the
innovations ε1, ε2, ... are iid N (0, σ 2) random variables with parameter σ > 0.

• A single market maker sets the ask price At and the bid price Bt for one share of
the stock at t .

• Traders enter the market sequentially. Each of them can buy the stock at the price
At , or sell the stock at Bt . There are two types of traders: uninformed and informed.
An uninformed trader (assumed not knowing Vt ) will place a buy or sell order with
equal probability η, or choose not to trade with probability 1 − 2η. An informed
trader, who is assumed to know Vt , will place a buy order if Vt > At or a sell order
if Vt < Bt , or no trade order if Bt ≤ Vt ≤ At .

• When setting At and Bt at each t , the market maker, knowing neither the type of
the trader nor the true value V , will face an informed trader with probability α or an
uninformed one with probability 1 − α, and receive an order placed by that trader,
based onwhich hewill update his belief in such away as defining At = Et (V |Buy)
and Bt = Et (V | Sell). Here Et (·) denotes the conditional expectation given the
market maker’s information up to t , with “Buy/Sell” inserted in the condition to
reflect the most recent order type.

• Denote the observed bid/ask prices by Pb
t and Pa

t respectively and assume
Pb
t ∼ N (Bt , δ

2) and Pa
t ∼ N (At , δ

2), where δ > 0measures pricing errors (small
perturbation).
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Following Bayes’ formula we get

Et [V |Sell] =
∫

v pt (v|Sell)dv

=
∫

v
Pt (Sell|v) ft (v)

Pt (Sell)
dv, (1)

where ft (v) is the normal density of Vt and Pt (Sell), the probability of receiving a
sell order at time t , is given by

Pt (Sell) = α

∫ Bt

−∞
ft (v)dv + (1 − α)η. (2)

Therefore,

Bt = 1

Pt (Sell)

∫ ∞

−∞
vPt (Sell|v) ft (v)dv

= 1

Pt (Sell)

(
α

∫ Bt

−∞
v ft (v)dv + (1 − α)ηV0

)
. (3)

Similarly, the ask price is given by

At = 1

Pt (Buy)

(
α

∫ ∞

At

v ft (v)dv + (1 − α)ηV0

)
, (4)

where Pt (Buy) is given by

Pt (Buy) = α

∫ ∞

At

ft (v)dv + (1 − α)η. (5)

Note that determination of Bt amounts to solving (3) numerically since Bt appears
on both sides of (3). Similarly, At is found by solving (4) numerically.

1.2 Bayesian Inference via MCMC Algorithms

The paradigm of Bayesian hierarchical modeling appears applicable for the market
microstructure study in this work. The variables (called unknowns in Bayesian terms)
can be classified in three layers: parameter θ = {α, η, σ 2, δ2} (top layer); observed
data Pa,b = {(Pa

t , Pb
t ), t = 1, ..., T } (bottom layer); unobserved latent variables

V = {Vt , t = 0, 1..., T } (middle layer). The presence of latent variable V hinders
the traditional maximum likelihood estimation (MLE) for θ , which could be tackled
by E-M algorithms (cf. Dempster et al. 1977; Meng and van Dyk 1997). We adopt
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the Bayesian approach due to its flexibility of using conditional probabilities. The
data Pa,b is treated as given and the focus will be on the (joint) posterior distribution
π(θ, V | Pa,b) which is intractable analytically. Thanks to a rich class of MCMC
computational algorithms, we can generate samples from a Markov chain with the
state space for {θ, V } and the limiting distribution π(θ, V | Pa,b). The key is to
design the transition probability mechanism judiciously such that (i) the resulting
chain converges to the target distribution π(θ, V | Pa,b) rapidly (weak convergence
issue); (ii) statistical parameters (as various functions of θ ) can be estimated by cor-
responding sample statistics based on the observed MCMC sample paths accurately
(variance reduction issue). There is a huge literature for MCMC. See Robert and
Casella (2004), Brooks et al. (2011) for an in-depth coverage of basic MCMC theory
and many related issues in applications.

Inwhat follows, several elements in the proposedMCMCalgorithm are described.
See Appendix 1 for more details in implementation.

1.2.1 Priors

Assume the four components of θ are independent under the prior π . For α, a con-
jugate beta prior is adopted with its mode close to 0.1 because the proportion of
informed traders in the market is relatively small. A uniform prior over the interval
(0, 1/2) for η is adopted, i.e. no information other than the restriction 0 < 2η < 1
is used. For the volatility parameter σ 2, either a conjugate inverse gamma prior or
uniform prior is used. For δ2, we use a uniform prior over a small interval. Having
specified the prior, the posterior distribution can be derived accordingly.

1.2.2 Metropolis-Hastings Within Gibbs

MCMC is a repertoire of algorithms among which Metropolis-Hastings algorithm
(M-H) and the Gibbs sampler (GS) are the most popular ones. GS reflects a natural
divide-and-conquer strategy when the state space is multi-dimensional. A one step
transition of theMCMC chain amounts to cycling through a sequence of partitioning
blocks of the state space, where each block can contain just a single variable or be a
vector of several components. When updating one block, the states of other blocks
remain fixed. M-H is an acceptance-rejection sampling scheme applied to Markov
chains. It is very useful when direct sampling from a probability density becomes
intractable, and it also has an advantage that we only need to know the density up to
a normalizing constant factor. Although GS is shown to be a special case of M-H
mathematically, most people in theMCMCcommunity still consider them separately
because they really represent very different ideas. We apply Metropolis-Hastings
within Gibbs (MHwGS) to our setting. Using superscripts for MCMC iterations, the
transition from step n to step n + 1 will follow
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GS step: Partition the state space into k disjoint blocks and express the state
variable as x = {x1, ..., xk}. Without loss of generality, let the updating follow a
natural order x1 → x2 → · · · → xk in one iteration. Having done the updating
x (n)
j → x (n+1)

j for blocks j < i , we are to update x (n)
i to x (n+1)

i by sampling from

the conditional density f (·| x (n+1)
j , j < i; x (n)

j , j > i).

M-H step: When sampling directly from f (·| x (n+1)
j , j < i; x (n)

j , j > i) is diffi-

cult, we generate y from a proposal density g(·| x (n+1)
j , j < i; x (n)

j , j > i) first,

then use the M-H ratio as a probability of accepting y and assigning x (n+1)
i = y;

otherwise stick to x (n)
i without a change and move forward to updating x (n)

i+1, etc.

In this work, we simply let each of α, η, σ 2, δ2; V1, ..., VT be a block by itself (with
T + 4 blocks in total). Choosing the proposal density g is an art. See Appendix 1 for
more details.

1.2.3 Diagnostics for Convergence

Although the mathematical aspect of MCMC convergence is addressed by Marlov
chain theory, an indispensable part of MCMC implementation in practice is to deter-
minewhen shouldwe stop running a chain and how shouldwe use the samples to esti-
mate various numerical characteristics of the target distribution. Herewe only present
two commonly used MCMC convergence diagnostic criteria. As many MCMC con-
tributors commented in the literature, no single criterion can guarantee convergence
and each one has its own pros and cons. A general suggestion is to use several criteria
for each problem at hand.

Gelman-Rubin Method

The proposal by Gelman and Rubin (1992) consists of the following steps:

• Run m > 1 parallel chains of length 2n with over-dispersed starting values.
• Disregard the first n samples in each chain.
• Select a dynamic variable of interest, say x , and calculate its within-chain and
between-chain sample variances.

• Compute the estimated variance as a weighted sum of within-chain and between-
chain variances.

• Calculate the shrink factor.

The within-chain variance is given by W =
∑m

j=1 s
2
j

m , where s2j =
∑n

i=1(xi j−x̄ j )
2

n−1 is

the sample variance for j th chain and x̄ j =
∑n

i=1 xi j
n . The between-chain variance

is given by B = n
m−1

∑m
j=1(x̄ j − ¯̄x)2, where ¯̄x =

∑m
j=1 x̄ j

m . B can be viewed as the

variance of chain means multiplied by n. Then the estimated variance iŝVar(x) =
(1 − 1

n )W + 1
n B and the shrink factor is R̂ =

√
̂Var(x)

W whose value, if substantially
above 1, would indicate lack of convergence. This criterion is easy to use but
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appearsmore necessary than sufficient in the sense that itmay indicate convergence
prematurely if the shrink factor happens to be close to 1 by chance. A remedy is
to calculate the shrink factor at several points in time (gelman.plot in R package
CODA) to see whether the shrink factor is really settled or still fluctuating.

Geweke method

The procedure proposed by Geweke (1992) is based on a test for equality between
means of the first and last parts of aMarkov chain (by default the first 10%and the last
50%). If the samples are drawn from the stationary distribution of the chain, the two
means are equal andGeweke statistic follows the distribution N (0, 1) asymptotically.

The test statistic is a standard Z-score: the difference between the two sample
means divided by its estimated standard error. The standard error is estimated from
the spectral density at zero so as to take into account any autocorrelation. Hence
values of Z-score that fall in the extreme tails of N (0, 1) suggest that the chain has
not fully converged.

IfGeweke’s diagnostic indicates that the first and last parts sampled fromaMarkov
chain are not drawn from the same distribution, it may be useful to discard the first
few iterations to see if the rest of the chain has “converged”. The geweke.plot in R
package CODA shows what happens to Geweke’s Z-score when successively larger
numbers of iterations are discarded from the beginning of the chain. To preserve
the asymptotic conditions required for Geweke’s diagnostic, the plot never discards
more than half the chain.

The first half of theMarkov chain is divided into several segments, then Geweke’s
Z-score is repeatedly calculated. The first Z-score is calculated with all iterations in
the chain, the second after discarding the first segment, the third after discarding the
first two segments, etc. The last Z-score is calculated using only the samples in the
second half of the chain.

1.3 Simulation Study

In order to test whether our MCMC algorithms work well, we do simulation study
first. In the simulation study, we specify α = 0.1, η = 0.25, σ 2 = 0.25, δ2 = 0.09.
Based on themarket model in Sect. 1.1, we calculated the bid and ask prices, and then
use these synthetic data to estimate the four parameters in the model by our MCMC
algorithms.We run twoMCMC chains, each containing 50,000 samples, and discard
10,000 burn in samples. After the burn in stage, we retain one in every 20 samples
as a new path. Table1 examines the effectiveness of the estimation strategy, showing
the true value, posterior summary statistics of those parameters. We could use the
posterior mean or posterior median as an estimation of the parameter.
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Table 1 Summary statistics of the posterior samples for all four parameters in simulation study

Parameter True value Min Median Mean Max Standard
error

α 0.10 0.003 0.15 0.15 0.51 0.001

η 0.25 0.00 0.23 0.25 0.50 0.002

σ 2 0.25 0.05 0.21 0.25 1.67 0.002

δ2 0.09 0.07 0.10 0.10 0.43 0.001
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Fig. 1 Trace plot of the posterior samples in simulation study, green is chain 1 and red is chain 2

Figures1, 2, 3 and 4 show the related convergence results of theMCMCalgorithm.
Trace plots give us a direct insight of what values the posterior samples take at

each iteration.
The autocorrelation plots show us how the autocorrelation changes with the

increase of lag. From the autocorrelation plot, we can see except for σ 2, the autocor-
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Fig. 2 Autocorrelation of the posterior samples in simulation study

relations for the other 3 parameters are near 0 at any lag. For σ 2, the autocorrelation
decreases to 0 as the lag increases.

FromGelman-Rubin plot, we can see that the shrink factors for all four parameters
converge to 1 after some iterations. Also, from Geweke plot, most of the Z-scores
for all parameters are between−1.96 and 1.96. Both the Gelman-Rubin and Geweke
plots show good MCMC convergence results.

The similarities between the posterior estimates and true values of the parameters
and other convergence results indicate that our MCMC algorithm works well. Next
step is to conduct empirical studies using real high frequency data.
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Fig. 3 Gelman-Rubin plots in simulation study. Convergence is suggested when the medians and
the 97.5 percentiles approach 1

1.4 Empirical Study

1.4.1 Data

The data we used are the bid and ask prices of Microsoft stock in April, 2013 from
TAQ database. TAQ contains intraday transactions data for all securities listed on
the New York Stock Exchange (NYSE) and American Stock Exchange (AMEX), as
well as Nasdaq National Market System (NMS) and SmallCap issues.

The data set has around 28,000,000 observations in total: over 900,000 observa-
tions on each trading day, and about 13 tradings at each time spot. There are a couple
of major problems if we use raw bid and ask prices. One is computational budget
constraint. The heavy computational burden would limit the sample to a relatively
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Fig. 4 Geweke plot in simulation study. Convergence is suggested when most of the Z-scores are
between −1.96 and 1.96

short time horizon. Another issue is: too much noise in the original high frequency
data would cause microstructure bias in inference. Therefore, our empirical study
begins with some data processing:

• Missing data are deleted.
• The mean of all observations at the same trading time spot is used.
• since tradings are heavier at the beginning and the end of a trading day, while
lighter around lunch time, we partition each day into 5 periods: 9:30 to 10:00,
10:00 to 11:30, 11:30 to 2:30, 2:30 to 3:30, 3:30 to 4:00 and use averages of
bid/ask prices during each period.

Figure5 shows the bid and ask prices for the cleaned data. From Fig. 1, it is hard
to see the difference between the bid and ask prices since they only differ by 1 or 2
cents. Figure6 shows a zoom-in version of Fig. 5, that plots only the first 10 bid and
ask prices to help the visual effect.
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Fig. 5 Bid and ask prices
for 22 consecutive trading
days, x-axis represents the
trading time after
aggregation (5 trades per day
after the aggregation of data)
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Fig. 6 Bid and ask prices for
the first 2 consecutive trading
days, x-axis represents the
trading time after
aggregation (5 trades per day
after the aggregation of data)
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1.4.2 Summary Statistics and MCMC Convergence

Table2 shows the summary statistics of the posterior samples for the four parameters.
Again, we could use posterior mean or posterior median as a point estimate for each
parameter.

Figures7, 8, 9 and 10 show the convergence results of the MCMC algorithm,
similar to the analysis in the Simulation Study.
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Table 2 Summary statistics of the posterior samples in empirical study

Parameter Min Median Mean Max Standard error

α 0.0015 0.0856 0.0997 0.4415 0.0008

η 0.00004 0.2449 0.2477 0.5007000 0.0018

σ 2 0.0588 0.2141 0.2510 2.275 0.0019

δ2 0.00006 0.2502 0.2509 0.4999 0.0018
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Fig. 7 Trace plot of the posterior samples in empirical study

1.5 Economic Interpretation

There are at least three sources for bid-ask spread: the adverse selection costs arising
with asymmetric information, the inventory costs, and the order processing cost,
which is associated with handling transactions. G-M model focuses on the first one.
The extended G-M model we studied in this work also helps addressing the related
issues. Besides the numerical evidence shown in Fig. 11, we also proved theoretically
that the average bid-ask spread is an increasing function of α (see Wang 2014), i.e.
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Fig. 8 Autocorrelation of the posterior samples in empirical study

the spread can be considered a premium that market makers demand for trading
with agents with superior information. Another result developed in Wang (2014) is
that under the extended G-M model, the bid-ask spread tends to zero at a certain
rate as the number of trades go to infinity. However, this has not been shown in
our empirical study, due to the limited time horizon used in the data. In addition,
the bid-ask spread reflects the market maker’s belief about asymmetric information.
The degree of informed trading among market participants may not change in the
short time period, at least from the market maker’s viewpoint. This implies that the
market maker makes no inference when he sees the total order imbalance at tick
level. He may shift the whole bid-ask band rather than change the spread itself.
Figure12 shows the bid-ask spread for the cleaned data based on which we do not
see much change of the spread over a short time period. More careful and thorough
post-modeling analysis is still our ongoing project in which both in-sample (e.g.
residual analysis) and out-of-sample (cross-validation) diagnostics are conducted.
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Fig. 9 Gelman-Rubin plots in empirical study. Convergence is suggested when the medians and
the 97.5 percentiles approach 1

The extended G-M has conceivably made a number of unrealistic assumptions, such
as the constant α for the proportion (or the impact) of informed traders in the market,
and the constant trading volume associated with each trade. Modifications of those
assumptions require more hard work in both theoretical and empirical studies.

1.6 Appendix 1

We provide more details of the MCMC algorithm here.
The hyperparameters in the prior distributions are set as follows:

in the beta prior for α: αα = 2, βα = 10;
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Fig. 10 Geweke plot in empirical study. Convergence is suggested when most of the Z-scores are
between −1.96 and 1.96

in the inverse gamma prior for σ 2: ασ = 3, βσ = 1;
in the uniform prior for σ 2: u1σ = 0, u2σ = 0.5;
in the uniform prior for δ2: u1δ = 0, u2δ = 0.5.

Note that subscripts t = 1, ..., T stand for real time in the model and superscripts
n = 1, ..., N represent the MCMC computational time.
Initialize α(0), η(0), σ 2(0), δ2(0), V (0)

1 , . . . , V (0)
T , which can be assigned or sampled

from the prior. A complete transition from the (n − 1)th generation to the nth gen-
eration consists of the following steps:

Step 1: Update the latent variable V (n)
t

For t = 2, 3, . . . , T − 1,
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Fig. 11 The mean bid-ask
spread versus α in the
simulation study, the y-axis
is the mean of bid-ask
spreads across time using
different α values
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versus time for the cleaned
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f (V (n)
t |V (n−1), V (n)

1 , . . . , V (n)
t−1, θ

(n−1), Pa, Pb)

∝ f (V (n)
t |V (n)

t−1, θ
(n−1)) f (V (n−1)

t+1 |V (n)
t , θ (n−1))

∝ exp

[
− (V (n)

t −V (n)
t−1)

2

2σ 2(n−1) − (V (n−1)
t+1 −V (n)

t )2

2σ 2(n−1)

]

∝ exp

{
−[V (n)

t − V (n)
t−1+V (n−1)

t+1
2 ]2

2(σ (n−1)/
√
2)2

}

∼ N

(
V (n)
t−1+V (n−1)

t+1

2 , σ 2(n−1)

2

)

where V (n) = (V (n)
1 , . . . , V (n)

T ), and θ(n) = (α(n), η(n), σ 2(n), δ2(n)). Given all the

other variables, we just sample from a normal distribution with mean
V (n)
t−1+V (n−1)

t+1

2

and variance σ 2(n−1)

2 to get V (n)
t .

For t = 1, generate V (n)
1 ∼ N (V (n−1)

2 , σ 2(n−1)).
For t = T , generate V (n)

T ∼ N (V (n)
T−1, σ

2(n−1)).

Step 2: Update σ 2(n)

If the prior is IG(ασ , βσ ) (inverse gamma), then

f (σ 2(n)|V (n), α(n−1), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏
t=2

f (V (n)
t |V (n)

t−1, α
(n−1), η(n−1), δ2(n−1), Pa, Pb) f (σ 2(n))

∝
T∏
t=2

(σ 2(n))−
1
2 exp

[
− (V (n)

t − V (n)
t−1)

2

2σ 2(n)

]
(σ 2(n))−ασ −1 e− βσ

σ2(n)

∝ (σ 2(n))−( T−1
2 +ασ )−1 exp

⎡
⎣−

∑T
t=2(V

(n)
t −V (n)

t−1)
2

2 + βσ

σ 2(n)

⎤
⎦

∼ IG

(
T − 1

2
+ ασ ,

∑T
t=2(V

(n)
t − V (n)

t−1)
2

2
+ βσ

)
.

If the prior is Unif(u1σ , u2σ ), then

f (σ 2(n)|V (n), α(n−1), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏
t=2

f (V (n)
t |V (n)

t−1, α
(n−1), η(n−1), δ2(n−1), Pa, Pb) f (σ 2(n))

∝ (σ 2(n))−
T−1
2 exp

[
−

∑T
t=2(V

(n)
t − V (n)

t−1)
2

2σ 2(n)

]
I{σ 2(n)∈(u1σ ,u2σ )}.
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The posterior distribution is not in a closed form, hence we need MHwGS. The
procedure is as follows:

• Simulate a sample yσ from a proposal density qσ , which is chosen to be the
prior Unif(u1σ , u2σ ) here.

• Denote the posterior distribution of σ 2 by fσ , compute the acceptance prob-
ability (M-H ratio) ρσ = min(1, fσ (yσ )qσ (σ (n−1))

fσ (σ (n−1))qσ (yσ )
).

• Let σ 2(n) = { yσ with probability ρσ

σ 2(n−1) with probability 1 − ρσ
.

Step 3: Update α(n)

f (α(n)|V (n), σ 2(n), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏
t=1

exp

[
− (Pa

t − At )
2

2δ2(n−1)
− (Pb

t − Bt )
2

2δ2(n−1)

]
(α(n))αα−1(1 − α(n))βα−1

where Bt , At is given by (3) and (4) with η, α replaced by η(n−1) and α(n) respec-
tively. Again, we need MHwGS:

• Simulate a sample yα from a proposal density qα , which is chosen to be the
prior Beta(αα, βα).

• Denote the posterior of α by fα , compute the acceptance probability ρα =
min(1, fα(yα)qα(α(n−1))

fα(α(n−1))qα(yα)
).

• Let α(n) = { yα with probability ρα

α(n−1) with probability 1 − ρα
.

Step 4: Update η(n)

f (η(n)|V (n), σ 2(n), α(n), δ2(n−1), Pa, Pb)

∝
T∏
t=1

exp

[
− (Pa

t − At )
2

2δ2(n−1)
− (Pb

t − Bt )
2

2δ2(n−1)

]
I{η(n)∈(0,1/2)}

where Bt , At is given by (3) and (4)withη, α replaced byη(n) andα(n) respectively.
Similarly, MHwGS is applied here:

• Simulate a sample yη from a proposal density qη, which is chosen to be the
prior distribution Unif(0, 1/2).

• Denote the posterior distribution of η by fη, compute the acceptance proba-

bility ρη = min(1, fη(yη)qη(η
(n−1))

fη(η(n−1))qη(yη)
).

• η(n) = { yη with probability ρη

η(n−1) with probability 1 − ρη
.
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Step 5: Update δ2(n)

f (δ2(n)|V (n), σ 2(n), α(n), η(n), Pa, Pb)

∝ (δ2(n))−T exp

[
−

T∑
t=1

(Pa
t − At )

2 + (Pb
t − Bt )

2

2δ2(n)

]
I{δ2(n)∈(u1δ ,u2δ)}.

Here the needed MHwGS is given by

• Simulate a sample yδ from a proposal density qδ , which is chosen to be the
prior Unif(u1δ, u2δ).

• Denote the posterior density of δ as fδ , compute the acceptance probability
ρδ = min(1, fδ(yδ)qδ(δ

2(n−1))

fδ(δ2(n−1))qδ(yδ)
).

• Let δ2(n) = { yδ with probability ρδ

δ2(n−1) with probability 1 − ρδ
.

Step 6: Now go to Step 1 for the updating in the next iteration of transition.

2 Monte-Carlo Strategies in Option Pricing for SABR
Model

In finance, an option is a contract which gives the buyer the right, but not the obliga-
tion, to buy or sell an underlying asset or instrument at a specified strike price on or
before a specified date, depending on the form of the option. Because valuation of
option contracts depends on a number of other variables besides the underlying asset,
it is a complex task and becomes a central topic in mathematical finance. For valua-
tion of options, cases with closed-form pricing formulas are rare with exceptions of
Black-Scholes-Merton model, Hestons model, just name a few. In general, numer-
ical computation and approximation techniques are almost always required. There
are basically two approaches. The analytical approach sets the price function as the
solution to a PDE with boundary conditions, which are often solved by numerical
methods such as finite difference etc. The probabilistic approach expresses an option
price as the conditional expectation under a risk neutral measure which needs to be
computed using numerical integration. Such integration is often performed over a
high dimensional state space in which state variables are time series of underlying
assets or volatilities. In this situation, Monte-Carlo simulation appears inevitable.

SABR (abbreviation for stochastic αβρ) model enjoys the popularity in the study
of stochastic volatility with applications in asset pricing and riskmanagement. Major
references include Antonov and Spector (2012), Hagan et al. (2002) and (2005),
Paulot et al. (2009), Rebonado et al. (2011), among others. The main feature of the
SABR model, compared to some previous models, is its capability in reproducing
the dynamic behavior of volatility smiles and skews, and thus in yielding more
stable results for pricing and hedging. SABR assumes that the volatility of the asset
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(e.g. stock or forward) follows a geometric Brownian motion, and is correlated to
the underlying forward price (leverage effect). So far almost all cited works for
SABRhave adopted the analytical approach using singular perturbation of the pricing
function. In contrast, we take the probabilistic approach for pricing options under
SABR.

The basic idea of our approach is Monte-Carlo dimension reduction using certain
probability approximation schemes. Note that brute force Monte-Carlo for option
pricing begins with Euler approximation that discretizes sample paths of the asset
and volatility, followed by calculating the option payoff along each path then taking
averages. In doing so, small steps in the discretization are needed to reduce the bias,
but that would require a far greater number of simulated sample paths to reduce
the variance. To alleviate the computational intensity, we observe that many pricing
functionals of interest only depend on the volatility sample paths through two or three
summary statistics. Therefore, it would suffice to know the joint distribution of those
2D or 3D summary statistics when calculating the option price. Our strategy will
naturally be finding good approximations for the joint distribution when the exact
form is not available.

After introducing SABR model and the option pricing formula, the probability
approximation scheme boils down to expressing moments of some key summary
statistics as functions of original model parameters. We have done this by exact
analytical calculation, and obtained good results for all different ranges of parameter
β, because three cases β = 1 (generalized Black-Scholes model), β = 0 (Gaussian
model) and 0 < β < 1 give rise to different pricing formulas. Since the basic idea is
the same, we will only present the case β = 1 in this chapter and refer to the Ph.D.
thesis Yin (2016) for the other two cases and the technical details.

2.1 SABR Model and Option Pricing for the Case β = 1

The risk-neutral dynamics of general SABR model is given by SDEs

dF(t) = r F(t)βdt + σ(t)F(t)βdW1(t), (6)

dσ(t) = α σ(t)dW2(t), (7)

with the underlying asset value F(t) (e.g. LIBOR forward rate, or forward swap rate,
or stock price) and the volatility σ(t), where r is the risk-free interest rate,W1(t) and
W2(t) are two correlated standard Brownian motions with correlation coefficient ρ,
i.e.

dW1(t) dW2(t) = ρ dt. (8)

As we mentioned, the three model parameters α > 0, 0 ≤ β ≤ 1 and −1 ≤ ρ ≤ 1
give the reason for using the abbreviation SABR — stochastic αβρ model, and by
changing their values, a variety of interesting market behaviors can be mimicked.
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The value of a European call option is defined by the expected value of discounted
option payoff at maturity tex , i.e.

C(F0, K ) = e−r tex E
{
Eσ

{
max(F(tex ) − K , 0)

}}
, (9)

where F0 = F(0) is the present asset value, K is the strike price and Eσ (·) denotes
the conditional expectation given the path σ(t), 0 ≤ t ≤ tex .

Consider the case β = 1 [called the generalized BLack-Scholes (B-S) model in th
literature] and rewrite (6), (7), (8) as an equivalent form

dF(t) = r F(t)dt + σ(t)F(t)[
√
1 − ρ2dB1(t) + ρdB2(t)] (10)

dσ(t) = ασ(t)dB2(t) (11)

where B1(t) and B2(t) are two independent standard Brownian motions and all other
notations remain the same as defined before. We will use this form of SABR model
in what follows.

Define

�2 =
∫ tex

0
σ(u)2du, (12)

X1 =
∫ tex

0
σ(u)dB1(u), (13)

X2 =
∫ tex

0
σ(u)dB2(u). (14)

Conditioning on the volatility path σ(t), 0 ≤ t ≤ tex , we have

Eσ

{
max

(
F(tex ) − K , 0

)} = (15)

F0 exp{r tex + ρX2 + 1
2 (1 − ρ − √

1 − ρ2 − ρ2)�2}�(d1)

−K �(d2),

where � is the cdf of N (0, 1), and d1 and d2 are given by

d1 = d2 +
√
1 − ρ2 �, (16)

d2 = ln( F0
K ) − 1

2 (ρ + √
1 − ρ2) �2 + ρX2 + r tex√
1 − ρ2�

. (17)

Therefore, it suffices to compute the option price C(F0, K ) in (9) as the expected
value under the joint distribution of (�2, X2) without simulating the entire volatility
path on [0, tex ].
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2.2 Approximating the Distribution of (�2, X2)

There are a couple of factors taken into account when choosing an approximate
distribution for (�2, X2). Firstly, �2 is positive and often has a skewed density.
Secondly, X2 is a martingale with respect to the time tex , and conditioning on
(σ (t), 0 ≤ t ≤ tex ), X2 ∼ N (0, �2). Hence we propose a gamma mixture of nor-
mals for the distribution of (�2, X2). Having decided the distribution family, we
relate the two parameters of gamma density for �2 to the first and second moments
of (�2, X2), which in turn can be calculated analytically as closed forms of the origi-
nal model parameters. That leads to specification of the parameters in gamma family
as functions of parameters in SABRmodel. Similar results in using an inverse gamma
mixture of normals and log-normal mixture of normals are given in Yin (2016).

Moments as functions of SABR model parameters

Denote σ(0) = σ0, we have

E
{
�2} = σ 2

0

α2
(eα2tex − 1),

E
{
(�2)2

} = 2σ 4
0

5α4
(
1

6
e6α

2tex − eα2tex + 5

6
),

E
{
(�2)3

} = σ 6
0

315α6
(e15α

2tex − 7e6α
2tex + 27eα2tex − 21).

for every n = 1, 2, ...,

E
{
Xn
2

} = σ n
0

αn

n∑
k=0

(−1)n−k

(
n

k

)
e

1
2 k(k−1)α2T .

in particular,

E
{
X2

} = 0,

E
{
X2
2

} = σ 2
0

α2
(eα2tex − 1).

moreover,

Cov(�2, X2) = σ 3
0

3α3
(e3α

2tex − 3eα2tex + 2).

Connections between parameters in the gamma mixture of normals and
moments of (�2, X2)

For convenience, denote the needed moments by
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E(X2
2) = E(�2) � S,

E[(�2)2] � 
,

Cov(�2, X2) � �,

where the first equality is due to Ito’s isometry, and S
 ≥ �2 follows from Cauchy-
Schwarz inequality.

Now we have

Proposition 14.1 Let �2 ∼ Gamma(κ, θ) and X2 ∼ N (a0 + a1�2, b�2) condi-
tioning on the path {σ(t), 0 ≤ t ≤ tex } where the constants a0 ∈ IR, a1 ∈ IR, b > 0
and the parameters κ , θ are given by

κ = S2


 − S2
,

θ = 
 − S2

S
,

a0 = −S�


 − S2
,

a1 = �


 − S2
,

b = 1 − �2

S(
 − S2)
.

Therefore, the gamma mixture of normals is fully specified by α, σ0 and tex in the
SABR.

2.3 Numerical Experiments and Empirical Calibration
of SABR

All pricing methods require the SABRmodel parameters as inputs, which are set for
empirical studies in what follows. Now let us introduce the data we use.

For different underlying asset types, there are different channels to obtain
related option contracts information. Trading information for equity can be found
on YAHOO! Finance channel. As for other underlying asset types such as energy,
foreign exchange, interest rates and weather, option contracts in trading are often
listed on CME Group website. In our study, we will use Microsoft stock, MSFT, as
an example for equity, and iShare 20+ years treasury bond ETF, TLT, as an example
of fixed income product. We will price the European options on these assets as of
March 28th 2016 that will expire on May 20th 2016.

Figures13 and 14 show option chains of MSFT and TLT on March 28th 2016
that expire on May 20th 2016. An option chain is simply a sequence of call and put
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Fig. 13 Microsoft stock option chain

Fig. 14 iShare 20+ year treasury bond option chain

option strike prices along with their premiums for a given maturity period (cf. Harris
2003).

To fully describe the SABR model, we need an initial volatility and a risk-free
interest rate.We use the historical volatility up to the as-of-date as a proxy of volatility
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Fig. 15 Historical volatilities

initialization. This piece of information is provided by Option Strategist website to
each traded underlying asset.

In Fig. 15, each underlying asset has three historical at-the-money volatilities
based on the window length used to calculate that volatility. For example, there
are three historical volatilities associated with MSFT, 24, 31 and 26%, which are
calculated from 20, 50 and 100 days historical volatility respectively as of March
24th 2016. And the volatility of MSFT on that day is 20.82%.

Risk-free interest rate is the minimum rate of return an investor should expect for
any investment. In practice, three-month U.S. Treasury bill is often used as a proxy of
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Fig. 16 Daily treasury yield curve rates

risk-free interest rate. U.S. Department of the Treasury releases daily treasury yield
curves on its website, where we quote our risk-free interest rate. See Fig. 16.

Fitting SABR model parameters is not always straight forward because some of
them are not observable frommarket. Therefore, we determine reasonable ranges for
each of α and ρ, and simulate European call option prices in scenarios with different
price-volatility correlation ρ and vol of vol α combinations.

Tables3 and 4 specify SABR model parameters for MSFT and TLT respectively.
Table5 shows MSFT option prices computed by the brute-force Monte-Carlo

(Monte-Carlo column), and by dimension reduction methods we proposed using dif-
ferent distributions for (�2, X2), i.e. gamma mixture of normals (Gamma column),
inverse-gamma mixture of normals (Inverse Gamma column) and log-normal mix-
ture of normals (Log Normal column) respectively. As an option price is not known
a priori at the time of pricing, we assume the brute-force MC gives a benchmark
price. As for computational efficiency, the proposed approximation methods with
different distributions all turn out to be much faster than the brute-force MC, and
the results they produced also fall into a satisfactory range of accuracy. Figures17
and 18 demonstrate pricing errors (see the caption of Fig. 17 for the definition) by
using gamma mixture of normals. Note that the quality of the proposed approxima-
tion scheme depends on the parameter values. It is observed that the pricing is less
accurate when ρ is near −1 than when ρ is near zero due to the leverage effect. And
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Table 3 Model parameters microsoft stock

Item Symbol Value

Strike price K $52.50

Closing price F0 $53.54

Initial volatility σ0 26.56%

Time to maturity tex 39

Risk-free interest rate r 0.29%

Correlation ρ [−1, 0]
Vol of Vol α [0, 1]

Table 4 Model Parameters iShare 20+ years Treasury Bond ETF

Item Symbol Value

Strike price K $125.00

Closing price F0 $130.12

Initial volatility σ0 11.27%

Time to maturity tex 39

Risk-free interest Rate r 0.29%

Correlation ρ [−1, 0]
Vol of Vol α [0, 1]

Table 5 β = 1 SABR model prices comparison

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.10 −0.05 2.86 2.86 2.85 2.86

0.10 −0.15 2.85 2.89 2.85 2.90

0.10 −0.25 2.83 2.90 2.92 2.86

0.10 −0.35 2.86 2.84 2.90 2.84

0.10 −0.45 2.84 2.92 2.89 2.89

0.10 −0.55 2.83 2.80 2.84 2.91

0.10 −0.65 2.84 2.79 2.87 2.99

0.10 −0.75 2.83 2.86 2.69 2.74

0.10 −0.85 2.85 2.77 2.83 2.69

0.10 −0.95 2.88 2.90 3.00 2.72

0.20 −0.05 2.85 2.86 2.86 2.86

0.20 −0.15 2.88 2.87 2.86 2.86

0.20 −0.25 2.85 2.89 2.92 2.97

(continued)
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Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.20 −0.35 2.88 2.88 2.87 2.92

0.20 −0.45 2.87 2.94 2.90 2.83

0.20 −0.55 2.86 2.92 2.87 2.88

0.20 −0.65 2.86 2.82 2.92 2.83

0.20 −0.75 2.85 2.78 2.83 2.93

0.20 −0.85 2.86 2.87 2.92 2.79

0.20 −0.95 2.87 3.37 3.22 2.99

0.30 −0.05 2.84 2.87 2.87 2.87

0.30 −0.15 2.85 2.89 2.89 2.86

0.30 −0.25 2.87 2.89 2.92 2.83

0.30 −0.35 2.86 2.98 2.90 2.96

0.30 −0.45 2.86 2.90 2.93 2.87

0.30 −0.55 2.88 2.93 2.81 2.80

0.30 −0.65 2.87 2.93 2.83 2.93

0.30 −0.75 2.86 2.87 2.89 2.69

0.30 −0.85 2.86 2.63 2.87 2.95

0.30 −0.95 2.88 2.71 2.81 3.01

0.40 −0.05 2.86 2.87 2.87 2.87

0.40 −0.15 2.85 2.87 2.88 2.89

0.40 −0.25 2.86 2.87 2.91 2.89

0.40 −0.35 2.86 2.90 2.93 2.88

0.40 −0.45 2.84 2.88 2.88 3.00

0.40 −0.55 2.86 3.00 2.90 2.93

0.40 −0.65 2.86 2.99 3.03 2.89

0.40 −0.75 2.86 2.96 3.03 2.92

0.40 −0.85 2.89 2.77 3.00 3.07

0.40 −0.95 2.90 2.75 2.80 2.71

0.50 −0.05 2.87 2.88 2.86 2.88

0.50 −0.15 2.88 2.89 2.88 2.87

0.50 −0.25 2.86 2.88 2.86 2.89

0.50 −0.35 2.85 2.88 2.86 2.89

0.50 −0.45 2.87 2.89 2.92 2.86

0.50 −0.55 2.87 2.95 2.97 2.84

0.50 −0.65 2.84 2.77 2.84 2.89

0.50 −0.75 2.86 2.92 2.98 2.77

0.50 −0.85 2.91 2.82 2.80 2.96

0.50 −0.95 2.89 2.86 2.69 3.08

0.60 −0.05 2.87 2.86 2.88 2.87

(continued)
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Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.60 −0.15 2.85 2.89 2.89 2.90

0.60 −0.25 2.87 2.90 2.90 2.92

0.60 −0.35 2.88 2.95 2.92 2.90

0.60 −0.45 2.88 2.81 2.95 3.00

0.60 −0.55 2.89 2.89 2.99 2.86

0.60 −0.65 2.87 2.92 2.88 2.88

0.60 −0.75 2.87 2.92 2.76 3.13

0.60 −0.85 2.89 2.80 2.83 2.80

0.60 −0.95 2.88 3.02 3.09 2.90

0.70 −0.05 2.86 2.86 2.88 2.89

0.70 −0.15 2.86 2.90 2.90 2.89

0.70 −0.25 2.89 2.92 2.93 2.90

0.70 −0.35 2.87 2.92 2.93 2.93

0.70 −0.45 2.88 3.03 2.89 2.95

0.70 −0.55 2.89 2.94 2.88 2.91

0.70 −0.65 2.88 2.82 2.91 2.91

0.70 −0.75 2.90 2.99 2.73 2.90

0.70 −0.85 2.87 2.93 2.91 2.97

0.70 −0.95 2.88 2.89 2.82 2.97

0.80 −0.05 2.89 2.91 2.87 2.91

0.80 −0.15 2.89 2.90 2.90 2.90

0.80 −0.25 2.90 2.94 2.88 2.91

0.80 −0.35 2.86 2.91 2.91 2.93

0.80 −0.45 2.88 2.94 2.86 2.87

0.80 −0.55 2.89 2.91 2.93 2.83

0.80 −0.65 2.88 2.97 2.95 2.89

0.80 −0.75 2.90 2.92 2.80 2.87

0.80 −0.85 2.89 3.03 2.98 2.87

0.80 −0.95 2.89 2.78 2.71 2.60

0.90 −0.05 2.88 2.87 2.90 2.87

0.90 −0.15 2.90 2.91 2.91 2.91

0.90 −0.25 2.89 2.93 2.93 2.92

0.90 −0.35 2.90 2.94 2.90 2.90

0.90 −0.45 2.91 2.98 2.98 2.94

0.90 −0.55 2.90 2.96 2.91 2.94

0.90 −0.65 2.89 3.11 2.97 3.00

0.90 −0.75 2.89 2.87 2.84 2.84

0.90 −0.85 2.90 2.83 2.75 2.89

(continued)



Monte-Carlo Methods in Financial Modeling 315

Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.90 −0.95 2.88 2.81 2.82 2.78

1.00 −0.05 2.89 2.90 2.87 2.88

1.00 −0.15 2.87 2.91 2.92 2.91

1.00 −0.25 2.86 2.94 2.92 2.92

1.00 −0.35 2.89 2.98 2.91 2.93

1.00 −0.45 2.90 3.02 2.90 2.93

1.00 −0.55 2.91 2.95 2.86 2.87

1.00 −0.65 2.90 2.88 2.85 2.92

1.00 −0.75 2.90 2.86 2.80 2.95

1.00 −0.85 2.91 2.91 2.83 2.87

1.00 −0.95 2.89 2.96 2.81 3.04

Fig. 17 Pricing error for the case β = 1, dimension reductionMC using gammamixture of normal
versus brute-force MC: let PDR = option price computed using the dimension reduction MC, and
PBF = option price computed using the brute-force MC, then (y-coordinate)/100 = PDR−PBF

PBF
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Fig. 18 Top view of Fig. 17: the large light blue area contains pairs (α, ρ) that yield small pricing
errors compared to areas of other colors

greater values of α (volatility of volatility) tends to yield a better result, perhaps due
to a greater degree of “mixing” in Monte-Carlo simulation. Table5 covers a wide
spectrum of combinations between α and ρ. Moreover, results using the other two
approximate distributions, although not presented in this chapter, are in fact more
stable. See Yin (2016) for detailed accounts.
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