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Abstract
The complement system plays a crucial role in host defense against pathogen 
infections and in the recognition and removal of damaged or altered self- 
components. Complement system activation can be initiated by three different 
pathways—classical, alternative, and lectin pathways—resulting in a proteolytic 
cascade, which culminates in multiple biological processes including opsoniza-
tion and phagocytosis of intruders, inflammation, cell lysis, and removal of 
immune complexes and apoptotic cells. Furthermore, it also functions as a link 
between the innate and adaptive immune responses. The lectin pathway (LP) 
activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-
associated serine proteases (MASPs), which are associated with the pattern rec-
ognition molecules (PRMs) that recognize carbohydrates or acetylated 
compounds on surfaces of pathogens or apoptotic cells. These result in the pro-
teolysis of complement C2 and C4 generating C3 convertase (C4b2a), which 
carries forward the activation cascade of complements, culminating in the elimi-
nation of foreign molecules. This chapter presents an overview of the comple-
ment system focusing on the characterization of MASPs and its genes, as well as 
its functions in the immune response.
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18.1  The Complement System

The human immune system is an extraordinary complex of biochemical mecha-
nisms that provides effective defense against a large number of pathogens while 
also protecting against improper responses to self-components. The immune system 
exhibits innate and adaptive responses that cooperate together to facilitate appropri-
ate host defense. Innate immunity provides the first line of defense by recognizing 
specific patterns present on the surface of microbes (PAMPs, pathogen-associated 
molecular patterns) or damaged cells (DAMPs, damage-associated molecular pat-
terns) through innate pattern recognition molecules and receptors (PRMs and PRRs, 
respectively). The effectors of innate immunity include epithelial barriers, phago-
cytes and natural killer cells, cytokines, and a whole complex of proteins known as 
the complement system [1, 2].

The complement system is comprised of more than 35 plasma proteins and cell 
surface receptors/regulators, which enables the recognition, tagging, and elimina-
tion of various microbial intruders and foreign cells. Most of the soluble proteins 
circulate in functionally inactive forms called proenzymes or zymogens, which 
share identical domain organization and overall structure, but differ in enzymatic 
properties and physiological significance in health and disease [1]. Upon proteolytic 
cleavage, inactive proteins become activated, resulting in a proteolytic cascade that 
culminates in multiple biological processes such as opsonization and phagocytosis 
of intruders, inflammation, cell lysis, and removal of immune complexes in addition 
to being a link between the innate and adaptive immune responses [3]. Furthermore, 
the complement system plays an important role in the removal of apoptotic cells by 
recognizing damaged or altered self-components, thereby contributing to tissue 
homeostasis and preventing autoimmunity [4, 5]. However, excessive complement 
activation may be deleterious and is associated with tissue damage in certain dis-
eases. Conversely, insufficient activity has also been associated with susceptibility 
to infection and autoimmune diseases [6]. Complement system is also involved in 
noninflammatory functions in the brain, such as basal and ischemia-induced neuro-
genesis [7] and synapse remodeling and pruning [8]. Further, the complement sys-
tem also interacts with the coagulation system, although the precise molecular 
mechanism underlying the interaction has not been elucidated [9].

Complement activation involves a remarkably powerful degree of amplification 
and thus requires an appropriate and efficient checking system of regulatory mole-
cules to maintain homeostatic balance to ensure efficient destruction of pathogens 
and recognition of self-components. The regulation predominantly occurs at the 
level of the convertases and during assembly of the membrane attack complex 
(MAC) [4]. The regulatory proteins, both, soluble proteins (such as Factor H and 
Factor I) and proteins on host cell membranes (such as CR1, CD46, CD55, and 
CD59) are necessary to ensure that complement activation is not exacerbated or 
deficient to prevent tissue damage or physiological disorders, respectively [6].
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18.2  Pathways of Complement Activation

Complement activation can be initiated by three different pathways: classical, alternative, 
and lectin pathways [9]. Each pathway is activated by different components that 
converge in the formation of active enzyme complexes (C3 and C5 convertases), 
followed by the assembly of the terminal pathway and MAC (C5b-9), which is 
inserted into to the target cell membrane to lyse the cell. Complement activation 
also results in the release of chemoattractants (C4a, C3a, and C5a), which are potent 
inflammatory molecules, and opsonins (C3b and C4b), which mediate phagocytosis 
(Fig. 18.1). Serine proteases play an important role in human physiology and pathol-
ogy, activating each other to promote initiation and amplification of the complement 
cascade [10]. They present a common domain containing the catalytic triad of histi-
dine, aspartic acid and serine residues [11]. The serine proteases of the complement 
system include Clr (85 KDa) and Cls (85 KDa) of the classical pathway (CP), 

Fig. 18.1 Complement activation by the classical pathway (CP), lectin pathway (LP), and alterna-
tive pathway (AP). CP typically requires an antigen-antibody complex on pathogen surface and 
binding to C1 complex (C1q, C1r, and C1s) for its activation. LP recognizes mannose-terminating 
glycan or acetylated residues on pathogens leading to MBL/ficolins/collectins-MASP complex 
activation. Both pathways induce the formation of C3 convertase, C4b2a. AP is permanently acti-
vated at a low level by spontaneous hydrolysis of C3 into C3(H2O). Lack of complement inhibitors 
on pathogens induces AP activation by the C3bBb assembly. Complement activation leads to opso-
nization and phagocytosis of pathogens owing to C3b and C4b deposition, bacterial lysis by C5b-9 
complex formation, and inflammation by C4a, C3a, and C5a, leading to recruitment of immune 
cells, endothelial and epithelial cell activation, and platelet activation

18 Serine Proteases in the Lectin Pathway of the Complement System
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MASPs 1–3 (mannan-binding lectin (MBL)-associated serine proteases; 80–90 
KDa) of the lectin pathway (LP), C2 (110 KDa) of the classical/lectin pathway, and 
Factor B (93 KDa), Factor D (25 KDa), and Factor I (88 KDa) of the alternative 
pathway (AP) (Table 18.1) [12].

The CP activation is typically antibody dependent and requires the presence of 
C1 complex (C1q, C1r, and C1s subunits) by the binding of subcomponent C1q to 
the Fc portion (CH2 domain) of immunoglobulins M or G [13]. In the absence of 
antibody, C1q can also directly recognize other molecules of the bacterial cell wall, 
viral envelope membrane, C-reactive protein, etc. [1, 14]. Autocatalytic activation 
of the serine protease C1r leads to subsequent activation of C1s, that in turn cleaves 
C4 and C2 into larger (C4b, C2a) and smaller (C4a, C2b) fragments to form the 
enzyme complex C4bC2a (C3 convertase) [4]. The formation of C3 convertase 
leads to C3 activation and formation of C3a (anaphylatoxin) and C3b (opsonin), 
with C3 as the convergence point of the cascade [15]. C3b exposes an internal 
thioester bond that allows stable covalent binding to hydroxyl groups of any carbo-
hydrates and proteins on the target surface. C3 convertase activity is very efficient, 
leading to the formation of approximately 1000 molecules of C3b that are able to 
bind to targets in the vicinity [16]. This process allows pathogens to be recognized 
as foreign bodies, resulting in phagocytosis and complement activation. 
Subsequently, additional C3b molecules bind to C3 convertase forming the C5 con-
vertase (C4bC2aC3b) that cleaves C5  in to C5a and C5b, initiating the terminal 
pathway and assembly of MAC (Fig. 18.1) [4, 17].

The AP occurs on microbial surfaces in the absence of specific antibody. The AP 
activation occurs on the surface of foreign bodies at a low level by the spontaneous 
hydrolysis of the internal thioester bond in C3, leading to the formation of C3b 
analog, C3(H2O). Factor B binds the C3(H2O) and is then cleaved by Factor D, 
generating a distinct C3 convertase (C3bBb) that further cleaves C3 molecules. In 
the presence of an activating surface (e.g., a bacterial cell wall), C3b is protected 
from inactivation by regulatory proteins such as Factors I and H. However, in the 

Table 18.1 Serine proteases of the complement system [9, 32]

Protease
Complement 
pathway Active form Function

C1r Classical C1 complex (C1q, C1r, 
C1s)

Clr autoactivation and Cls cleavage

C1s Classical C1 complex (C1q, C1r, 
C1s)

C2 and C4 cleavage

Factor I Alternative Factor I complex with 
C3b or C4b

C3b and C4b cleavage

Factor B Alternative C3bBb C3 and C5 cleavage
Factor D Alternative C3bBD complex Cleaves factor B bound to C3b
MASP-1 Lectin MBL/MASPs complex C2 (but not C4), C3 and MASP-2 

cleavage and MASP-1 autoactivation
MASP-2 Lectin MBL/MASPs complex C2 and C4 cleavage
MASP-3 Lectin MBL/MASPs complex Remains unclear
C2 Classical/ lectin C4b2a C3 and C5 cleavage
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AP, a more active C3 convertase (C3bBb) is formed instead, which is further stabi-
lized by properdin. In contrast to other pathways, AP functions as an amplification 
loop providing a strong positive feedback activation of C3, thereby increasing the 
production of pro-inflammatory mediators [18]. In fact, 80–90% of pathological 
complement activation in disease is driven by the AP [19]. Furthermore, the alterna-
tive convertase assembly may also be initiated by non-covalent attachment of pro-
perdin to some target surfaces (Fig. 18.1) [20, 21].

18.3  The Lectin Pathway

The existence of the LP was first discovered in the 1970s when the plant lectin 
mannose-binding protein (concanavalin A) was found to activate the complement 
system [22]. This pathway was further characterized by using proteins isolated from 
rabbit liver and serum; however, its function remained unclear initially [23, 24]. In 
1992, Matsushita and Fujita reported that MBL and MASPs activated the LP, which 
was a landmark study on the mechanism of LP activation [25]. Thus far, 6 different 
PRMs that initiate the activation of the LP have been identified: 3 ficolins (M-ficolin, 
L-ficolin, and H-ficolin, also known as ficolin-1, ficolin-2, and ficolin-3, respec-
tively), and 3 collectins (MBL, collectin 11 or collectin kidney-1 or CL-K1, and 
collectin 10 or colletin-L1or CL-L1). Similar to AP, the LP may be activated in the 
absence of immune complexes by the binding of PRMs to carbohydrates or acety-
lated compounds on the surfaces of pathogens (PAMPs) or apoptotic cells (DAMPs) 
(Fig. 18.2). The PRMs form complexes with the serine proteases, MASPs (MASPs 

Fig. 18.2 The lectin pathway of complement activation. MBL and ficolins undergo conforma-
tional changes upon interaction with PAMPs and DAMPs by binding MBL and ficolin, respec-
tively. This activates MASP-1, followed by MASP-2, which initiates a cleavage cascade of 
complement factors, with anaphylatoxins C4a, C3a, and C5a playing important roles in the inflam-
matory process
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1, 2, and 3), and two nonenzymatic splice products MBL-associated proteins 
(MAps19 and 44) [26–28]. Upon binding of PRM/MASP complexes to appropriate 
targets, MASPs get activated from pro-enzymes (zymogens) to active forms cata-
lyzing the cleavage of C4 and C2, to generate C3 convertase (C4bC2a), which car-
ries the complement activation cascade forward, culminating in the elimination of 
microbial intruders by phagocytosis or cells lysis [29].

The terminal pathway occurs in a similar manner in all three activation pathways 
and results in the assembly of the MAC, initiated by the interaction of C5b with C6 
and C7 molecules, yielding the C5bC6C7 (C5b-7) complex. The membrane inser-
tion event is initiated upon binding of C8 to C5b-7 complex. Subsequently, 12–18 
copies of C9 molecules bind to the C5b-7, forming the lytic pore (C5b-9) inducing 
cell death by causing imbalance in cell osmolarity (Fig. 18.2) [14, 30]. Multiple 
MACs are required for complement-mediated lysis of nucleated cells; however, in 
erythrocytes it has been demonstrated that a single pore could cause cell lysis [31] 
(Fig. 18.3).

Fig. 18.3 Membrane attack complex (MAC) formation and the resultant consequences in target 
cell. Newly formed C5b reacts with C6 to form the stable C5b6 complex. Binding of C7 results in 
a hydrophobic complex that targets the membrane (mC5b-7). Membrane insertion is initiated upon 
binding of C8 (C5b-8) after which 12–18 copies of C9 polymerize to form the pore-forming ring 
structure to induce lysis of microbial membranes

F.A. Andrade et al.
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18.4  MBL-Associated Serine Proteases (MASPs) of the Lectin 
Pathway

There are three serine proteases associated with the LP PRMs, MASP-1, MASP-2, 
and MASP-3, in addition to two nonenzymatic proteins MAp19 and MAp44 [1]. 
The three MASP enzymes have an identical domain organization (Fig. 18.4), which 
is also similar to that of the two classical pathway serine proteases, C1r and C1s. 
The regulatory domain (A-chain) is composed of C1r/C1s, Uegf, and bone morpho-
genetic protein 1 (CUB1), followed by the epidermal growth factor (EGF), a second 
CUB domain (CUB2), and two contiguous complement control proteins (CCPs) 1 
and 2 [33, 34]. The regulatory domain is responsible for dimerization of MASP 
polypeptides and binding to PRMs [35–37]. The regulatory domain is followed by 
the module with the catalytic activity (B-chain), the serine protease (SP) domain 
[33, 34]. The CCP2 and SP domains are connected through a linker peptide (also 
termed the activation peptide), where an Arg-Ile bond is cleaved through autolysis 
when MASP/PRM complexes bind to pathogens, linking the A- and B-chain con-
nected via a disulfide bond [33].

All MASPs are generated from two genes. MASP-1, MASP-3, and MAp44 are 
encoded by the MASP1 gene through an alternative splicing process [38, 39], while 
MASP-2 and MAp19 are alternatively spliced products of MASP2 gene [40].

Fig. 18.4 MASP1 gene and transcripts. The primary transcript can be spliced into three different 
mRNAs encoding the MASP-1, MASP-3, and MAp44 proteins. Blue boxes indicate the translated 
part of the exons. MASP: mannose-binding lectin associated serine protease. MAp44: mannose- 
binding lectin-associated protein of 44 kDa. CUB, C1r/C1s, Uegf, and bone morphogenetic pro-
tein; EGF, epidermal growth factor; CCP, complement control protein. Exons are drawn to scale 
and introns are truncated

18 Serine Proteases in the Lectin Pathway of the Complement System
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18.4.1  MASP1 Gene

The MASP1 gene contains 18 exons and is located on chromosome 3q27–q28 span-
ning 76 kb (Fig. 18.4) [41, 42]. The gene encodes a primary pre-mRNA transcript, 
which is spliced differentially to yield three distinct mRNAs encoding the MASP-1, 
MASP-3, and MAp44 (also termed MAp 1) proteins [38, 39]. MASP-1 and MASP-3 
regulatory domains (CUB1-EGF-CUB2-CCP1-CCP2) are encoded by exons 2–8 
and exons 10 and 11, while the SP domain is encoded by exons 13–18 and exon 
12 in MASP-1 and MASP-3, respectively. MAp44 lacks the SP domain but shares 
the first four domains (CUB1-EGF-CUB2-CCP) with MASP-1 and MASP-3 that 
are encoded by exons 2–8. Exon 9 is unique to MAp44 [39, 43]. The mRNA encod-
ing MASP-1 is largely observed in the liver, while mRNA for MASP-3 is primarily 
observed in the liver and cervix, followed by bladder, brain, colon prostate, and 
placenta [39]. The highest expression of MAp44 is observed in the heart; it was 
weakly expressed in cervix, colon, and liver [39].

Some MASP1 gene polymorphisms are associated with the serum levels of 
MASP-1, MASP-3, and MAp44 (Table 18.2); most associations were observed in 
healthy individuals. In Danish blood donors, heterozygotes of rs190590338 (G > A) 
lead to increase in MASP-1 median concentration, while the minor allele of 
rs7625133 (A > C) decreased MAp44 concentration. The minor alleles of SNPs 
rs3774275 (A > G), rs698090 (T > C), and rs67143992 (G > A) result in an increase 
in MASP-1 and MAp44 and a decrease in MASP-3 serum concentrations; SNPs 
rs72549154 (G > T) and rs35089177 (T > A) showed the opposite effect—the minor 
alleles result in an increase of MASP-3 and a decrease of MASP-1 and MAp44 [44]. 
The additive effect of some MASP1 SNPs in haplotypes on MASP-1, MASP- 3, and 
MAp44 serum concentrations has also been described. The MASP1 TGAG haplo-
type (rs35089177 (T > A), rs62292785 (G > A), rs7625133 (A > C), and rs72549254 
(G > A)), for example, leads to an increase in MASP-1 and MAp44 and decrease in 
MASP-3 concentration in healthy blood donors [44].

In patients with cystic fibrosis homozygous (A/A) and heterozygous (G/A) 
alleles, SNP rs850312 (G > A) was associated with the earlier onset of Pseudomonas 
aeruginosa colonization [45]. These same genotypes were associated with higher 
on-admission MASP-3 levels in critically ill children, exhibiting a protective effect, 
as higher MASP-3 levels are related to a better outcome [46]. The T/T genotype of 
rs710469 (C > T) was also considered a protective genotype in critically ill children 
by increasing on-admission MASP-3 levels, although the genotype was equally dis-
tributed among controls and patients [46]. A non-synonymous polymorphism 
(rs38343199) in exon 10 (G  >  A) located in the MASP-1 and MASP-3 CCP2 
domain was evaluated in systemic lupus erythematosus (SLE), systemic inflamma-
tory response syndrome (SIRS), and/or sepsis patients. However, no association 
was found between this amino acid substitution and the diseases [47]. Some muta-
tions in MASP1 gene are also related to the autosomal-recessive 3MC syndrome 
(Carnevale, Mingarelli, Malpuech, and Michels) [48–50].

F.A. Andrade et al.
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18.4.2  MASP-1

MASP-1 was characterized by Matsushita and Fujita (1992) as the first serine pro-
tease C1s-like and was designated as mannose-binding protein (MBP)-associated 
serine protease (MASP). This serine protease plays a central role in the initiation of 
the LP, by carrying out the activation of MASP-2. It is considered a promiscuous 
protease since its substrate binding groove is wide and resembles that of trypsin 
rather than early complement proteases [51].

Recent findings supported MASP-1 as an essential component of the LP, whose 
concentration is 20-fold higher than MASP-2  in the plasma. MASP-1 undergoes 
autoactivation to subsequently activate MASP-2 efficiently—acting in a manner 
analogous to that of C1r and C1s in the CP, being responsible for 60% of the C2 
cleaved and C3 convertase formation [52, 53]. MASP-1 autoactivation seems to 
control the initiation of the LP [54], but does not cleave C4, being not capable of 
generating C3 convertase by itself, although direct activation of C3 by MASP-1 can 
occur at a relatively low efficiency [55, 56].

MASP-1 is primarily expressed in the liver, with mean plasma levels of 11 μg/ml 
(range 4–30 μg/ml) [57], and significantly contributes to the development of the 
inflammatory reaction by proteolytic activity. MASP-1 induces Ca2+ signaling, 
NF-κB and p38 MAPK pathways in endothelial cells through protease-activated 
receptor 4 (PAR4) [58]. This activity leads to the release of IL-6 and IL-8, activating 
the chemotaxis of neutrophil granulocytes [59]. MASP-1 is also able to modulate 
the immune response by the release of pro-inflammatory bradykinin from high- 
molecular- weight kininogen [60].

MASP-1 is immediately activated after microbial infection by the binding of 
PRM complexes to targets leading to opsonization, cell lysis, release of anaphyla-
toxins, chemotaxis of neutrophils, and inflammation. In fact, MASP-1 plasma levels 
have been associated with some inflammatory disorders, and the activity of MBL/
MASP-1 complex has been associated to disease severity in post-streptococcal 
acute glomerulonephritis and hepatitis C virus (HCV) infection, leading to glomer-
ular fibrinogen deposits and sustained hematuria [61], and liver fibrosis [62], respec-
tively. In addition, MASP-1 plasma levels were also higher in patients who suffered 
myocardial infarction and lower in patients with acute ischemic stroke [63]. High 
levels of MASP-1 were also observed in patients with type 1 diabetes mellitus [64].

In autoimmune diseases, high plasma levels of MASP-1 were associated with 
SLE [65]. In contrast, MASP-1 levels were reduced in patients with hereditary 
angioedema in response to the degree of complement C4 consumption, which was 
expected to contribute to the pathophysiology and severity of the disease [66].

Furthermore, MASP-1 was shown to play a role in coagulation, cleaving factor 
XIII and fibrinogen and mediating the formation of cross-linked fibrin, although 
with lower catalytic efficiency compared to thrombin [67]. In fact, antithrombin in 
the presence of heparin is a more potent inhibitor of MASP-1 then C1 inhibitor. The 
ancient origin of MASP-1 and its thrombin-like activity suggests its involvement in 
a coagulation-based defense mechanism in the early evolution of innate immunity 
[68]. Interestingly, components of the coagulation cascade amplify complement 
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activation in such a manner that both complement and coagulation cascade are 
interconnected through an important crosstalk [9]. In addition, MASP-1 was associ-
ated with thrombus formation in a mouse model of arterial injury [69], and in 
patients with diabetes, contributing to an enhanced thrombotic environment and 
consequent vascular complications [64].

18.4.3  MASP-3

MASP-3 is an alternative spliced product of MASP1 gene, which contains an identi-
cal A-chain, but an entirely different B chain and is highly conserved [70]. MASP-3 
is mainly expressed in the pancreas, skeletal muscle, spleen, thymus, prostate, and 
ovary [56]. The mean serum concentration is 5.2 μg/ml (range 1.8–10.6 μg/ml) [71], 
mainly occurring in association with ficolin-3 and in lower amounts with ficolin-2 
and MBL [38].

MASP-3 does not cleave any complement components and it is not inhibited by 
C1-inhibitor [56, 72]. MASP-3 may reduce the LP activity as it has to compete for 
MASP binding sites on the LP recognition molecules [39]. Similar to C1s, MASP-3 
cleaves insulin-like growth factor-binding protein-5 (IGFBP-5), an important regu-
lator of physiological processes in the bone, kidney, and mammary glands [73]. 
MASP-3 has also been implicated in the activation of the AP in mice [74]; however, 
in humans MASP-3 is not required for activation of AP [52].

Along with CL-K1, MASP-1, and MAp44, MASP-3 seems to have an important 
role in early embryonic development, as shown by the effect of five rare MASP-3 
exon 12 mutations in four independent families with autosomal recessive 3MC syn-
drome, characterized by several development disorders. All the implicated muta-
tions are predicted to damage the SP domain, eliminating the enzymatic activity 
[49, 75]. According to Venkatraman et al., this disorder is probably a result of struc-
tural defects caused by disruption of Ca(2+) binding during biosynthesis of CL-K1, 
causing structural changes in the protein and in the consequent CL-K1/MASP-3 
complexes [76]. In this context, MASP-3 also cleaves IGFBP-5 [73], regulating 
physiological processes in kidney, bone, among others, and interestingly, is 
expressed in the craniofacial region during mouse embryonic development [49].

In addition, MASP-3 levels were associated to infections in children admitted to 
the intensive care unit (ICU). Low MASP-3 levels on-admission were associated 
with an increased risk of acquiring new infection in critically ill children [46].

18.4.4  MAp44

MAp44 is an alternative splice product of the MASP1 gene, which lacks the SP 
domain and consequently, its functional activity. The polypeptide was named 
MAp44 due to its molecular mass of 44 kDa. MAp44 is mainly expressed in the 
heart and skeletal muscle, with a mean serum concentration of 1.7 μg/ml (range 
0.8–3.2 μg/ml) [39, 43].

F.A. Andrade et al.
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Although MAp44 does not contain the SP domain, the other domains interact 
with MBL or ficolins, thereby competing with MASP-1, MASP-2, and MASP-3 
and resulting in the inhibition of C4 deposition and consequently the inhibition of 
downstream complement activation [39, 43, 77]. In addition to inhibiting the incor-
poration of MASPs into MBL/ficolin complexes, MAp44 was shown to prevent 
MBL deposition on MBL ligands and restricting complement activation and C3 
deposition [78].

MAp44 has been associated with cardioprotective effects, preserving cardiac 
function, decreasing infarct area, and preventing thrombogenesis in murine models 
of ischemia/reperfusion injury by inhibiting MBL and C3 deposition [69, 78]. Due 
to its protective effects on cardiovascular system, MAp44 has been suggested to be 
used in a therapeutic approach for the treatment of myocardial ischemia/reperfusion 
injury and thrombogenesis [78]. In contrast, Frauenknecht et al. demonstrated that 
MAp44 levels were not directly related to the pathophysiology of cardio- and cere-
brovascular diseases, but instead was associated with cardiovascular risk factors 
such as dyslipidemia, obesity, and hypertension [63].

18.4.5  MASP2 Gene

The MASP2 gene comprises 12 exons and is located on chromosome 1p36.23–31 
spanning about 20 kb [79, 80]. The primary gene transcript gives rise to two differ-
ent mRNAs generated by alternative splicing/polyadenylation, encoding the 
MASP-2 serine protease and a truncated MASP-2-related plasma protein, termed 
MAp19 or sMAP (Fig. 18.5) [79]. For MASP-2, the regulatory domains, CUB1- 
EGF- CUB2-CCP1-CCP2, are encoded by exons 2–4 and exons 6–11, while the 
serine protease domains are encoded by exon 12. MAp19 is encoded by 4 exons, of 
which 3 (exons 2–4) are shared with MASP-2 and encode the CUB1-EGF regula-
tory domains, whereas exon 5 encodes four specific C-terminal amino acids. MAp19 
does not have a serine protease domain [40, 81].

Some MASP2 polymorphisms are associated with modulation of MASP-2 and 
MAp19 serum levels (Table  18.3). The rs72550870 (T  >  C) responsible for the 
Asp > Gly substitution in residue 120 (p.D120G) occurs in the CUB1 domain [82] 
and affects both MASP-2 and MAp19 leading to a reduced serum concentration by 
eliminating the binding to MBL and ficolins and affecting complement activation 
[83]. The MASP-2 levels in heterozygous p.D120G healthy subjects is about half of 
those in subjects with the wild-type allele [82]. The rs12085877 (G > A) leads to an 
amino acid substitution (p.R439H) in the MASP-2 serine protease domain leading 
to a reduction in MASP-2 concentration in heterozygotes. MASP-2 with the 
p.R439H polymorphism is able to bind to MBL, however, showing reduced enzy-
matic activity in the MBL-MASP2 complexes [84, 85]. Several other MASP2 poly-
morphisms, including rs7548659 (G  >  T) in the promoter region, rs61735600 
(C > T) and rs56392418 (G > A) in exon 3, rs2273344(C > T) in intron 4, rs9430347 
(T  >  C) in intron 5, rs17409276 (G  >  A) in intron 9, rs12711521(C  >  A) and 
rs2273346 (A > G) in exon 10, and rs12085877 (C > T) and rs1782455 (G > A) in 
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exon 12, were found to be associated with the modulation of serum levels [84–87]. 
Some of them were associated with the susceptibility to leprosy [87], hepatitis C 
[88], malaria [89], bacterial infections after orthotopic liver transplantation [90], 
Chagas disease [91], rheumatoid arthritis [92], tuberculosis [93], rheumatic fever 
[94], and endemic pemphigus foliaceus [95].

18.4.6  MASP-2

The second MASP was identified in 1997 by Thiel et al., which showed notable 
homology with the first reported MASP (MASP-1) and the serine proteases, C1s 
and C1r, of the CP. Nevertheless, subsequent analysis demonstrated that despite the 
homology, MASP-2 was entirely different in assembly and function to C1s [56, 68, 
96] with a 1000-fold higher catalytic activity and could be inhibited by C1-inhibitor 
50-fold more rapidly [97]. The almost identical substrate specificity of MASP-2 and 
C1s is mediated through different group of enzyme-substrate interactions, and it is 
very probable that the major functional difference between them is reflected in the 
different loop structures of the two enzymes [96].

MASP-2 is synthesized as single-chain proenzyme, and its activation proceeds 
through the cleavage of a single Arg-Ile bond, generating the two disulfide-linked 

Fig. 18.5 MASP2 gene and transcripts. Alternative splicing of primary transcript gives rise to two 
different mRNAs encoding MASP-2 and MAp19 proteins. Blue boxes indicate translated part of 
the exons. MASP: mannose-binding lectin-associated serine protease. MAp19: mannose-binding 
lectin-associated protein of 19 kDa. CUB, C1r/C1s, Uegf, and bone morphogenetic protein; EGF, 
epidermal growth factor; CCP, complement control protein. Exons are numbered and drawn to 
scale; introns are truncated
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chains, A and B [3]. The MASP-2 protease is comprised of 3  N-terminal non- 
catalytic domains (CUB1-EGF-CUB2) and 3 catalytic domains (CCP1-CCP2-SP). 
The non-catalytic domain is responsible for the binding of the protease to the recog-
nition molecules, such as MBL. The catalytic domains are responsible for protein 
conformation and help to ensure the narrow selectivity for protein substrates by 
restricting access to the substrate binding [36, 56, 96]. The binding interface of the 
protease is located on all the fragments of CCP1-CCP2-SP, binding C4 with similar 
affinity [98].

In contrast to MASP-1, MASP-2 is a very specific protease, which very effi-
ciently cleaves C4 and proconvertase C2, thus having the ability to generate the C3 
convertase on its own [29, 34, 99]. MASP-2 can autoactivate, but under physiologi-
cal conditions, MASP-1 is the essential MASP-2 activator [34]. MASP-1 is 20-fold 
more abundant than MASP-2 [57], having a much higher propensity for autoactiva-
tion, thus causing a dramatic increase in the rate of activation of MASP-2 [52].

MASP-2 is mainly expressed in the liver [80, 100] and is stable over time in 
healthy individuals, with concentration around 400–500  ng/mL in serum/plasma 
(range 70–1200 ng/mL) [101, 102].

The first clinical effect of MASP-2 deficiency was reported in 2003 when a patient 
with an inherited deficiency of MASP-2 showed several and recurrent infectious and 
autoimmune disease manifestations. Sequence analysis of DNA revealed a point 
mutation in exon 3, causing substitution of glycine for aspartic acid at position 105 
(D105G) [82]. In 2005 another report with the same mutation and similar clinical 
condition confirmed the importance of MASP-2 deficiency in human health [83].

Further investigations showed that MASP-2 levels may be associated with sev-
eral other diseases, with levels lower than 100 ng/mL being considered deficient [3]. 
Low MASP-2 levels were reported in acute stroke when compared with normal 
coronary vessel individuals [63]. This finding is in line with the observation that 
myocardial infarction induces complement activation with MASP-2 consumption 
[63, 103]. In contrast, MASP-2 deficiency appears to protect mice from gastrointes-
tinal post-ischemic reperfusion injury [104].

Furthermore, low MASP-2 levels were associated with malignancy among criti-
cally ill children [46] and with rheumatic fever [94]. The authors suggested that low 
MASP-2 levels may reflect protein consumption due to complement activation, 
which may be involved in the establishment of rheumatic heart disease [94].

On the other hand, high MASP-2 levels appear to protect against rheumatoid 
arthritis and articular symptoms suggesting that MASP-2 levels might be used as a 
biomarker in the follow-up of individuals with familial predisposition to the disease 
[92]. High MASP-2 levels were also associated with the development of severe 
infections in adult patients with hematological cancer undergoing chemotherapy 
[105], type 1 diabetes mellitus [64], and juvenile idiopathic arthritis [106]. Similar 
to the complement system as a whole, MASP-2 represents a dual role in diseases. In 
general, low MASP-2 can lead to a compromised immune response against patho-
gens, thereby facilitating infection and disease progression, but on the other hand, 
high MASP-2 level can lead to exacerbated inflammatory response and tissue injury.
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Additionally, MASP-2 levels have been related to a number of other diseases, 
including schizophrenia [107], septic shock [108], acute lymphoblastic leukemia, 
non-Hodgkin lymphoma, central nervous system tumors [109], and colorectal can-
cer [110, 111].

Finally, MASP-2 is also known to trigger the coagulation cascade by cleaving 
prothrombin to thrombin in a similar manner as factor Xa, generating cross-linked 
fibrin covalently bound on bacterial surfaces. This MASP-2 function may be protec-
tive by limiting the dissemination of infection [67, 112].

18.4.7  MAp19

MAp19 is a truncated 19 kDa product of alternative splicing and polyadenylation of 
the primary RNA transcript of the MASP2 gene [56]. It contains the same CUB1 
and EGF domain as MASP-2, but has an additional four unique amino acids at the 
C-terminal end of the protein, with no serine protease activity [29, 56, 113]. MAp19 
forms homodimers via the CUB1 and EGF domains, like MASP-2, and associates 
with MBL and ficolins in a calcium-dependent manner [37]. It is secreted by the 
liver in to the plasma and expressed by Kupffer cells with a similar median level as 
MASP-2 (217 ng/ml, 26–675 ng/ml) [114].

The function of MAp19 is not entirely understood, but because of its ability to 
bind to MBL and ficolins, it was speculated that MAp19 competes with MASPs, thus 
acting as a downregulator to the LP. In fact, MAp19 was shown to reduce the activa-
tion of C4, by being an attenuator of the activation of LP [115]. Nevertheless, only a 
minor fraction of MAp19 is associated with MBL and ficolins, and binding to MBL/
ficolins occurs with about ten times lower affinity compared with MASP-2 [116].

In a recent study, MAp19 was not related to inflammatory markers in patients 
with systemic and oligoarticular juvenile idiopathic arthritis differently as observed 
for the others MASPs [106].

Finally, MAp19 is excreted in human urine and may play a role in the inhibition 
of calcium oxalate renal stone formation [114, 117]. The nucleocapsid N protein of 
severe acute respiratory syndrome coronavirus interacts with MAp19 in vitro, but 
the functional significance of this remains unknown [118].

18.5  Conclusions

This chapter discussed several aspects and research findings that point out the 
importance of serine proteases of the LP and its gene polymorphisms in the human 
physiology and pathology. The activation of complement by complex PRMs/
MASP-1/2 has been associated not only with immune response but also with other 
biological processes, such as coagulation and embryonic development. However, 
future studies are required in order to clarify the role of MASP-3, MAp19, and 
MAp44 proteins in the activation of the LP.
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In conclusion, serine proteases of the LP have an essential role in maintaining 
physiological homeostasis. The activation of complement requires an effective reg-
ulatory system that is able to perform a complex checking mechanism in order to 
prevent pathological disorders. The impact of plasma MASP levels and its genetic 
polymorphisms in health and diseases processes should be encouraged in order to 
improve the knowledge about its real role in the maintenance of homeostasis and 
development of diseases. This may disclose new therapeutic and/or preventive 
strategies.
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