Skip to main content

Combination of Hyperthermia and Immunotherapy: Hyperthermia and Naïve T-cell Therapy

  • Chapter
  • First Online:
Hyperthermic Oncology from Bench to Bedside
  • 701 Accesses

Abstract

Since many of the patients who receive adoptive immunotherapy also receive chemotherapy and/or radiation therapy, evaluation of the curative effect of adoptive immunotherapy itself is difficult. To overcome this, I perform immune monitoring to examine how much individual immunotherapies contribute to the curative effects. As a result, I found that higher whole blood levels of Th1 cytokines prodicing potential may be used to predict better clinical responses. In addition, I showed that the naïve T-cell adoptive therapy, which we developed, has superior clinical efficacy when compared to other immunotherapies. This chapter also describes the results of our clinical trial. In addition, I describe the application of hyperthermia, which can influence the immune-response of a tumor tissue. Basic experiments showed that hyperthermia could be applied to strengthen a patient’s immune system. Next, we performed naïve T-cell adoptive immunotherapy combined with hyperthermia. Finally, I will describe a case of advanced gastric cancer that showed complete remission after treatment with naïve T-cell adoptive immunotherapy combined with hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liyanage UK, Goedegebuure PS, Moore TT, et al. Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother. 2006;29:416–24.

    Article  PubMed  Google Scholar 

  2. Uno K, Nakano K, Maruo N, Onodera H, Mata H, et al. Determination of interferon-alpha-producing capacity in whole blood cultures from patients with various diseases and from healthy persons. J Interferon Cytokine Res. 1996;16:911–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa T, Kokura S, Sakamoto N, Matsumoto T, Funaki J, Adachi S, et al. Adoptive cellular therapy enhances the helper T cell response and reduces the number of regulatory T cells. Exp Ther Med. 2011;2:737–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishikawa T, Kokura S, Sakamoto N, Okajima M, Matsuyama T, et al. Relationship between circulating cytokine levels and physical or psychological functioning in patients with advanced cancer. Clin Biochem. 2012;45:207–11.

    Article  CAS  PubMed  Google Scholar 

  5. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756–61.

    Article  CAS  PubMed  Google Scholar 

  6. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sasada T, Kimura M, Yoshida Y, et al. CD41CD251 regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003;98:1089–99.

    Article  PubMed  Google Scholar 

  8. Kono K, Kawaida H, Takahashi A, et al. CD4(1)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006;55:1064–71.

    Article  CAS  PubMed  Google Scholar 

  9. Butterfield LH, Ribas A, Dissette VB, et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res. 2003;9:998–1008.

    CAS  PubMed  Google Scholar 

  10. Ribas A, Timmerman JM, Butterfield LH, et al. Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol. 2003;24:58–61.

    Article  CAS  PubMed  Google Scholar 

  11. Ranieri E, Kierstead LS, Zarour H, et al. Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest. 2000;29:121–5.

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield LH, Comin-Anduix B, Vujanovic L, et al. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother. 2008;31:294–309.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yee C, Greenberg P. Modulating T-cell immunity to tumours: new strategies for monitoring T-cell responses. Nat Rev Cancer. 2002;2:409–19.

    Article  CAS  PubMed  Google Scholar 

  14. Kammula US, Lee KH, Riker AI, et al. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol. 1999;163:6867–75.

    CAS  PubMed  Google Scholar 

  15. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uno K, Setoguchi J, Tanigawa M, et al. Differential interleukin 12 responsiveness for interferon gamma production in advanced stages of cancer patients correlates with performance status. Clin Cancer Res. 1998;4:2425–32.

    CAS  PubMed  Google Scholar 

  18. Miyata H, Uno K, Ono T, et al. Low density lipoprotein apheresis ameliorates interferon- gamma production in patients with nephrotic syndrome. Ther Apher Dial. 2012;16:189–94.

    Article  CAS  PubMed  Google Scholar 

  19. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest. 2005;115:1616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. 2005;175:7046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor- reactive T cells associated with tumor regression. J Immunother. 2005;28:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu SS, Nukaya I, Enoki T, Chatani E, Kato A, et al. In vivo persistence of genetically modified T cells generated ex vivo using the fibronectin CH296 stimulation method. Cancer Gene Ther. 2008;15:508–16.

    Article  CAS  PubMed  Google Scholar 

  24. Ishikawa T, Kokura S, Sakamoto N, Matsumoto T, Funaki J, Adachi S, et al. Adoptive cellular therapy enhances the helper T cell response and reduces the number of regulatory T cells. Exp Ther Med. 2011;2:737–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishikawa T, Kokura S, Sakamoto N, Okayama T, Endo M, et al. Whole blood interferon-gamma levels predict the therapeutic effects of adoptive T-cell therapy in patients with advanced pancreatic cancer. Int J Cancer. 2013;133:1119–26.

    Article  CAS  PubMed  Google Scholar 

  26. Romagnani S. Human TH1 and TH2 subsets: doubt no more. Immunol Today. 1991;12:256–7.

    Article  CAS  PubMed  Google Scholar 

  27. Metcalf D, Begley CG, Johnson GR, Nicola NA, Vadas MA, et al. Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1986;67:37–45.

    CAS  PubMed  Google Scholar 

  28. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56.

    Article  PubMed  Google Scholar 

  29. Vidair CA, Dewey WC. Evaluation of a role for intracellular Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res. 1986;105:187–200.

    Article  CAS  PubMed  Google Scholar 

  30. Stevenson MA, Calderwood SK, Hahn GM. Effect of hyperthermia (45 °C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance. Cancer Res. 1987;47:3712–7.

    CAS  PubMed  Google Scholar 

  31. Malhotra A, Heynen ML, Lepock JR. Role of extracellular calcium in the hyperthermic killing of CHL V79 cells. Radiat Res. 1987;112:478–89.

    Article  CAS  PubMed  Google Scholar 

  32. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.

    Article  CAS  PubMed  Google Scholar 

  33. Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia. 2003;19:252–66.

    Article  CAS  PubMed  Google Scholar 

  34. van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13:1173–84.

    Article  PubMed  Google Scholar 

  35. Frey B, Weiss EM, Rubner Y, Wunderlich R, Ott OJ, Sauer R, et al. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 2012;28:528–42.

    Article  CAS  PubMed  Google Scholar 

  36. Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 2007;82:1322–31.

    Article  CAS  PubMed  Google Scholar 

  37. Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 2003;94:308–13.

    Article  CAS  PubMed  Google Scholar 

  38. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol. 1997;158:4341–50.

    CAS  PubMed  Google Scholar 

  39. Botzler C, Li G, Issels RD, Multhoff G. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones. 1998;3:6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roigas J, Wallen ES, Loening SA, Moseley PL. Heat shock protein (Hsp72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol. 1998;451:225–9.

    Article  CAS  PubMed  Google Scholar 

  41. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. Hsp70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem. 2002;277:15107–12.

    Article  CAS  PubMed  Google Scholar 

  42. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular Hsp70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277:15028–34.

    Article  CAS  PubMed  Google Scholar 

  43. Todryk S, Melcher AA, Hardwick N, Linardakis E, Bateman A, Colombo MP, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol. 1999;163:1398–408.

    CAS  PubMed  Google Scholar 

  44. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol. 2002;169:5424–32.

    Article  CAS  PubMed  Google Scholar 

  45. Suzue K, Zhou X, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A. 1997;94:13146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269:1585–8.

    Article  CAS  PubMed  Google Scholar 

  47. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol. 2005;6:593–9.

    Article  CAS  PubMed  Google Scholar 

  48. Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-gamma production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia. 2012;28:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ostberg JR, Repasky EA. Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function. Cancer Immunol Immunother. 2006;55:292–8.

    Article  PubMed  Google Scholar 

  50. Bear AS, Kennedy LC, Young JK, Perna SK, Mattos Almeida JP, Lin AY, et al. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One. 2013;8:e69073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kokura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kokura, S. (2016). Combination of Hyperthermia and Immunotherapy: Hyperthermia and Naïve T-cell Therapy. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics