Skip to main content

Prostaglandins, Adenosine, and Histaminergic System in the Regulation of Sleep and Wakefulness

  • Chapter
  • First Online:
Sleep and its Disorders

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 602 Accesses

Abstract

This chapter provides an overview of the current knowledge about the roles of prostaglandins, adenosine, and the histaminergic system in sleep–wake regulation, focusing on prostaglandins, adenosine, and histamine in the central nervous system, their level regulation, their receptors, and pharmacological and molecular biological manipulations of the adenosine and histaminergic systems. Prostaglandin (PG) D2 is an endogenous somnogen that can increase the extracellular adenosine under the subarachnoid space of the basal forebrain, thereby induce physiological sleep. Adenosine is found neither stored nor released as a classical neurotransmitter, which is formed inside cells or on their surface and derived from adenine nucleotide breakdown. Prolonged wakefulness increases extracellular adenosine concentration in the cortex and basal forebrain and the concentration will go back during the sleep recovery period. Therefore, adenosine has been thought of as a homeostatic regulator of sleep and a link between the humoral and neural mechanisms of sleep–wake regulation. Both the adenosine A1 receptor (A1R) and the A2AR are involved in sleep induction. The somnogenic effects of PGD2 are predominantly dependent on A2AR. In addition, it is proved that the A2AR is necessary for the arousal effect of caffeine by using gene-manipulated mice. In contrast, the role of the A1R is more complicated. Although stimulation of A1R in wake-promoting brain areas increases sleep, activation of A1R in the lateral preoptic area induces wakefulness, indicating that the A1R acts in a site-dependent manner in sleep–wake regulation. The histaminergic system also plays an essential role in sleep–wake regulation and is indispensable for the sleep/wakefulness-promoting effects induced by the A1R and A2AR. A brief discussion about the potential therapeutic applications of agonists and antagonists of these receptors in sleep disorders is also included at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADA:

Adenosine deaminase

AK:

Adenosine kinase

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine 3′, 5′-monophosphate

cN:

Cytosolic nucleotidase

CPA:

N6-cyclopentyladenosine

CSF:

Cerebrospinal fluid

dnSNARE:

The SNARE domain of the protein synaptobrevin II

DP1R:

PGD2 receptor

GPCR:

G protein-coupled receptors

H1R:

Histamine H1 receptor

H-PGDS:

Hematopoietic PGDS

KO:

Knockout

L-PGDS:

Lipocalin-type PGDS

NBTI:

S-(4-nitrobenzyl)-6-thioinosine

NREM:

Non-rapid eye movement

PLC:

Phospholipase C

PG:

Prostaglandin

PGDS:

PGD synthase

R:

Receptor

REM:

Rapid eye movement

SAHH:

S-adenosyl-homocysteine hydrolase

Se4+:

Tetravalent selenium

SeCl4:

Selenium tetrachloride

SWA:

Slow wave activity

TMN:

Tuberomammillary nucleus

VLPO:

Ventrolateral preoptic area

WT:

Wild type

References

  • Arrigoni E, Chamberlin N, Saper C, McCarley R. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience. 2006;140:403–13.

    Article  CAS  PubMed  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol. 2004;73:379–96.

    Article  CAS  PubMed  Google Scholar 

  • Basheer R, Bauer A, Elmenhorst D, Ramesh V, McCarley RW. Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain. Neuroreport. 2007;18:1895–9.

    Article  CAS  PubMed  Google Scholar 

  • Benington J, Kodali S, Heller H. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res. 1995;692:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Centurion C, et al. Adenosine and sleep homeostasis in the basal forebrain. J Neurosci. 2006;26:8092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borb AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythm. 1999;14:559–70.

    Article  Google Scholar 

  • Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63:637–72.

    Article  CAS  PubMed  Google Scholar 

  • Brundege JM, Diao L, Proctor WR, Dunwiddie TV. The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Neuropharmacology. 1997;36:1201–10.

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87:659–797.

    Article  CAS  PubMed  Google Scholar 

  • Christie MA, et al. Microdialysis elevation of adenosine in the basal forebrain produces vigilance impairments in the rat psychomotor vigilance task. Sleep. 2008;31:1393.

    PubMed  PubMed Central  Google Scholar 

  • Deussen A, Lloyd HG, Schrader J. Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J Mol Cell Cardiol. 1989;21:773–82.

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois J. Caffeine reduces hypnotic effects of alcohol through adenosine A2A receptor blockade. Neuropharmacology. 2003;45:977.

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27:2410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmenhorst D, Basheer R, Mccarley RW, Bauer A. Sleep deprivation increases A1 adenosine receptor density in the rat brain. Brain Res. 2009;1258:53–8.

    Article  CAS  PubMed  Google Scholar 

  • Feldberg W, Sherwood S. Injections of drugs into the lateral ventricle of the cat. J Physiol. 1954;123:148–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferre S, et al. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry Implications for drug addiction, sleep and pain. Prog Neurobiol. 2007;83:332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci. 2001;21:2610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredholm B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14:1315–23.

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J. International union of pharmacology. XXV Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Chen J-F, Cunha RA, Svenningsson P, Vaugeois J-M. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.

    Article  CAS  PubMed  Google Scholar 

  • Gallopin T, et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience. 2005;134:1377.

    Article  CAS  PubMed  Google Scholar 

  • Geiger JD, Fyda DM. Adenosine transport in nervous system tissues. In: Adenosine in the nervous system. New York: Academic Press; 1991. p. 1–23.

    Google Scholar 

  • Gerashchenko D, Okano Y, Urade Y, Inoué S, Hayaishi O. Strong rebound of wakefulness follows prostaglandin D2-or adenosine A2a receptor agonist-induced sleep. J Sleep Res. 2000;9:81–7.

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Foga I, Parkinson F, Geiger J. Involvement of Bidirectional Adenosine Transporters in the Release of l-[3H] Adenosine from Rat Brain Synaptosomal Preparations. J Neurochem. 1995;64:2105–10.

    Article  CAS  PubMed  Google Scholar 

  • Halassa MM, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 2009;61:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong ZY, et al. An adenosine A2A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J Neurochem. 2005;92:1542–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-L, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001;98:9965–70. https://doi.org/10.1073/pnas.181330998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z-L, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8:858–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-L, Urade Y, Hayaishi O. Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol. 2007;7:33–8.

    Article  CAS  PubMed  Google Scholar 

  • Huston J, et al. Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience. 1996;73:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc Natl Acad Sci U S A. 1996;93:13316–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam F, Watanabe Y, Morii H, Hayaishi O. Inhibition of rat brain prostaglandin D synthase by inorganic selenocompounds. Arch Biochem Biophys. 1991;289:161–6.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BE. Glia, adenosine, and sleep. Neuron. 2009;61:156–7.

    Article  CAS  PubMed  Google Scholar 

  • Jordan W, et al. Prostaglandin D synthase (β-trace) in healthy human sleep. Sleep. 2004;27:867–74.

    Article  PubMed  Google Scholar 

  • Jourdain P, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10:331–9.

    Article  CAS  PubMed  Google Scholar 

  • Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG–saporin lesions. Neuroscience. 2008;157:238–53.

    Article  CAS  PubMed  Google Scholar 

  • Kalinchuk A, McCarley R, Porkka-Heiskanen T, Basheer R. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J Neurosci. 2010;30:13254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Junek A, Black MA, Semba K. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci. 2008;28:491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem. 2001;79:463–84.

    Article  CAS  PubMed  Google Scholar 

  • Li R, et al. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology. 2020;168:107923. https://doi.org/10.1016/j.neuropharm.2019.107923.

    Article  CAS  PubMed  Google Scholar 

  • Lin JS. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev. 2000;4:471–503. https://doi.org/10.1053/smrv.2000.0116.

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Sakai K, Jouvet M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology. 1988;27:111–22.

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, et al. Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Res. 1990;523:325–30.

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci. 1996;16:1523–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks G, Shaffery J, Speciale S, Birabil C. Enhancement of rapid eye movement sleep in the rat by actions at A1 and A2a adenosine receptor subtypes with a differential sensitivity to atropine. Neuroscience. 2003;116:913–20.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Takahata R, Hayaishi O. Inhibition of sleep in rats by inorganic selenium compounds, inhibitors of prostaglandin D synthase. Proc Natl Acad Sci U S A. 1991;88:9046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats. Am J Phys Regul Integr Comp Phys. 2005;289:R1715–23.

    CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi A, et al. Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2001;98:11674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohri I, Eguchi N, Suzuki K, Urade Y, Taniike M. Hematopoietic prostaglandin D synthase is expressed in microglia in the developing postnatal mouse brain. Glia. 2003;42:263–74.

    Article  PubMed  Google Scholar 

  • Monti JM. Involvement of histamine in the control of the waking state. Life Sci. 1993;53:1331–8.

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Orellana C, Boussard M, Jantos H, Olivera S. Sleep variables are unaltered by zolantidine in rats: are histamine H2-receptors not involved in sleep regulation? Brain Res Bull. 1990;25:229–31.

    Article  CAS  PubMed  Google Scholar 

  • Monti J, Pandi-Perumal SR, Sinton CM, Sinton CW. Neurochemistry of sleep and wakefulness. Cambridge: Cambridge University Press; 2008.

    Book  Google Scholar 

  • Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual R, Shiromani P. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience. 2004;123:361–70.

    Article  CAS  PubMed  Google Scholar 

  • Nagy J, LaBella L, Buss M, Daddona P. Immunohistochemistry of adenosine deaminase: implications for adenosine neurotransmission. Science. 1984;224:166–8.

    Article  CAS  PubMed  Google Scholar 

  • Narumiya S, Ogorochi T, Nakao K, Hayaishi O. Prostaglandin D2 in rat brain, spinal cord and pituitary: basal level and regional distribution. Life Sci. 1982;31:2093.

    Article  CAS  PubMed  Google Scholar 

  • Nooralam M, Szymusiak R, McGinty D. Adenosinergic regulation of sleep: multiple sites of action in the brain. Sleep. 2006;29:1384–5.

    Article  CAS  Google Scholar 

  • Ogorochi T, et al. Regional distribution of prostaglandins D2, E2, and F2α and related enzymes in postmortem human brain. J Neurochem. 1984;43:71–82.

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Huang Z-L, Fredholm BB, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A. 2008;105:19992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi Y, et al. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun. 2017;8:734. https://doi.org/10.1038/s41467-017-00781-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, et al. Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochem Biophys Res Commun. 2003;312:29–34.

    Article  CAS  PubMed  Google Scholar 

  • Onoe H, et al. Prostaglandin D2, a cerebral sleep-inducing substance in monkeys. Proc Natl Acad Sci U S A. 1988;85:4082–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey HP, Ram A, Matsumura H, Hayaishi O. Concentration of prostaglandin D2 in cerebrospinal fluid exhibits a circadian alteration in conscious rats. Biochem Mol Biol Int. 1995;37:431–7.

    CAS  PubMed  Google Scholar 

  • Pascual O, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Peng L, et al. Nucleoside transporter expression and function in cultured mouse astrocytes. Glia. 2005;52:25–35.

    Article  PubMed  Google Scholar 

  • Peng W, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369:eabb0556. https://doi.org/10.1126/science.abb0556.

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porkka-Heiskanen T, Strecker R, McCarley R. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 1999;99:507–17.

    Article  Google Scholar 

  • Qiu M, et al. D (1)/D (2) receptor-targeting L-stepholidine, an active ingredient of the Chinese herb Stephonia, induces non-rapid eye movement sleep in mice. Pharmacol Biochem Behav. 2009;94:16.

    Article  CAS  PubMed  Google Scholar 

  • Qu W-M, et al. Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proc Natl Acad Sci U S A. 2006;103:17949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu W-M, Huang Z-L, Xu X-H, Matsumoto N, Urade Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci. 2008;28:8462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu W-M, et al. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci. 2010;30:4382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radek RJ, Decker MW, Jarvis MF. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res. 2004;1026:74–83.

    Article  CAS  PubMed  Google Scholar 

  • Radulovacki M, Virus R, Djuricic-Nedelson M, Green R. Hypnotic effects of deoxycorformycin in rats. Brain Res. 1983;271:392–5.

    Article  CAS  PubMed  Google Scholar 

  • Rai S, et al. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience. 2010;167:40.

    Article  CAS  PubMed  Google Scholar 

  • Rainnie DG, Grunze HC, McCarley RW, Greene RW. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science (New York, NY). 1994;263:689.

    Article  CAS  Google Scholar 

  • Ram A, et al. CSF levels of prostaglandins, especially the level of prostaglandin D2, are correlated with increasing propensity towards sleep in rats. Brain Res. 1997;751:81.

    Article  CAS  PubMed  Google Scholar 

  • Retey J, et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A. 2005;102:15676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retey J, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81:692–8.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg PA, Li Y. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by β-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res. 1995;692:227–32.

    Article  CAS  PubMed  Google Scholar 

  • Sala-Newby GB, Skladanowski AC, Newby AC. The mechanism of adenosine formation in cells cloning of cytosolic 5′-nucleotidase-I. J Biol Chem. 1999;274:17789–93.

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Matsumura H, Suzuki F, Hayaishi O. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci U S A. 1996;93:5980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Matsumura H, Hayaishi O. Involvement of adenosine A2A receptor in sleep promotion. Eur J Pharmacol. 1998;351:155–62.

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, et al. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist. Eur J Neurosci. 1999;11:1587–97.

    Article  CAS  PubMed  Google Scholar 

  • Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol. 2003;69:313–40.

    Article  CAS  PubMed  Google Scholar 

  • Scammell T, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann S, Fisone G, Moresco R, Cunha R, Ferre S. Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol. 2007;83:277–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwierin B, Borbely A, Tobler I. Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol. 1996;300:163–72.

    Article  CAS  PubMed  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;18:4705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenberg D, et al. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12:283–90.

    Article  PubMed  Google Scholar 

  • Strecker RE, et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000;115:183–204.

    Article  CAS  PubMed  Google Scholar 

  • Takahata R, et al. Intravenous administration of inorganic selenium compounds, inhibitors of prostaglandin D synthase, inhibits sleep in freely moving rats. Brain Res. 1993;623:65–71.

    Article  CAS  PubMed  Google Scholar 

  • Thakkar MM, Winston S, McCarley RW. Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res. 2002;944:190–4.

    Article  CAS  PubMed  Google Scholar 

  • Thakkar MM, Winston S, McCarley RW. A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J Neurosci. 2003;23:4278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakkar M, Engemann S, Walsh K, Sahota P. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep–wakefulness. Neuroscience. 2008;153:875–80.

    Article  CAS  PubMed  Google Scholar 

  • Ueno R, Ishikawa Y, Nakayama T, Hayaishi O. Prostaglandin D2 induces sleep when microinjected into the preoptic area of conscious rats. Biochem Biophys Res Commun. 1982;109:576.

    Article  CAS  PubMed  Google Scholar 

  • Ueno R, Honda K, Inoué S, Hayaishi O. Prostaglandin D2, a cerebral sleep-inducing substance in rats. Proc Natl Acad Sci U S A. 1983;80:1735–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urade Y, Hayaishi O. Crucial role of prostaglandin D2 and adenosine in sleep regulation: experimental evidence from pharmacological approaches to gene-knockout mice. Future Neurol. 2010;5:363–76.

    Article  CAS  Google Scholar 

  • Urade Y, et al. Dominant expression of mRNA for prostaglandin D synthase in leptomeninges, choroid plexus, and oligodendrocytes of the adult rat brain. Proc Natl Acad Sci. 1993;90:9070–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urade Y, et al. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61:S94–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, et al. Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Struct Funct. 2017;222:1351–66. https://doi.org/10.1007/s00429-016-1281-2.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, et al. Lipocalin-type prostaglandin D synthase levels increase in patients with narcolepsy and idiopathic hypersomnia. Sleep. 2021;44:zsaa234. https://doi.org/10.1093/sleep/zsaa234.

    Article  PubMed  Google Scholar 

  • Yaar R, Jones M, Chen JF, Ravid K. Animal models for the study of adenosine receptor function. J Cell Physiol. 2005;202:9–20.

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, et al. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience. 1998;87:479–87.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, et al. Wakefulness is governed by GABA and histamine cotransmission. Neuron. 2015;87:164–78. https://doi.org/10.1016/j.neuron.2015.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan XS, et al. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. elife. 2017;6:e29055. https://doi.org/10.7554/eLife.29055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol. 2007;9:945–53.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;362:299–309.

    Article  CAS  Google Scholar 

  • Zimmermann H, Braun N, Kegel B, Heine P. New insights into molecular structure and function of ecto-nucleotidases in the nervous system. Neurochem Int. 1998;32:421–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Li Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, ZL., Zhang, Z., Qu, WM. (2022). Prostaglandins, Adenosine, and Histaminergic System in the Regulation of Sleep and Wakefulness. In: Pack, A.I., Li, Q.Y. (eds) Sleep and its Disorders. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2168-2_3

Download citation

Publish with us

Policies and ethics