Skip to main content

The Consequences of Anthropogenic Stressors on Cichlid Fish Communities: Revisiting Lakes Victoria, Kyoga, and Nabugabo

  • Chapter
  • First Online:
The Behavior, Ecology and Evolution of Cichlid Fishes

Abstract

Lakes Victoria, Kyoga, and Nabugabo (“the Lake Victoria region”) are remarkable for hosting one of the largest assemblages of cichlid fishes among the African inland lakes. Here, we review the role and severity of anthropogenic and environmental stressors on the cichlid communities in the Lake Victoria region to understand the mechanisms leading to the persistence and resurgence of some of the cichlid fishes. Our review suggests that (1) the native Oreochromis species populations primarily collapsed due to overfishing and that the introduced species and habitat change suppressed their ability to recover; (2) without primary triggers associated with change in the environment and habitat conditions, particularly eutrophication and associated anoxia and reduced water transparency, Nile perch (Lates niloticus) predation alone may not have caused the massive loss of species diversity; and (3) the resurgence of haplochromine cichlids is due to a combination of general improvement in the environment and reduction in L. niloticus abundance, with additionally possibly some rapid ecological adaptations. We conclude that environmental stressors will likely continue to shape the ecosystems in which the remaining endemic cichlid fish diversity continue to evolve, clearly involving genetic exchange between species. If water clarity can be improved again, it is possible to maintain a diverse assemblage of endemic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright TP, Moorhouse TG, McNabb TJ (2004) The rise and fall of water hyacinth in Lake Victoria and the Kagera river basin, 1989–2001. J Aquat Plant Manag 42:73–84

    Google Scholar 

  • Barange M, Perry RI (2009) Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In: Cochrane K, De Young C, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO fisheries and aquaculture technical paper, vol 530. FAO, Rome, pp 7–106

    Google Scholar 

  • Birkett C, Murtgudde R, Allan T (1999) Indian Ocean climate event brings floods to East Africa’s lake and the Sudd marsh. Geophys Res Lett 26:1031–1034

    Article  Google Scholar 

  • Brawand D, Wagner CE, Li YI et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budeba YL, Cowx IG (2007) The role of the freshwater shrimp Caridina nilotica (Roux) in the diet of the major commercial fish species in Lake Victoria, Tanzania. Aquat Ecosyst Health Manage 10:368–380

    Article  Google Scholar 

  • Bwanika GN, Makanga B, Kizito Y, Balirwa, J (2004) Observations on the biology of Nile tilapia, Oreochromis niloticus L., in two Ugandan crater lakes. Afr J Ecol 42:93–101

    Article  Google Scholar 

  • Bwanika GN, Chapman LJ, Kizito Y, Balirwa, J (2006) Cascading effects of introduced Nile perch (Lates niloticus) on the foraging ecology of Nile tilapia (Oreochromis niloticus). Ecol Freshw Fish 15:470–481

    Article  Google Scholar 

  • Cambridge Nabugabo Biological Expedition (1962) Preliminary report (mimeographed). Makerere University, Kampala

    Google Scholar 

  • Chapman LJ, Chapman CA, Shofield PJ et al. (2003) Fish faunal resurgence in Lake Nabugabo, East Africa. Conserv Biol 17:500–511

    Article  Google Scholar 

  • Cohen AS, Bills R, Cocquyt CZ, Caljon AG (1993) The impact of sediment pollution on biodiversity in Lake Tanganyika. Conserv Biol 7:667–677

    Article  Google Scholar 

  • Cohen AS, Gergurich EL, Kraemer BM et al (2016) Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc Nat Acad Sci 113:9563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulter GW (1991) Lake Tanganyika and its life. Oxford University Press, New York

    Google Scholar 

  • Fricke R, Eschmeyer WN, Fong JD (2020) Eschmeyer's catalogue of fishes: genera/species by family/subfamily. http://researcharchivecalacademyorg/research/ichthyology/catalog/SpeciesByFamilyasp#Cichlidae

  • Evans JH (1962) The distribution of phytoplankton in some central east African waters. Hydrobiologia 19:299–315

    Article  Google Scholar 

  • FAO (2012) Climate change implications for fishing communities in the Lake Chad basin. What have we learnt and what can we do better? FAO/Lake Chad Basin Commission Workshop 18–20 November 2011, N′Djamena, Chad. FAO Fisheries and Aquaculture proceedings 25, Rome

    Google Scholar 

  • Fryer G, Iles TD (1972) The cichlid fishes of the Great Lakes of Africa: their biology and evolution. Oliver and Boyd, London

    Google Scholar 

  • Genner MJ, Seehausen O, Cleary DFR, Knight ME, Michel E, Turner GF (2003) How does the taxonomic status of allopatric populations influence species richness within African cichlid fish assemblages? J Biogeogr 31(1):93–102

    Article  Google Scholar 

  • Goudswaard PC, Ligtvoet W (1988). Recent developments in the fishery for haplochromines (Pisces: Cichlidae) and Nile perch (L.) (Pisces: Centropomidae) in Lake Victoria. In: CIFA, Report of the 4th session of the subcommittee for the development and management of the fisheries in Lake Victoria, Kisumu, Kenya, 6–10 April 1987, FAO Fish. Rep, pp 101–112

    Google Scholar 

  • Goudswaard PC, Witte F (1997) The catfish fauna of Lake Victoria after the Nile perch upsurge. Environ Biol Fish 49:210–243

    Google Scholar 

  • Goudswaard KPC, Witte F, Wanink JH (2006) The shrimp Caridina nilotica in Lake Victoria (East Africa), before and after the Nile perch increase. Hydrobiologia 563:31–44

    Article  Google Scholar 

  • Goudswaard PC, Witte F, Katunzi EFB (2008) The invasion of an introduced predator, Nile perch (Lates niloticus, L.) in Lake Victoria (East Africa): chronology and causes. Environ Biol Fish 81:127–139

    Article  Google Scholar 

  • Graham M (1929) The Victoria Nyanza and its fisheries. A report on the survey of Lake Victoria 1927-1928 and appendices. Crown Agents for Colonies, London

    Google Scholar 

  • Greenwood PH (1965) The fishes of Lake Nabugabo, Uganda. Bull Br Mus Nat Hist 12:313–357

    Google Scholar 

  • Greenwood PH (1966) The fishes of Uganda. The Uganda Society, Kampala

    Google Scholar 

  • Hecky RE (1993) The eutrophication of Lake Victoria. Verh Int Verein Limnol 25:39–48

    CAS  Google Scholar 

  • Hecky RE, Bugenyi FWB, Ochumba PBO (1994) De-oxygenation of the deep waters of Lake Victoria, East Africa. Limnol Oceanogr 39:1476–1481

    Article  CAS  Google Scholar 

  • Hecky RE, Mugidde R, Ramlal P (2010) Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw Biol 55:19–42

    Article  Google Scholar 

  • IPCC (2014) Climate change: the physical science basis. IPCC, WG1

    Google Scholar 

  • Jackson PBN (1971) The African Great Lakes fisheries: past, present and future. Afr J Trop Hydrobiol Fish 1:35–49

    Google Scholar 

  • Johnson TC, Scholz CA, Talbot MR et al (1996) Late Pleistocene desiccation of Lake Victoria and rapid evolution of cichlids fishes. Science 273:1091–1093

    Article  CAS  PubMed  Google Scholar 

  • Katunzi EB, Kishe-Machumu MA (2004) Changes in population structures of the major species in selected satellite lakes around Lake Victoria following changes in fishing effort. Tanzan J Sci 30:53–64

    Google Scholar 

  • Katunzi EFB, Zoutendijk J, Goldschmidt T et al (2003) Lost zooplanktivorous cichlid from Lake Victoria reappears with a new trade. Ecol Freshwater Fish 12:237–240

    Article  Google Scholar 

  • Katunzi EFB, Mbonde A, Waya R, Mrosso HDJ (2010) Minor water bodies around southern Lake Victoria-a replica of lost biodiversity. Aquat Ecosyst Health Manag 13:277–283

    Article  Google Scholar 

  • Kaufman L (1992) Catastrophic change in species rich freshwater ecosystems. Bioscience 42:846–858

    Article  Google Scholar 

  • Kishe-Machumu MA, Witte F, Wanink JH (2008) Dietary shift in benthivorous cichlids after the ecological changes in Lake Victoria. Anim Biol 58(4):401–417

    Article  Google Scholar 

  • Kishe-Machumu MA, van Rijssel JC, Wanink J, et al (2015) Differential recovery and spatial distribution pattern of haplochromine cichlids in the Mwanza gulf of Lake Victoria. J Great Lakes Res 41:454–462

    Google Scholar 

  • Kishe-Machumu MA, van Rijssel JC, Poste A, Hecky RE, Witte F (2017) Stable isotope evidence from formalin-ethanol-preserved specimens indicates dietary shifts and increasing diet overlap in Lake Victoria cichlids. Hydrobiologia 791:155–173

    Article  CAS  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  • Kolding J, Medard M, Mkumbo O, van Zwieten P (2014) Status, trends and management of the Lake Victoria fisheries. In: Welcomme R, Valbo-Jorgensen J, Halls A (eds) Inland fisheries evolution: case studies from four continents. FAO, Rome, pp 49–62

    Google Scholar 

  • Kudhongania AW, Chitamwebwa DBR (1995) Impact of environmental change, species introductions and ecological interactions on the fish stocks of Lake Victoria. In: Pitcher TJ, Hart PJB (eds) The impact of species changes in African lakes. Chapman and Hall, London, pp 19–32

    Chapter  Google Scholar 

  • Kudhongania AW, Cordone AJ (1974) Batho-spatial distribution patterns and biomass estimate of the major demersal fishes in Lake Victoria. Afr J Trop Hydro biol Fish 3:15–31

    Google Scholar 

  • Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lowe-McConnell RH (2003) Recent research in the African Great Lakes: fisheries, biodiversity and cichlid evolution. Freshwater Forum 20:4–64

    Google Scholar 

  • Lowe-McConnell RH (2009) Fisheries and cichlid evolution in the African Great Lakes: progress and problems. Freshwater Rev 2:131–151

    Article  Google Scholar 

  • LVFO (2016) Regional status report on Lake Victoria biennial frame surveys between 2000 and 2016. Lake Victoria fisheries organisation (LVFO). Jinja, Uganda

    Google Scholar 

  • MacIntyre S (2012) Climate variability, mixing dynamics, and ecological consequences in the African great lakes. In: Goldman CR, Kamagai M, Robarts RD (eds) Climatic change and global warming of Inland waters: impacts and mitigations for ecosystems and societies. Wiley, New York, pp 311–336

    Chapter  Google Scholar 

  • Marques DA, Meier JI, Seehausen O (2019) A combinatorial view on speciation and adaptive radiation. TREE 34:531–544

    PubMed  Google Scholar 

  • Marshall B (2018) Guilty as charged. Nile perch caused the decline of haplochromines in Lake Victoria. Can J Fish Aquat Sci 75:1542–1559

    Article  Google Scholar 

  • Marshall BE, Ezekiel CN, Gichuki J et al (2013) Has climate change disrupted stratification patterns in Lake Victoria, East Africa? Afr J Aquat Sci 38:249–253

    Article  Google Scholar 

  • Martin WC, Valentine MM, Valentine JF (2010) Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs. PLoS One 5(12):e14395. https://doi.org/10.1371/journal.pone.0014395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbungu W (2015) Climate change vulnerability assessment in the Lake Rukwa Basin. Lake Rukwa Basin water board. Mbeya, Tanzania

    Google Scholar 

  • McGee MD, Borstein SR, Neches RY et al (2015) A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids. Science 350:1077–1079

    Article  CAS  PubMed  Google Scholar 

  • McGee MD, Borstein SR, Meier JI et al (2020) The ecological and genomic basis of explosive adaptive radiation. Nature 586(7827):75–79. https://doi.org/10.1038/s41586-020-2652-7

  • Meier JI, Marques DA, Mwaiko S et al. (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun 8:14363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty DJW, Moriarty CM (1973) The assimilation of carbon from phytoplankton by two herbivorous fishes: Tilapia nilotica and Haplochromis nigripinnis. J Zool 171:41–56

    Google Scholar 

  • Moyle PB, Purkey DR, Mosepele K et al (2009) Fish, floods, and ecosystem engineers: aquatic conservation in the Okavango Delta, Botswana. Bioscience 59:53–64

    Article  Google Scholar 

  • Mugidde R (1993) The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Verh Int Verein Limnol 25:846–849

    Google Scholar 

  • Mwanja WW, Armoudlian AS, Wandera SB et al (2001) The bounty of minor lakes: the role of small satellite water bodies in evolution and conservation of fishes in the Lake Victoria region, East Africa. Hydrobiologia 458:55–62

    Article  Google Scholar 

  • Mwebaza-Ndawula L (1994) Changes in relative abundance of zooplankton in northern Lake Victoria, East Africa. Hydrobiology 272:259–264

    Article  Google Scholar 

  • Natugonza V, Ogutu-Ohwayo R, Efitre J et al (2015) The responses of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in Lake Wamala (Uganda) to changing climatic conditions. Lakes Reserv Res Manag 20:101–119

    Article  Google Scholar 

  • Njaya F, Snyder KA, Jamu D et al (2011) The natural history and fisheries ecology of Lake Chilwa, southern Malawi. J Great Lakes Res 37:15–25

    Article  Google Scholar 

  • Njiru M, Okeyo-Owuor JE, Muchiri M et al (2007) Changes in population characteristics and diet of Nile tilapia Oreochromis niloticus (L.) from Nyanza gulf of Lake Victoria, Kenya: what are the management options? Aquat Ecosyst Health Manage 10:434–442

    Article  Google Scholar 

  • O’Reilly CM, Alin SR, Pilsnier PD, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768

    Google Scholar 

  • Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced fish species, especially Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus. Environ Biol Fish 27:81–96

    Article  Google Scholar 

  • Ogutu-Ohwayo R (1993) The effects of predation by the Nile perch, Lates niloticus L., on the fishes of Lake Nabugabo, with suggestions for conservation of endangered endemic cichlids. Conserv Biol 7:701–711

    Article  Google Scholar 

  • Ogutu-Ohwayo R (1995) Diversity and stability of fish stocks in lakes Victoria, Kyoga, and Nabugabo after establishment of introduced species. In: Pitcher TJ, Hart PJB (eds) The impact of species changes in African lakes. Chapman and Hall, London, pp 59–81

    Chapter  Google Scholar 

  • Ogutu-Ohwayo R, Hecky RE (1991) Fish introductions in Africa and some of their implications. Can J Fish Aquat Sci 48:8–12

    Article  Google Scholar 

  • Ogutu-Ohwayo R, Odongkara K, Okello W et al (2013) Variations and changes in habitat, productivity, composition of aquatic biota and fisheries of the Kyoga lake system: lessons for management. Afr J Aquat Sci 38:1–14

    Article  Google Scholar 

  • Ogutu-Ohwayo R, Natugonza V, Musinguzi L et al (2016) Implications of climate variability and change for African lake ecosystems, fisheries productivity, and livelihoods. J Great Lakes Res 42:498–510

    Article  CAS  Google Scholar 

  • Petitjean Q, Jean S, Gandar A, Cote J, Laffaille P, Jacquin L (2019) Stress responses in fish: from molecular to evolutionary processes. Sci Total Environ 684(20):371–380

    Article  CAS  PubMed  Google Scholar 

  • Pringle RM (2005) The origins of the Nile perch in Lake Victoria. BioScience 55:80–787

    Article  Google Scholar 

  • Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939

    Article  Google Scholar 

  • Schlaepfer MA, Sax DF, Olden JD (2010) The potential conservation value of non-native species. Conserv Biol 3:428–437

    Google Scholar 

  • Schofield PJ, Chapman LJ (2000) Hypoxia tolerance of introduced Nile perch: implications for survival of indigenous fishes in the Lake Victoria basin. Afr Zool 35:35–42

    Article  Google Scholar 

  • Seehausen O (1996) Distribution of and reproductive isolation among color morphs of a rock-dwelling Lake Victoria cichlid (Haplochromis nyererei). Ecol Freshw Fish 5:195–202

    Article  Google Scholar 

  • Seehausen O (2015) Process and pattern in cichlid radiations – inferences for understanding unusually high rates of evolutionary diversification. New Phytol 207:304–312

    Article  PubMed  Google Scholar 

  • Seehausen O, van Alphen JJM (1998) The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav Ecol Sociobiol 42:1–8

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1908–1911

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (2003) Implications of eutrophication for fish vision, behavioral ecology and species coexistence. In: Crisman TL, Chapman LJ, Chapman CA, Kaufman LS (eds) Conservation ecology, and management of African freshwaters. University Press of Florida, Gainesville, pp 268–287

    Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS et al (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  CAS  PubMed  Google Scholar 

  • Seehausen O, Kishe-Machumu MA, Mwaiko S (2015) Lake Victoria freshwater biodiversity assessment: a field and taxonomic survey of the fish diversity and their habitats in the upper Kagera satellite lakes, Tanzania. Technical report, IUCN

    Google Scholar 

  • Selz OM, Thommen R, Maan ME, Seehausen O (2014) Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. J Evol Biol 27(2):275–289

    Article  CAS  PubMed  Google Scholar 

  • Sekiranda SBK, Okot-Okumu J, Bugenyi FWB et al (2004) Variations in composition of macro-benthic invertebrates as an indication of water quality status in three bays in Lake Victoria. UJAS 9:396–411

    Google Scholar 

  • Seto CK, Guneralp B, Hutyra RL (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109:16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui AQ (1977) Lake Naivasha fishery and its management together with a note on the food habits of fishes. Biol Conserv 12:217–227

    Article  Google Scholar 

  • Sitoki L, Gichuki J, Ezekiel C et al (2010) The environment of Lake Victoria (East Africa): current status and historical changes. Int Rev Hydrobiol 95:209–223

    Article  CAS  Google Scholar 

  • Stager JC, Westwood J, Grzesik DA, Cumming B (2005) A 5500-year environmental history of Lake Nabugabo, Uganda. Palaeogeogr Palaeoclimatol Palaeoecol 218(3–4):347–354

    Article  Google Scholar 

  • Taabu-Munyaho A, Nyamweya CS, Sitoki L et al (2014) Spatial and temporal variation in the distribution and density of pelagic fish species in Lake Victoria, East Africa. Aquat Ecosyst Health Manage 17:52–61

    Article  Google Scholar 

  • Talling JF (1966) The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int Rev Hydrobiol 51:545–621

    Article  Google Scholar 

  • Turner GF (1977a) Changes in the size structure of cichlid populations in Lake Malawi resulting from bottom trawling. Can J Fish Aquat Sci 34(2):232–238

    Google Scholar 

  • Turner GF (1977b) Some effects of demersal trawling in Lake Malawi (Nyasa) from 1968 to 1974. J Fish Biol 10:261–273

    Article  Google Scholar 

  • Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL (2001) How many species of cichlids are there in African Lakes? Mol Ecol 10:793–806

    Article  CAS  PubMed  Google Scholar 

  • Twongo T (1991) Status of water hyacinth in Uganda. In: Greathead A, de Groot P (eds) Control of Africa’s floating water weeds. Commonwealth Science Council, Zimbabwe, pp 55–57

    Google Scholar 

  • Twongo T (1996) The impact of water hyacinth on near-shore environment of Lake Victoria and Kyoga (East Africa). In: Thomas C, Johnshon T, Odada EO (eds) The limnology, climatology and paleoclimatology of the east African Great Lakes. Gordon and Breach Publishers, Philadelphia, pp 633–642

    Google Scholar 

  • van den Bossche JP, Bernacsek GM (1990) Source book for the inland fishery resources of Africa. FAO, Rome

    Google Scholar 

  • van der Meer HJ, van Rijssel JC, De Wagenaar LC, Witte F (2012) Photopic adaptations to a changing environment in two Lake Victoria cichlids. Biol J Linn Soc 106:328–341

    Article  Google Scholar 

  • van Rijssel JC, Witte F (2013) Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years. Evol Ecol 27:253–267

    Article  Google Scholar 

  • van Rijssel JC, Hoogwater ES, Kishe-Machumu MA et al (2015) Fast adaptive responses in the oral jaw of Lake Victoria cichlids. Evolution 69:179–189

    Article  PubMed  Google Scholar 

  • van Rijssel JC, Hecky RE, Kishe-Machumu MA (2016) Climate variability in combination with eutrophication drives adaptive responses in the gills of Lake Victoria cichlids. Oecologia 182:1187–1201

    Article  PubMed  Google Scholar 

  • van Rijssel JC, Hecky RE, Kishe-Machumu MA, Witte F (2017) Changing ecology of Lake Victoria cichlids and their environment: evidence from C13 and N15 analyses. Hydrobiologia 791:175–191

    Article  Google Scholar 

  • van Rijssel JC, de Jong RCM, Kishe MA, Witte F (2021) Rapid evolutionary responses in cichlids: genetics of adaptation, morphology and taxonomic implications. In: Abate ME, Noakes DLG (eds) The behavior, ecology and evolution of cichlid fishes. Springer Nature, Dordrecht, pp 247–283. https://doi.org/10.1007/978-94-024-2080-7_8

    Chapter  Google Scholar 

  • van Zwieten PAM, Kolding J, Plank M et al. (2016) The Nile perch invasion in Lake Victoria: cause or consequence of the haplochromine biomass decline. Can J Fish Aquat Sci 73:622–643

    Google Scholar 

  • Verburg P, Hecky RE, Kling H (2003) Ecological consequences of warming in Lake Tanganyika. Science 301:505–507

    Article  CAS  PubMed  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–369

    Article  CAS  PubMed  Google Scholar 

  • Wanda FM, Twongo T, Denny P (2001) The impact of water hyacinth, Eichhornia crassipes (Mart) Solm on the abundance and diversity of aquatic macro-invertebrates along the shores of northern Lake Victoria, Uganda. Hydrobiologia 452:79–88

    Article  Google Scholar 

  • Wanink JH, Kashindye JJ, Goudswaard PCK, Witte F (2001) Dwelling at the oxycline: does increased stratification provide a predation refugium for the Lake Victoria sardine Rastrineobola argentea? Freshw Biol 46:75–85

    Google Scholar 

  • Wanink JH, Katunzi EFB, Goudswaard KPC et al (2002) The shift to smaller zooplankton in Lake Victoria cannot be attributed to the ‘sardine’ Rastrineobola argentea (Cyprinidae). Aquat Living Res 15:37–43

    Article  Google Scholar 

  • Welcomme RL (1984) International transfers of inland fish species. In: Courteney WR, Stauffer JF (eds) Distribution, biology and management of exotic fishes. John Hopkins Press, Baltimore, pp 22–40

    Google Scholar 

  • Williams ED, Hecky ER, Duthie HC (2007) Water hyacinth decline across Lake Victoria—was it caused by climatic perturbation or biological control? A reply. Aquat Bot 87:94–96

    Article  Google Scholar 

  • Wilson JRU, Ajuonu O, Center TD et al (2007) The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquat Bot 87:90–93

    Article  Google Scholar 

  • Witte F, Goldschmidt T, Wanink J et al (1992a) The destruction of an endemic species flock: quantitative data on the decline of haplochromine cichlids of Lake Victoria. Environ Biol Fish 34:1–28

    Article  Google Scholar 

  • Witte F, Goldschmidt T, Goudswaard PC et al (1992b) Species extinction and concomitant ecological changes in Lake Victoria. Neth J Zool 42:214–232

    Google Scholar 

  • Witte F, Wanink JH, Kishe-Machumu M (2007a) Species distinction and the biodiversity crisis in Lake Victoria. Am Fish Soc 136:1146–1159

    Article  Google Scholar 

  • Witte F, Wanink JH, Kishe-Machumu M et al (2007b) Differential decline and recovery of haplochromine trophic groups in the Mwanza gulf of Lake Victoria. Aquat Ecosyst Health Manage 10:416–433

    Article  Google Scholar 

  • Witte F, Welten M, Heemskerk M et al (2008) Major morphological changes in a Lake Victoria cichlid fish within two decades. Biol J Linn Soc 94:41–52

    Article  Google Scholar 

  • Witte F, van Oijen MJP, Sibbing FA (2009) Fish fauna of the Nile. In: Dumont HJ (ed) The Nile: origin, environments, limnology and human use. Springer Science, New York, pp 647–675

    Chapter  Google Scholar 

  • Worthington EB (1929) A report of the fishing survey of lakes Albert and Kyoga, March–July 1929. Crown agents for Colonies, London

    Google Scholar 

  • Worthington EB (1932a) Scientific results of the Cambridge expedition to East African Lakes 1930-31. I. General introduction and station list. Zool J Linnean Soc 38:99–119

    Article  Google Scholar 

  • Worthington EB (1932b) A report on the fisheries of Uganda investigated by the Cambridge expedition to the East African Lakes, 1931–1932. Crown Agents for Colonies, London

    Google Scholar 

Download references

Acknowledgement

We like to thank the scientists, technicians, and crew at the three research institutes (NaFIRRI, KMFRI, and TaFIRRI) for their effort in collecting the data presented in this chapter. We also thank Martien van Oijen for help with identifying haplochromine species in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vianny Natugonza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natugonza, V., Musinguzi, L., Kishe, M.A., van Rijssel, J.C., Seehausen, O., Ogutu-Ohwayo, R. (2021). The Consequences of Anthropogenic Stressors on Cichlid Fish Communities: Revisiting Lakes Victoria, Kyoga, and Nabugabo. In: Abate, M.E., Noakes, D.L. (eds) The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2080-7_7

Download citation

Publish with us

Policies and ethics