Skip to main content

Xanthophyceae, Euglenophyceae and Dinophyceae

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 26))

Abstract

Xanthophyceae, Euglenophyceae and Dinophyceae are among those important algal groups which are less diverse than other major groups of algae. Members of Xanthophyceae and Euglenophyceae do not contaminate water, whereas Dinoflagellates causes various types of poisoning. Many important algal members have been included and excluded in these groups due to their close resemblance with other groups. Molecular data have shown that Xanthophycean are more close to pheophycean; Euglenoids to Kinetoplastids and Diplonemids; and Dinoflagellates to Alveolates. In this chapter a detailed description of these three important algal groups have been discussed, which include brief introduction, classification, life cycles, economic importance and phylogeny.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SAS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrensi P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standrige SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522

    Article  PubMed  Google Scholar 

  • Andreoli C, Moro I, La Rocca N, Rigoni F, Dalla Valle L, Bargelloni L (1999) Pseudopleurochloris antarctica gen. et sp. nov. a new coccoid xanthophycean from pack-ice of Wood Bay (Ross Sea, Antarctica):ultrastructure, pigments and 18S rRNA gene sequence. Eur J Phycol 34:149–159

    Article  Google Scholar 

  • Ariztia EV, Andersen RA, Sogin ML (1991) A new phylogeny for chromophyte algae using 16S-like rRNA sequences from Mallomonas papillosa (Synurophyceae) and Tribonema aequales (Xanthophyceae). J Phycol 27:428–436

    Article  CAS  Google Scholar 

  • Blatt MR (1983) The action spectrum for chloroplast movements and evidence for bluelight–photoreceptor cycling in the Vaucheria. Planta 159:267–276

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR, Briggs WR (1980) Blue-light-induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga. Vaucheria Sessilis 147(4):335–362

    Google Scholar 

  • Bold HC, Wynne MJ (1978) Introduction to the algae. Structure and reproduction. Prentice-Hall, Englewood Cliffs, xiv+706 p

    Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to algae: structure and reproduction, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Broady PA (1976) Six new species of terrestrial algae from Signy Island, South Orkney Islands, Antarctica. Br Phycol J 11(4):387–405

    Article  Google Scholar 

  • Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud 118:95–112

    Article  Google Scholar 

  • Chapman VJ (1962) The algae. Macmillan, London

    Book  Google Scholar 

  • Chapman VJ, Chapman DJ (1981) The algae, 2nd edn. Macmillan Press Limited, London

    Google Scholar 

  • Darling RB, Friedmann EI, Broady P (1987) Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and response to temperature. J Phycol 23:598–607

    Article  CAS  PubMed  Google Scholar 

  • Fritsch FE (1935) The structure and reproduction of algae, vol I. Cambridge University Press, Londonpp xvii+791.

    Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae, 2nd edn. Benjamin Cumming, New York

    Google Scholar 

  • Hastings JW (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 19:309–321

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Searched on 03 Sept 2015

  • Hibberd DJ, Leedale GF (1971) Cytology and ultrastructure of the Xanthophyceae. II. The zoospore and vegetative cell of coccoid forms, with special reference to Ophiocytium majus Naegeli. Br Phycol J 6:1–23

    Article  Google Scholar 

  • Hoek C, Mann DG, Jahns HM (2009) Algae. An introduction to phycology. Cambridge University Press, Daryaganj

    Google Scholar 

  • Kumar HD, Singh HN (1971) A textbook on algae. East West Press Pvt Ltd, New Delhi

    Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, London, p 561

    Google Scholar 

  • Maistro S, Broady PA, Andreoli C, Negrisolo E (2009) Phylogeny and taxonomy of xanthophyceae (stramenopiles, chromalveolata). Protist 160:412–426

    Article  PubMed  Google Scholar 

  • Marin B (2004) Origin and fate of chloroplasts in the Euglenoida. Protist 155:13–14

    Article  CAS  PubMed  Google Scholar 

  • Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biol 23:205–211

    Article  Google Scholar 

  • Moestrup Ø, Daugbjerg N (2007) On dinoflagellate phylogeny and classification. In: Brodie J, Lewis J (eds) From unravelling the algae the past, present, and future of algal systematics. CRC Press Taylor & Francis Group, Boca Raton, FL 33487-2742. pp 215–230

    Google Scholar 

  • Morris I (1971) An introduction to the algae, 2nd edn. Hutchinson University Library, London, pp 178–202

    Google Scholar 

  • Oliveira L (1992) Regulation of aplanospore germination in Vaucheria. Planta 188(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Oliveira L, Fitch RS (1988) Morphometric analysis of morphological changes occurring in Vaucheria longicaulis var. macounii Blum (Tribophyceae) during aplanospore germination. J Submicrosc Cytol Pathol 20:397–406

    Google Scholar 

  • Ott DW, Brown RM Jr (1974) Developmental cytology of the genus Vaucheria. I Organization of the vegetative filament. Br Phycol J 9:111–126

    Article  Google Scholar 

  • Pascher A (1931) SystematischeUbersicht uber die mit Flagellaten in Zusamennhang stehenden Algentriehen und versuch einer Einreihung dieser Algenstame in die stamme des Pflanzen - reiches. Beibefte Botanischen Centralblatt 48:317–332

    Google Scholar 

  • Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. Am J Bot 84:966–972

    Article  CAS  PubMed  Google Scholar 

  • Prescott GW (1969) The algae: a review. Michigan State University. Thomas Nelson and Sons Ltd., Melbourne

    Google Scholar 

  • Rattan RS (1977) General botany, vol 1, Algae (for degree student). S. Nagin and Co., Jullunder

    Google Scholar 

  • Raven JA, Richardson K (1984) Dinophyte flagella: a cost–benefit analysis. New Phytol 98:259–276

    Article  Google Scholar 

  • Robinson N, Eglinton G, Brassell SC, Cranwell PA (1984) Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–442

    Article  CAS  Google Scholar 

  • Roenneberg T, Deng T-S (1997) Photobiology of the Gonyaulax circadian system. I Different phase response curves for red and blue light. Planta 202:494–501

    Article  CAS  Google Scholar 

  • Smith GM (1955) Cryptogamic botany, vol 1, Algae and fungi. McGraw-Hill Book Company, New York

    Google Scholar 

  • Sullivan CM, Entwisle TJ, Rowan KS (1990) The identification of chlorophyll c in the Tribophyceae (= Xanthophyceae) using spectrophotofluorometry. Phycologia 29:285–291

    Article  Google Scholar 

  • Triemer R, Farmer MA (2007) A decade of euglenoids molecular phylogenetics. In: Brodie J, Lewis J (eds) From unravelling the algae the past, present, and future of algal systematics. CRC Press Taylor & Francis Group, Boca Raton, FL 33487-2742 pp 311–329

    Google Scholar 

  • Wehr JD (2010) Xanthophyta and phaeophyta. In: Algae: source to treatment manual of water supply practices M57. American Water Works Association, Denver, pp 271–287 [ISBN 978-1-58321-787-0]. PDF

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinabandhu Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sahoo, D., Kumar, S. (2015). Xanthophyceae, Euglenophyceae and Dinophyceae. In: Sahoo, D., Seckbach, J. (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7321-8_9

Download citation

Publish with us

Policies and ethics