Skip to main content

Part of the book series: Microprocessor-Based and Intelligent Systems Engineering ((ISCA,volume 16))

Abstract

The degree of automation in control of dynamic technical systems has substantially been increased over the last decades. This is true for all kinds of technical systems such as power plants, industrial production plants, and vehicles and transportation systems. High levels of safety, performance, and efficiency have been achieved by means of the increased use of automatic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sheridan, T.B. (1992) Telerobotics, Automation, and Human Supervisory Control. The MIT Press, Cambridge, Mass..

    Google Scholar 

  2. Johannsen, G. (1992) Towards a new quality of automation in complex man-machine systems, Automatica 28, 355–373.

    Article  Google Scholar 

  3. Rasmussen, J. (1986) Information Processing and Human-Machine Interaction, North Holland, New York.

    Google Scholar 

  4. Rasmussen, J. (1988) A cognitive engineering approach to the modeling of decision making and its organisation, in W.B. Rouse (ed.), Advances in Man-Machine Systems Research, Vol. 4, pp. 165–243.

    Google Scholar 

  5. Bainbridge, L. (1983) Ironies of automation (Special Issue on Control Frontiers in Knowledge Based and Man-Machine Systems), Automatica 19, 775–779.

    Article  Google Scholar 

  6. Reason, J. T. (1990) Human Error, Cambridge University Press. Cambridge.

    Book  Google Scholar 

  7. Lind, M. (1990) Representing Goals and Functions of Complex Systems — An Introduction to Multilevel Flow Modelling. Technical Report 90-D-381, Institute of Automatic Control Systems, Technical University of Denmark.

    Google Scholar 

  8. Johannsen, G. (1995) Computer supported human-machine interfaces, Journal of the Japanese Society of Instruments and Control Engineers, SICE, 34, 213–220.

    Google Scholar 

  9. Fejes, L., Johannsen, G., and Strätz, G (1993) A graphical editor and process visualisation system for man-machine interfaces of dynamic systems, The Visual Computer 10, 1–18.

    Article  Google Scholar 

  10. Streeter, L. A. (1988) Applying speech synthesis to user interfaces, in M. Helander (ed.), Handbook of Human-Computer Interaction, North-Holland, Amsterdam, pp. 321–343.

    Google Scholar 

  11. Alty, J. L. and Bergan, M.(1992) The design of multimedia interfaces for process control, in H. G. Stassen (ed.), 5th IFAC Symposium on Analysis, Design and Evaluation of Man-Machine Systems, (Preprints, The Hague), Pergamon Press. Oxford.

    Google Scholar 

  12. Heßler, C. (1989) Use of a task model for detection of operator errors and for flexible task allocation in flight control, in Proc. ESA/ESTEC Workshop Human Factors Engineering: A Task-Oriented Approach, Noordwijk.

    Google Scholar 

  13. Paassen, R. van (1995) Tracking human-computer dialogues in process control applications, in Proc. Nth European Annual Conference on Human Decision Making and Manual Control, University of Delft, The Netherlands.

    Google Scholar 

  14. Alty, J.L. and Johannsen, G (1989) Knowledge based dialogue for dynamic systems. Automatica 25, 829–840.

    Article  MATH  Google Scholar 

  15. Fabiano, A. S., Lanza, C, Kwaan, J., and Averbukh E. A. (1993) Toolkit Software Requirements, Internal Report IR1-05, BRITE/EURAM AMCA-Project, Labor. Man-Machine Systems, University of Kassel (and industrial partners).

    Google Scholar 

  16. Averbukh, E.A. and Johannsen, G. (1994) Intelligent human-machine communication and control for industrial processes, in Proc. First Asian Control Conference (ASCC), Tokyo, Vol. 1, pp. 49–52.

    Google Scholar 

  17. Cawsey, A. (1992) Explanation and Interaction, The MIT Press, Cambridge, Mass.

    Google Scholar 

  18. Sundström, G A. (1991) Process tracing of decision making: An approach for analysis of human-machine interactions in dynamic environments. Int. J. Man-Machine Studies 35, 843–858.

    Article  Google Scholar 

  19. Sundström, G A. and Salvador, AX. (1995) Integrating field work in system design: A methodology and two case studies, IEEE Transactions on Systems, Man and Cybernetics 25, 385–399.

    Article  Google Scholar 

  20. Borndorff-Eccarius, S. (1992) CAUSES: State-based diagnosis for supporting control room operators, in Proc. 11th European Annual Conference on Human Decision Making and Manual Control, Valenciennes, France.

    Google Scholar 

  21. Borndorff-Eccarius, S. and Johannsen, G (1993) Supporting diagnostic functions in human supervisory control, in Proc. IEEE/SMC′93 Conference, Le Touquet, France, 2, pp. 351–356.

    Google Scholar 

  22. Borndorff-Eccarius, S. (1996) Rechnergestützte Wissensakquisition för wissensbasierte Diagnosesysteme im Bereich dynamischer technischer Systeme, Doctoral Dissertation, Universitat-Geamthochschule Kassel.

    Google Scholar 

  23. Hollender, M. (1991) Displayed fault-trees as framework for structuring knowledge to support diagnostic tasks in the cockpit of cars, in Proc. 10th European Annual Conference on Human Decision Making and Manual Control, Liège, Belgium, pp. 275–281.

    Google Scholar 

  24. Hollender, M. (1995) Elektronische Handbücher zur Unterstötzung der wissensbasierten Fehlerdiagnose, Doctoral Dissertation, Universitèt-Gesamthochschule Kassel, Fortschritt-Berichte VDI, Reihe 10, Nr. 368, VDI-Verlag, Dusseldorf.

    Google Scholar 

  25. Johannsen, G. (1992/1994) Simulated man-machine systems as computer-aided information transfer and self-learning tools, in Proc. Internat. Symp. on Expanding Access to Science and Technology — The Role of Information Technologies, Kyoto University/United Nations University, Kyoto, pp. 195–213.

    Google Scholar 

  26. Gilles, E.D., Holl, P., Marquardt, W., Schneider, H., Mahler, R., Brinkmann, K., and Will K.-H. (1990) Ein Trainingssimulator zur Ausbildung von Betriebspersonal in der Chemischen Industrie, Automatisierungstechnische Praxis 7, 344–350.

    Google Scholar 

  27. Johannsen, G. and Averbukh, E.A. (1993) General Man-Machine Interface Organisation. Internal Report No. IR1-02, BRITE/EURAM-AMICA Project, Labor. Man-Machine Systems, University of Kassel.

    Google Scholar 

  28. Kobsa, A. and Wahlster, W. (eds.) (1989) User Models in Dialogue Systems, Springer Verlag, Berlin.

    Google Scholar 

  29. Johannsen, G. and Alty, J. L. (1991) Knowledge engineering for industrial expert systems, Automatica 27, 97–114.

    Article  Google Scholar 

  30. Anon. (1986) Preformatted displays on video display units for the control of process plants, Volume VDI/VDE Richtlinie (Guideline) 3695, VDI-Verlag, Dusseldorf.

    Google Scholar 

  31. Ali, S. and Heuer, J.(1995) Knowledge-based multimodels as a basis for the design of human-machine systems in process control, in Proc. 14th European Annual Conference on Human Decision Making and Manual Control, Delft, The Netherlands.

    Google Scholar 

  32. Matern, B. (1984) Psychologische Arbeitsanalyse. Springer-Verlag, Berlin.

    Google Scholar 

  33. Struss, P. (1992) Qualitative Modellierung physikalischer Systeme auf dem Weg zu Anwendungen, KI, 4, 50–53.

    Google Scholar 

  34. Larsson, J. E. (1992) Knowledge-Based Methods for Control Systems, Ph. D. thesis, Department of Automatic Control, Lund Institute of Technology.

    Google Scholar 

  35. Kaymak, U., Babuska, R., van Nauta Lemke, H.R. (1995) A fuzzy logic decision support system for security analysis of power systems, in Proc. Nth European Annual Conference on Human Decision Making and Manual Control, University of Delft, The Netherlands.

    Google Scholar 

  36. Ali, S. (1997) Untersuchung der menschlichen Unterstützungsmöglichkeiten bei der Führung von komplexen industriellen Prozessen mit Hilfe von Fuzzy-Logik-Methoden am Beispiel eines Trainings-Simulators einer Destinations kolonne, Doctoral Dissertation, Universitöt-Gesamthochschule Kassel.

    Google Scholar 

  37. Zimmermann, H.-J. (1991) Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston, MA.

    MATH  Google Scholar 

  38. Kantrowitz, M., Horskotte, E., and C. Joslyn (1995) Answers to questions about fuzzy logic and fuzzy experts systems. http://www.cs.cmu.edu/Web/Groups/AI/htm1/faqs/ai/fuzzy/partl/faq.html.

  39. Woods, D. D. (1984) Visual momentum: A concept to improve the cognitive coupling of person and computer, Int. J. Man-Machine Studies 21, 229–244.

    Article  Google Scholar 

  40. Vicente, K. J. and Rasmussen J. (1990) The ecology of human-machine systems II: Mediating “direct perception” in complex work domains, Ecological Psychology, 2, 207–250.

    Article  Google Scholar 

  41. Larsen, M. N. (1993) Modelling Start-up Tasks Using Functional Models, Technical Report EUR 15027 EN, Commission of the European Communities, JRC-Ispra.

    Google Scholar 

  42. Gibson, J. J. (1979) The Ecological Approach to Visual Perception, Houghton-Mifflin, Boston.

    Google Scholar 

  43. Paassen, R. van (1995) New visualisation techniques for industrial process control, in Preprints 6th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design and Evaluation of Man-Machine Systems, Cambridge, Mass., pp. 457–462.

    Google Scholar 

  44. Rouse, W. B. (1986) A note on the nature of creativity in engineering: Implications for supporting system design, Inf. Processing & Management, 22.

    Google Scholar 

  45. Meister, D. (1987) A cognitive theory of design and requirements for a behavioural design aid, in W.B. Rouse and K.R. Boff (Eds.), Systems Design, North-Holland, New York, pp. 229–244.

    Google Scholar 

  46. Montmollin, M.D. and Keyser, V.D. (1986) Expert logic versus operator logic, in G. Mancini, G. Johannsen, and L. Mårtensson (eds.), Analysis, Design and Evaluation of Man-Machine Sytems, Pergamon Press, Oxford, pp. 43–49.

    Google Scholar 

  47. Ali, S., Heuer, J., Hollender, M., and Johannsen, G. (1993) Participative design of human-machine interfaces for process control systems, in Adjunct Proc. INTERCHIPS, Amsterdam, pp. 53–54.

    Google Scholar 

  48. Ali, S., Heuer, J., Hollender, M., and Johannsen G. (1994) Partizipative Bediengestaltung von Oberflächen für Prozeßleitsysteme, in Proc. Leitwarten-Kolloquium, Köln.

    Google Scholar 

  49. Sage, A.P. (1992) Systems Engineering. Wiley, New York.

    Google Scholar 

  50. Kirwan, B. and Ainsworth, L.K. (eds.) (1992) A Guide to Task Analysis. Taylor and Francis, London.

    Google Scholar 

  51. Heuer, J., Borndorff-Eccarius, S., and Averbukh E.A. (1993) Task Analysis for Application B, Internal Report IR1-04 BRITE/EURAM, AMICA Project 6126, Labor. Man-Machine Systems, University of Kassel.

    Google Scholar 

  52. Johannsen, G. (1997) Conceptual design of multi-human machine interfaces. Control Engineering Practice.

    Google Scholar 

  53. Tiemann, M., Averbukh, E.A., and Johannsen, G (1996) Evaluation and Measurement Procedure, Report DIAMANTA, Esprit Project 20507.

    Google Scholar 

  54. Johannsen, G, Ali, S., and Heuer, J. (1995) Human-machine interface design based on user participation and advanced display concepts, in Proc. Post HCI′95 Conference Seminar on Human-Machine Interface in Process Control, Hieizan, Japan, pp. 33–45.

    Google Scholar 

  55. Johannsen, G. (1995) Knowledge-based design of human-machine interfaces, Control Engineering Practice 3, 267–273.

    Article  Google Scholar 

  56. Johannsen, G. (1993) Mensch-Maschine-Systeme, Springer-Verlag, Berlin.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johannsen, G., Ali, S., Van Paassen, R. (1997). Intelligent Human — Machine Systems. In: Tzafestas, S.G. (eds) Methods and Applications of Intelligent Control. Microprocessor-Based and Intelligent Systems Engineering, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5498-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5498-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6314-2

  • Online ISBN: 978-94-011-5498-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics