Skip to main content

Oxidic Semiconductor Gas Sensors

  • Chapter
Gas Sensors

Abstract

Surface reactions of gases on oxidic semiconductors which are relevant for the electrical response are reported. The role of adsorbed and of lattice oxygen is explicitly discussed. The interplay between additives, e.g. noble metals, and the oxidic substrate is demonstrated. Results from single crystals, thin films and sintered layers are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Takahata, Tin oxide sensors — development and applications, highly sensitive SnO2 gas sensor for volatile sulfides, in T. Seiyama (ed), Chemical Sensor Technology Vol. I, Kodansha Ltd., Tokyo, Japan in cooperation with Elsevier Science Publishers, Amsterdam, Netherlands, 1988, pp. 39–55.

    Google Scholar 

  2. Y. Matsuurka, K. Takahata, and K. Ihokura, Mechanism of gas sensitivity change with time of SnO2 gas sensors. Sensors and Actuators 14 (1988) 223–232.

    Article  Google Scholar 

  3. J. C. Riviere, Surface analysis of gas sensor materials. Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 169–197.

    Google Scholar 

  4. G. Heiland and D. Kohl, Studies on single crystals in relation to the principles of semiconducting metal oxide gas sensors, Proc. International Meeting on Chemical Sensors, Fukuoka, Japan, Sep. 1983, Eds. T. Seiyama, K. Fueki, J. Shiokawa and S. Suzuki, Kodansha, Elsevier, pp. 125–134.

    Google Scholar 

  5. D. Kohl, W. Thoren, U. Schnakenberg, G. Schüll and G. Heiland, Decomposition of gaseous acetic acid on SnO2, J. Chem. Soc. Faraday Trans. 87 (1991) 2647–2653.

    Article  CAS  Google Scholar 

  6. P.B. Weisz, Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, J. Chem. Phys. 21 (1953) 1531–1538.

    Article  CAS  Google Scholar 

  7. J. Haber, Catalysis and surface chemistry of oxides, Proc. 8th International Congress on Catalysis, Berlin, FRG, July 1984, Verlag Chemie, Weinheim (FRG), Vol. I, pp. 85–112.

    Google Scholar 

  8. G. Heiland and D. Kohl, Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, in T. Seiyama (ed), Chemical Sensor Technology Vol. I, Kodansha Ltd., Tokyo, Japan in cooperation with Elsevier Science Publishers, Amsterdam, Netherlands, 1988, pp. 15–38.

    Google Scholar 

  9. S. Munnix and M. Schmeits, Electronic structure of oxygen vacancies on TiO2 (110) and SnO2 (110) surfaces, J. Vac. Sci. Technol. A5 (1987) 910–913.

    Google Scholar 

  10. G. C. Bond, Heterogeneous Catalysis: principles and applications, Oxford Chemistry Series, Clarendon press, Oxford, 1987.

    Google Scholar 

  11. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Interactions of tin oxide surface with O2, H2O and H2, Surface Sci. 86 (1979) 335–344.

    Article  CAS  Google Scholar 

  12. G. Heiland and D. Kohl, Problems and possibilities of oxidic and organic semiconductor gas sensors, Sensors and Actuators 8 (1985) 227–233.

    Article  Google Scholar 

  13. Y. Nakamura, S. Yasunaga, N. Yamazoe, and T. Seiyama, Stabilization of SnO2 gas sensor sensitivity, Proc. of the 2nd Int. Meeting on Chemical Sensors, Bordeaux, July 1986, pp. 163–166.

    Google Scholar 

  14. S. Saito, M. Miyayama, K. Koumoto and H. Yanagida, Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics, J. Am. Ceram. Soc. 68 (1985) 40–43.

    Article  CAS  Google Scholar 

  15. R.G. Egdell, S. Eriksen and W.R. Flavell, Oxygen deficient SnO2 (110) and TiO2 (110): A comparative study by photoemission. Solid State Commun. 60 (1986) 835–838.

    Article  CAS  Google Scholar 

  16. R.G. Egdell, S. Eriksen and W.R. Flavell, A spectroscopic study of electron and ion beam reduction of SnO2 (110), Surface Sci. 192 (1987) 265–274.

    Article  CAS  Google Scholar 

  17. E. de Fresart, J. Darville, and J.M. Gilles, Influence of the surface reconstruction on the work function and surface conductance of (110)SnO2, Appl. of Surface Sci. 11/12 (1982) 637–651.

    Article  Google Scholar 

  18. W. Thoren, Reaktionen auf Halbleiteroxiden, Reaktive Streuung und Thermodesorptionsspektroskopie: CH3COOH/CO/CH4 auf SnO2 —und ZnO-Dünnschichten und Einkristallen, Dr. Thesis, Aachen, FRG, 1985.

    Google Scholar 

  19. J. Zacheja. Diploma thesis, Aachen, FRG, 1988.

    Google Scholar 

  20. Dräger AG, Lübeck, kindly supplied the sputtered films.

    Google Scholar 

  21. W. Hinsen, W. Bytyn, M. Baerns, Oxidative dehydrogenation and coupling of methane, Proc. 8th International Congress of Catalysis, Berlin, July 1984, Verlag Chemie, Weinheim (FRG), Vol. 3, 581–592.

    Google Scholar 

  22. W. Bytyn, M. Baerns, Supported PbO catalyst for the oxidative coupling of methane — The effect of surface acidity of the support on C2+ selectivity, Appl. Catal. 28 (1986) 199–207.

    Article  CAS  Google Scholar 

  23. P. G. Harrison and B. Maunders, Tin oxide surfaces: Part 14.— Infrared study of the adsorption of ethane and ethene on tin(IV) oxide, tin(IV) oxide-silica and tin(IV) oxide-palladium oxide, J. Chem. Soc. Faraday Trans. I, 81 (1985) 1311–1327.

    Article  CAS  Google Scholar 

  24. P. Ruiz and B. Delmon, Selective oxidation of hydrocarbons, Proc. Properties and uses of inorganic tin chemicals, Bruxelles, Belgium, Oct. 1986, pp. 1–29.

    Google Scholar 

  25. P. G. Harrison and B. Maunders, Tin oxide surfaces: Part 16.— Infrared study of the adsorption of formic acid, acrylic acid and acrolein on tin(IV) oxide, tin(IV) oxide-silica and tin(IV) oxide-palladium oxide, J. Chem. Soc. Faraday Trans. I, 81 (1985) 1345–1355.

    Article  CAS  Google Scholar 

  26. K. Tamaru, Dynamic Heterogeneous Catalysis, Academic Press, London, 1978, pp. 115–124.

    Google Scholar 

  27. M. Egashira, T. Matsumoto, Y. Shimizu, and H. Iwanaga, Ar+ sputtering effect on gas sensing characteristics of tin dioxide whiskers, Proc. Transducers ′87, Tokyo, Japan, June 1987, pp. 622–625.

    Google Scholar 

  28. H. Jacobs, W. Mokwa, D. Kohl, G. Heiland, Characterization of structure and reactivity of ZnO and SnO2 supported Pd catalysts. Vacuum, 33, (1983) 869–871.

    Article  Google Scholar 

  29. U. Böttger, Diploma thesis, Aachen, FRG, 1988.

    Google Scholar 

  30. B. Bowker and R.J. Madix, The adsorption and oxidation of acetic acid and acetaldehyde on Cu (110), Applications of Surface Sci. 8 (1981) 299–317.

    Article  CAS  Google Scholar 

  31. P.G. Harrison and B.M. Maunders, Tin oxide surfaces: Part 11. — Infrared study of the chemisorption of ketones on tin(IV) oxide, J. Chem. Soc. Farad. Trans. 80 (1984) 1329–1340.

    Article  CAS  Google Scholar 

  32. H. Voigt, 1986, US Patent Specification 4581204.

    Google Scholar 

  33. W. Mokwa, D. Kohl and G. Heiland, An SnO2 thin film for sensing arsine. Sensors and Actuators 8 (1985) 101–108.

    Article  CAS  Google Scholar 

  34. F. A. Cotton and G. Wilkinson, Anorganische Chemie, Verlag Chemie (Interscience Publishers), Weinheim FRG, 1970.

    Google Scholar 

  35. W. Mokwa, Der Nachweis von Hydriden mit SnOx-Dünnfilmen unterschiedlicher Schichtdicke, Proc. VDI-Berichte 677: Sensoren, Technologie und Anwendung (VDI Verlag, Düsseldorf, 1988), Bad Nauheim, FRG, Mar. 1988, pp. 391–394.

    Google Scholar 

  36. S.R. Morrison, The Chemical Physics of Surfaces, Plenum Press, N.Y. and London, 1977.

    Book  Google Scholar 

  37. D. E. Williams, Conduction and gas response of semiconductor gas sensors, in Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, p. 71–123.

    Google Scholar 

  38. S. J. Gentry and P. T. Walsh, The theory of poisoning of catalytic flammable gas-sensing elements, in Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 32–50.

    Google Scholar 

  39. J. O. W. Norris, The role of precious metal catalyst, in Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, p. 134.

    Google Scholar 

  40. J.F. McAleer, P.T. Moseley, J.O.W. Norris and D.E. Williams, Tin oxide gas sensors: Part 1.—Aspects of the Surface chemistry revealed by electrical conductance variations, J. Chem. Soc, Faraday Trans. 1, 83, (1987) pp. 1323–1346.

    Google Scholar 

  41. G. Tournier, C. Pijolat and R. La Lauze, CO detection in town environment, Proc. Eurosensors I, Cambridge, Sept. 1987, 162–163.

    Google Scholar 

  42. W. Thoren, D. Kohl and G. Heiland, Kinetic studies on the decomposition of CH3 COOh and CH3 COOD on SnO2 single crystals. Surface Sci. 162 (1985) 402–410.

    Article  CAS  Google Scholar 

  43. V. Sommer, Diploma thesis, Aachen, FRG, 1988.

    Google Scholar 

  44. C.T. Au, W. Hirsch and W. Hirschwald, Adsorption of carbon monoxide and carbon dioxide on annealed and defect zinc oxide (0, 0, 0, −1) surfaces studied by photoelectron spectroscopy (XPS and UPS), Surface Sci. 197 (1988) 391–401.

    Article  CAS  Google Scholar 

  45. J.M. Vohs and M.A. Barteau, Conversion of methanol, formal dehyde and formic acid on the polar faces of zinc oxide. Surface Sci. 176 (1986) 91–114.

    Article  CAS  Google Scholar 

  46. J.A. Rodriguez and C.T. Campbell, A quantum-chemical study of the chemisorption of ammonia, pyridine, formaldehyde, formate, and methoxy on ZnO (0001), Surface Sci. 194 (1988) 475–504.

    Article  CAS  Google Scholar 

  47. P.G. Harrison and M.J. Willett, Tin(IV) oxide gas sensors: Surface chemistry and electrical conduction effects, Proc. Eurosensors 1, Cambridge 1987, p. 39.

    Google Scholar 

  48. K.D. Schierbaum, Elektrische und spektroskopische Unter suchungen an Dünnschicht-SnO2-Gassensoren, Dr. Thesis, Tübingen, FRG, 1987.

    Google Scholar 

  49. M. E. Warwick, The oxidation of CO by O2, N2O and NO over tin oxide catalysts, Proc. Properties and uses of inorganic tin chemicals, Bruxelles, Belgium, Oct. 1986.

    Google Scholar 

  50. E.W. Thornton and P.G. Harrison, Tin oxide surfaces: Part 1.— Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide, J. Chem. Soc. Farad. Trans. 71 (1975) 461–472.

    Article  CAS  Google Scholar 

  51. B. C. Tofield, State of the art and future prospects for solid state gas sensors, in Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 198–237.

    Google Scholar 

  52. T. Kobayashi, M. Haruta, H. Sano and M. Nakane, A selective CO sensor using Ti-doped alpha-F2O3 with coprecipitated ultrafine particles of gold. Sensors and Actuators, 13 (1988) 339–349.

    Article  CAS  Google Scholar 

  53. G. C. Bond, L. R. Malloy and M. J. Fuller, Oxidation of carbon monoxide over palladium-tin (IV) oxide catalysis: an example of spillover catalysis, J. Chem. Soc. Chem. Commun., (1975) 796–797.

    Google Scholar 

  54. K. H. Kim, H. S. Han and J. S. Choi, Kinetics and mechanisms of the oxidation of carbon monoxide on α-Fe2O3, J. Phys. Chem. 83 (1979) 1286–1289.

    Article  CAS  Google Scholar 

  55. N. Yamazoe, Y. Kurokawa and T. Seiyama, Effects of additives on semiconductor gas sensors. Sensors and Actuators 4 (1983) 283–289.

    Article  CAS  Google Scholar 

  56. C. Clement, H. Knözinger, W. Stählin and B. Stübner, Adsorption of alcohols and water on alumina. 3. dc conductivity and dielectric loss measurements, J. Phys. Chem. 83 (1979) 278–282.

    Article  Google Scholar 

  57. N. Murakami, K. Takahata and T. Seiyama, Selective detection of CO by SnO2 gas sensor using periodic temperature change, Proc. Transducers ′87, Tokio, Japan, June 1987, pp. 618–621.

    Google Scholar 

  58. S. R. Morrison, Semiconductor gas sensors. Sensors and Actuators, 2 (1982) 329–341.

    Article  CAS  Google Scholar 

  59. T. Seiyama, Chemical sensors — current state and future outlook, in T. Seiyama (ed), Chemical Sensor Technology Vol. I, Kodansha Ltd., Tokyo, Japan in cooperation with Elsevier Science Publishers, Amsterdam, Netherlands, 1988, pp 1–13.

    Google Scholar 

  60. C. Pijolat, Etude des proprietes physico-chimiques et des proprietes electriques du dioxide d’etain en fonction de l’atmosphere gazeuse environnante. Application a la detection selective des gaz. Thesis, Grenoble, 1986.

    Google Scholar 

  61. A. M. Stoneham, Oxide surfaces: the basic processes of sensor behaviour, in Solid state gas sensors, Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, p. 159.

    Google Scholar 

  62. J. Lagois, private communication.

    Google Scholar 

  63. P.G. Harrison and B.M. Maunders, Tin oxide surfaces: Part 15.— Infrared study of the adsorption of propene on tin(IV) oxide, tin(IV) oxide-silica and tin(IV) oxide-palladium oxide, J. Chem. Soc. Farad. Trans. 81 (1985) 1329–1343.

    Article  CAS  Google Scholar 

  64. P.G. Harrison and B.M. Maunders, Tin oxide surfaces: Part 12. — A comparison of the nature of tin(IV) oxide, tin(IV) oxide-silica and tin(IV) oxide-palladium oxide: Surface hydroxy1 groups and ammonia adsorption, J. Chem. Soc. Farad. Trans. 80 (1984) 1341–1356.

    Article  CAS  Google Scholar 

  65. P.G. Harrison and B.M. Maunders, Tin oxide surfaces: Part 13.— A comparison of the nature of tin(IV) oxide, tin(IV) oxide-palladium oxide and tin(IV) oxide-silica: An infrared study of the adsorption of carbon dioxide, J. Chem. Soc. Farad. Trans. 80 (1984) 1357–1365.

    Article  CAS  Google Scholar 

  66. R. Huck, U. Böttger, D. Kohl and G. Heiland, Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits. Sensors and Actuators 17 (1989) 355–359.

    Article  CAS  Google Scholar 

  67. M. Peukert, XPS study on surface and bulk palladium oxide, its thermal stability and a comparison with other noble metal oxides, J. Phys. Chem. 89 (1985) 2481–2486.

    Article  Google Scholar 

  68. S. Narayanan, Strong metal support interaction, J. Scientific and Industrial Research, 44 (1985) 580–587.

    CAS  Google Scholar 

  69. H. Dannetun, I. Lundström and L.-G. Petersson, Reactions between hydrocarbons and an oxygen covered palladium surface, Surface Sci. 193 (1988) 109–131.

    Article  CAS  Google Scholar 

  70. S. J. Gentry and P. T. Walsh, The influence of high methane concentrations on the stability on catalytic flammable-gas sensing elements, Sensors and Actuators 5 (1984) 229–238.

    Article  CAS  Google Scholar 

  71. G. C. Bond and P. A. Sermon, Gold catalysts for olefin hydrogenation. Transmutation of catalytic properties. Gold Bull. 6 (1973) 102–105.

    Article  CAS  Google Scholar 

  72. J. F. McAleer, P. T. Moseley, J. O. W. Norris and D. E. Williams and B. C. Tofield, Tin dioxide gas sensors: Part 2. — The role of surface additives, J. Chem. Soc., Faraday Trans. 1, 84(2) (1988) 441–457.

    Article  CAS  Google Scholar 

  73. W. Platen, H.-J. Schmutz1er, D. Kohl, K.-A. Brauchle, K. Wolter, Interface states of Ag/(110)GaAs Schottky diodes without and with interfacial layers, J. Appl. Phys. 64(1) (1988), 218–224.

    Article  CAS  Google Scholar 

  74. J. Lux, D. Kohl and G. Heiland, Capacitance of metal semiconductor contacts on clean polar ZnO surfaces. Le Vide, les Couches Minces Suppl. 201, (1980) 991–995.

    CAS  Google Scholar 

  75. K. Stiles, A. Kahn, D. G. Kilday and G. Margaritondo, Initial stages of Schottky barrier formation: temperature effects, J. Vac. Sci. Technol. B 5 (1987) 987–991.

    Article  CAS  Google Scholar 

  76. K. Stiles, A. Kahn, D. G. Kilday and G. Margaritondo, Metal-induced gap states at the Ag and Au/GaAs interfaces, J. Vac. Sci. Technol. A 6 (1988) 1511–1514.

    Article  CAS  Google Scholar 

  77. S. Doniach, K. K. Chin, I. Lindau and W. E. Spicer, Microscopic metal cluster and Schottky-barrier formation, Phys. Rev. Lett. 58 (1987) 591–594.

    Article  CAS  Google Scholar 

  78. W. Göpel, Initial steps of interface formation: Surface states and thermodynamics, J. Vac. Sci. Technol. 16 (1979) 1229–1235.

    Article  Google Scholar 

  79. G. Ghiotti, F. Boccuzzi and A. Chiorino, Surface characteri zation of Cu/ZnO catalysts: IR VIS, UV study of CO chemisorption, in Adsorption and Catalysis on Oxide Surfaces, Edts. M. Che and G.C. Bond, Elsevier Amsterdam 1985, pp. 235–246.

    Google Scholar 

  80. G.W. Wang and H. Hattori, Reaction of adsorbed carbon monoxide with hydrogen on magnesium oxide, J. Chem. Soc, Faraday Trans. I, 80 (1984) 1039–1047.

    Google Scholar 

  81. H. Jacobs, Reaktionen auf Halbleiteroxiden mit geringer Metallbedeckung: C2H5OH/H2/H2O auf Pd-SnO2 und Pd-ZnO, Aachen, Dr. Thesis, Aachen, FRG, 1983.

    Google Scholar 

  82. Y. Nakatani and M. Matsuoka, private communication.

    Google Scholar 

  83. P.G. Harrison and E.W. Thornton, Tin oxide surfaces: Part 9. — Infrared study of the adsorption of CO, NO and CO+NO mixtures on tin(IV) oxide gels containing ion-exchanged Cr(III), Mn(II), FeIII), Co(II), Ni(II) and Cu(II), J. Chem. Soc, Faraday Trans. I, 74 (1978) 2703–2713.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kohl, D. (1992). Oxidic Semiconductor Gas Sensors. In: Sberveglieri, G. (eds) Gas Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2737-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2737-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5214-6

  • Online ISBN: 978-94-011-2737-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics