Skip to main content

Physics of Amorphous-Silicon Alloys

  • Conference paper
Physics and Technology of Solar Energy
  • 269 Accesses

Abstract

It has long been known that there are often two paths from the liquid to the solid state, depending on the rate of cooling. At temperatures above the melting point, Tm, a sufficient concentration of higher energy local configurations are accessible that the structure cannot withstand shear stresses and behaves like a fluid. If the temperature is reduced slowly, a first-order transition occurs at Tm to a state with lower energy and entropy that resists finite shear stresses and thus retains its shape. The structure then ordinarily exhibits a long-range periodicity which reflects the chemical nature of the constituent atoms, and the material is called a crystal. For simple materials, the crystal represents the absolute minimum energy arrangement, and thus is the stable phase at very low temperatures. However, for complex alloys, it often represents a compromise between the optimal chemical bonding and the strain energy. When such an alloy is cooled rapidly, a different series of processes can then take place. Since first-order phase transitions entail finite entropy changes, they require a finite time to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Phillips, (1979), J. Non-Cryst. Solids 34, 153.

    Article  Google Scholar 

  2. Y Bar-Yam, D. Adler, and J. Joannopoulos, (1986), Phys. Rev. Lett. 57, 467.

    Article  Google Scholar 

  3. D. Adler, (1985), in Physical Properties of Amorphous Materials ed. by D. Adler, B.B. Schwartz, and M.C. Steele (Plenum Press, NY, 1985), P.l.

    Google Scholar 

  4. D. adler, in Handbook of Semiconductors, ed. by W. Paul (North — Holland, Amsterdam, 1982), Vol. I, p. 805.

    Google Scholar 

  5. M. Wilner, D. Adler, M.E. Eberhart, and K.H. Johnson, (1986), J. Chem. phys 84, 6312.

    Article  Google Scholar 

  6. M. Kastner, D Adler, and H. Fritzsche,(1976), Phys. Rev. Lett. 37, 1504.

    Article  Google Scholar 

  7. D. Adler, (1984), Semiconductors and Semimetals 21A, 291.

    Article  Google Scholar 

  8. D. Adler, and J. Yoffa, (1978), Phys. Rev. Lett. 41, 1755.

    Article  Google Scholar 

  9. D. Adler, (1981), J. Phys. (Pairs) 42, C4–3.

    Google Scholar 

  10. N.F. Mott, (1967), Adv. Phys. 16, 49.

    Article  Google Scholar 

  11. M.H. Cohen, H. Fritzsche, and S. R. Ovshinsky, (1969) phys. Rev. Lett. 22, (1065).

    Article  Google Scholar 

  12. D. Adler, (1982), solar energy Mat. 8, 53.

    Article  Google Scholar 

  13. M. Silver, D. Adler, M.P. Shaw, and V. Cannella, (1986), Phil. Mag 53, L89.

    Article  Google Scholar 

  14. N.F. Mott, (1969), phil. Mag. 19, 835.

    Article  Google Scholar 

  15. F.R. Shapiro and D. Adler, (1985), J. Non-cryst. Solids 74, 189.

    Article  Google Scholar 

  16. D. Adler, J. Non-Cryst. Solids, in press.

    Google Scholar 

  17. G. D. Cody, (1984), Semiconductors and Semimmetals 21B, 11

    Article  Google Scholar 

  18. W. E. Spear and P. G. LeComber, (1976), Phil. Mag. 33, 935.

    Article  Google Scholar 

  19. W. Beyer, (1984), J. Non.-Cryst. Solids 66, 1.

    Article  Google Scholar 

  20. T. Tiedje, (1984), Semiconductors and Semimetals 21C, 207.

    Article  Google Scholar 

  21. H. Dersch, J. Stuke and J. Beichler, (1981), phys. Stat. Sol. (b) 105, 265.

    Article  Google Scholar 

  22. P.G. LeComber and W.E. Spear, (1984), Phil. Mag. 53, L1 (1986); J.D. Cohen, Semiconductors and Semimetals 21C, 9.

    Google Scholar 

  23. T. Inushima, M.H. Brodsky, J. Kanicki and R.J. Serino, AIP Conf. Proc. 12024 (1984); A. Triska, I. Shimizu, J. Kocka, L. Tichy and M. Vanecek J. Non-Cryst. Solids 59–60, 493 (1983).

    Google Scholar 

  24. R.A. Street, (1985), J. Non-Cryst. Solids 77–78, 37.

    Google Scholar 

  25. D. Adler, (1981,1983), Solar Cells 9 133 (1983) J. Phys. (Paris) 42, C4–3 (1981).

    Google Scholar 

  26. J. Roberston, (1985), J. Non-Cryst. Solids 77–78, 37.

    Google Scholar 

  27. D. Adler, AIP Conf. Proc. 120, 70 (1984).

    Article  Google Scholar 

  28. N.M. Amer and W.B. Jackson, (1984), Semicond. and Semimetals 21B, 83.

    Article  Google Scholar 

  29. H. Dersch, J. Stuke and J. Beichler, (1981), Phys. Stat. Sol. (b) 107, 307.

    Article  Google Scholar 

  30. S. Guha and M. Hack, (1985), J. Appl. Phys. 58, 1683

    Article  Google Scholar 

  31. M. A. Parker, K. A. Conrad and E. A. Schiff, (1986), MRS Proc. 70, 125.

    Article  Google Scholar 

  32. Y. Wu and A. Stesmans, (1986), phys. Rev. B 33, 5046

    Article  Google Scholar 

  33. A. Friederich and D. Kaplan, (1980), J. Phys. Soc. Jap. 49, A, 1233.

    Google Scholar 

  34. S. Hasegawa, T. Shimizu and M. Hirose, (1980), J. Phys. Soc Jap. 49, Suppl. A, 1237.

    Google Scholar 

  35. H.M. Branz, M. Silver, and D, Adler, to be published.

    Google Scholar 

  36. M. Stutzmann and R.A. (1986), Street Phys. Rev. Lett. 54, 1836.

    Article  Google Scholar 

  37. Z.E. Smith, S. Aljishi, D. Slobodin, V. Chu, S. Wagner, P.M. lenakan, R. R. Arya and M.S. Bennett, (1986), Phys. Rev. Lett. 57, 2450.

    Article  Google Scholar 

  38. Y. Bar-Yam and J.D. Joannopoulos, (1986), Phys. Rev. Lett. 56, 2203.

    Article  Google Scholar 

  39. D.L. Staebler and C. R. Wronski, (1977), Appl. Phys. Lett. 31, 292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Adler, D. (1987). Physics of Amorphous-Silicon Alloys. In: Physics and Technology of Solar Energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3941-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3941-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8248-8

  • Online ISBN: 978-94-009-3941-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics