Skip to main content

Cardiac output in hypertension

Basic concepts and experimental studies

  • Chapter
The Heart in Hypertension

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 98))

  • 194 Accesses

Abstract

Simple hydrodynamic considerations indicate that the systemic blood flow from the aorta back to the heart is driven by the difference of total fluid energy between aorta and right atrium (RA), which for all practical purpose is equal to the gradient between mean arterial pressure and right atrial pressure, MAP — RAP. This flow can thus be calculated as MAP — RAP/TPR, where TPR is the total peripheral resistance. Systemic blood flow is equal to cardiac output (CO), and since RAP is small and does not change markedly under most conditions, the usual expression of these relations becomes: MAP = CO × TPR. Thus, mean arterial pressure is determined by cardiac output and peripheral resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris P (1983): Evolution and the cardiac patient, 3: Origins of blood pressure. Cardiovasc Res 17: 373–378.

    Article  PubMed  CAS  Google Scholar 

  2. Guyton AC, Jones CE, Coleman TG (1973): Circulatory Physiology, II: Cardiac Output and Its Regulation. Philadelphia: WB Saunders.

    Google Scholar 

  3. Ferrario CM, Page IH (1978): Current views concerning cardiac output in the genesis of experimental hypertension. Circ Res 43: 821–831.

    PubMed  CAS  Google Scholar 

  4. Dustan HP, Tarazi RC (1978): Cardiogenic hypertension. Ann Rev Med 29: 485–493.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman TG, Guyton AC (1969): Hypertension caused by salt loading in the dog, III: Onset transients of cardiac output and other circulatory variables. Circ Res 25: 153–160.

    PubMed  CAS  Google Scholar 

  6. Cowley AW, Guyton AC (1975): Baroreceptor reflex effects on transient and steady-state hemodynamics of salt-loading hypertension in dogs. Circ Res 36: 536–546.

    PubMed  Google Scholar 

  7. Manning RD, Coleman TG, Guyton AC, Norman RA, McCaa RE (1979): Essential role of mean circulatory filling pressure in salt-induced hypertension. J Physiol 236: R40–R47.

    Google Scholar 

  8. Liard JF (1981): Regional blood flows in salt loading hypertension in the dog. Am J Physiol 240: H261–H267.

    Google Scholar 

  9. Conway J (1968): Changes in sodium balance and hemodynamics during development of experimental renal hypertension in dogs. Circ Res 22: 763–767.

    PubMed  CAS  Google Scholar 

  10. Bianchi G, Tenconi LT, Lucca R (1970): Effect in the conscious dog of constriction of the renal artery to a sole remaining kidney on haemodynamics, sodium balance, body fluid volumes, plasma renin concentration and pressor reponsiveness to angiotensin. Clin Sci 38: 741–766.

    PubMed  CAS  Google Scholar 

  11. Ferrario CM (1974): Contribution of cardiac output and peripheral resistance to experimental renal hypertension. Am J Physiol 226: 711–717.

    PubMed  CAS  Google Scholar 

  12. Ferrario CM, Page IH, McCubbin JW (1970): Increased cardiac output as a contributory factor in experimental renal hypertension in dogs. Circ Res 27: 799–810.

    PubMed  CAS  Google Scholar 

  13. Anderson WP, Korner PI, Angus JA, Johnston CI (1981): Contribution of stenosis resistance to the rise in total peripheral resistance during experimental renal hypertension in conscious dogs. Clin Sci 61: 663–670.

    PubMed  CAS  Google Scholar 

  14. Stephens GA, Davis JO, Freeman RH, DeForrest JM, Early DM (1979): Hemodynamic, fluid, and electrolyte changes in sodium-depleted, one-kidney, renal hypertensive dogs. Circ Res 44: 316–321.

    PubMed  CAS  Google Scholar 

  15. Bianchi G, Baldoli E, Lucca R, Barbin P (1972): Pathogenesis of arterial hypertension after the constriction of the renal artery leaving the opposite kidney intact both in the anaesthetized and in the conscious dog. Clin Sci 42: 651–664.

    PubMed  CAS  Google Scholar 

  16. Maxwell MH, Lupu AN, Viskoper RJ, Aravena LA, Waks UA (1977): Mechanisms of hypertension during the acute and intermediate phases of the one-clip, two-kidney model in the dog. Circ Res 40(Suppl I): I: 24–28.

    Google Scholar 

  17. Greenberg S, McGowan C, Gaida M (1982): Effect of an increased cardiac output on vascular responses to vasoactive agents in two-kidney, one-clip Goldblatt hypertension. Clin Exp Hypertens 4: 1287–1302.

    Article  CAS  Google Scholar 

  18. Bravo EL, Tarazi RC, Dustan HP (1977): Multifactorial analysis of chronic hypertension induced by electrolyte-active steroids in trained, unanesthetized dogs. Circ Res 40(Suppl I): I: 140–145.

    Google Scholar 

  19. Conway J, Hatton R (1978): Development of deoxycorticosterone acetate hypertension in the dog. Circ Res 43(Suppl I): I: 82–86.

    CAS  Google Scholar 

  20. Pan YJ, Young DB (1982): Experimental aldosterone hypertension in the dog. Hypertension 4: 279–287.

    PubMed  CAS  Google Scholar 

  21. Kageyama Y, Bravo EL (1987): Neurohumoral and hemodynamic responses to dietary calcium supplementation in deoxycorticosterone-salt hypertensive dogs. Hypertension 9(Suppl III): III: 166–170.

    Google Scholar 

  22. Young DB, Murray RH, Bengis RG, Markov AK (1980): Experimental angiotensin II hypertension. Am J Physiol 239: H391–H398.

    PubMed  CAS  Google Scholar 

  23. Ganguli M, Tobian L, Iwai J (1979): Cardiac output and peripheral resistance in strains of rats sensitive and resistant to NaCl hypertension. Hypertension 1: 3–7.

    PubMed  CAS  Google Scholar 

  24. Cowley AW, Barber WJ, Lombard JH, Osborn JL, Liard JF (1986): Relationship between body fluid volumes and arterial pressure. Fed Proc 45: 2864–2870.

    PubMed  Google Scholar 

  25. Lombard JH, Cowley Jr AW, Smits GJ, Mazzeo AJ, Stekiel WJ (1985): Microcirculatory changes in rats in the early stages of reduced renal mass (RRM) hypertension. Microvasc Res 29: 236.

    Article  Google Scholar 

  26. Coleman TG, Samar RE, Murphy WR (1979): Autoregulation versus other vasoconstrictors in hypertension: A critical review. Hypertension 1: 324–330.

    PubMed  CAS  Google Scholar 

  27. Meininger GA, Lubrano VM, Granger HJ (1984): Hemodynamic and microvascular responses in the hindquarters during the development of renal hypertension in rats: Evidence for the involvement of an autoregulatory component. Circ Res 55: 609–622.

    PubMed  CAS  Google Scholar 

  28. Meininger GA, Routh LK, Granger HJ (1985): Autoregulation and vasoconstriction in the intestine during acute renal hypertension. Hypertension 7: 364–373.

    PubMed  CAS  Google Scholar 

  29. Folkow B (1982): Physiological aspects of primary hypertension. Physiol Rev 62: 347–504.

    PubMed  CAS  Google Scholar 

  30. Liard JF, Silenzio R (1982): Baroreceptor reflex influence on peripheral circulations in salt-loading hypertension in dogs. Hypertension 4: 597–603.

    PubMed  CAS  Google Scholar 

  31. Liard JF, Spadone JC (1985): Regional circulations in experimental coarctation of the aorta in conscious dogs. J Hypertens 3: 281–291.

    Article  PubMed  CAS  Google Scholar 

  32. Stanek KA, Coleman TG, Murphy WR (1987): Overall hemodynamic pattern in coarctation of the abdominal aorta in conscious rats. Hypertension 9: 611–618.

    PubMed  CAS  Google Scholar 

  33. Liard JF, Tarazi RC, Ferrario CM, Manger WM (1975): Hemodynamic and humoral characteristics of hypertension induced by prolonged stellate ganglion stimulation in conscious dogs. Circ Res 36: 455–464.

    PubMed  CAS  Google Scholar 

  34. Liard JF (1978): Hypertension induced by prolonged intracoronary infusion of dobutamine in conscious dogs. Clin Sci Mol Med 54: 153–160.

    PubMed  CAS  Google Scholar 

  35. Liard JF (1980): Cardiogenic hypertension: experimental evidence from a comparison between intravenous and intracoronary administration of dobutamine in conscious dogs. Clin Sci 58: 271–277.

    PubMed  CAS  Google Scholar 

  36. Guyton AC (1980): Circulatory Physiology, III: Arterial Pressure and Hypertension. Philadelphia: W.B. Saunders.

    Google Scholar 

  37. Liard JF, Tarazi RC, Ferrario CM (1976): Hemodynamic effects of stellate ganglion stimulation in conscious dogs, pp. 151–160 in: Julius S, Esler MD (eds), The Nervous System in Arterial Hypertension. Springfield: C.C. Thomas.

    Google Scholar 

  38. Liard JF (1979): Cardiogenic hypertension, pp. 317–355 in: Guyton AC, Young DB (eds), Cardiovascular Physiology, Vol. 3. Baltimore: University Park Press (International Review of Physiology 18).

    Google Scholar 

  39. Omvik P, Tarazi RC, Bravo EL (1980): Regulation of sodium balance in hypertension. Hypertension 2: 515–523.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Liard, JF. (1989). Cardiac output in hypertension. In: Safar, M.E., Fouad-Tarazi, F. (eds) The Heart in Hypertension. Developments in Cardiovascular Medicine, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0941-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0941-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6913-7

  • Online ISBN: 978-94-009-0941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics