Skip to main content

The Nonpeptide Low Molecular Mass Toxins from Spider Venoms

  • Reference work entry
  • First Online:
Spider Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

Spiders occupy most of the ecological niches of the planet, revealing a huge adaptive plasticity, reflected in the chemical diversity of their venom toxins. The spiders are distributed throughout the planet, adapting themselves to many different environments, to form the largest taxonomic group of organisms with a diet exclusively carnivorous. The organic low-molecular-mass compounds present in spider venoms are used both for defensive purposes and to paralyze/kill their preys. Among the low-molecular-mass organic compounds present in spider venoms, the most common ones are free organic acids, amino acids, biogenic amines, and neurotransmitters. These compounds were also used in the course of evolution as substrates for the biosynthesis of novel spider toxins, which were neglected by the toxinology during a long time, mainly due to the difficulties to isolate and to assign the chemical structures of very low abundant compounds. However, the recent technological advances in the spectroscopic techniques used for structural analysis of small molecules allowed the structural elucidation of many of these toxins in spider venoms, permitting the identification of at least six families of low-molecular-mass toxins in spider venoms: (i) acylpolyamines, (ii) nucleoside analogs, (iii) bis(agmatine)oxalamide, (iv) the betacarboline alkaloids, (v) organometallic diazenaryl compounds, and (vi) dioxopiperidinic analogs. Investigations of structure/activity relationship of these toxins revealed that some of them have been identified both as interesting tools for chemical investigations in neurobiology and as potential models for the rational development of novel drugs for neurotherapeutic uses, as well as for developing specific insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

13C:

Carbon-13

1H:

Hydrogen-1

ALS:

Amyotrophic lateral sclerosis

AMPA:

α-Amino-3-hydroxy-5-methylisoxasole-4-propionic acid

CID:

Collisional-induced dissociation

CNS:

Central nervous systems

COSY:

Homonuclear correlation spectroscopy

dqf COSY:

Double-quantum-filter-COSY

ESI-MS:

Electron spray ionization mass spectrometry

FRIT-FAB:

Continuous-flow fast atom bombardment

FTX:

Funnel web toxin

GABA:

Gamma-aminobutyric acid

Glu-R:

Glutamate receptor

HMBC:

Heteronuclear multiple bond coherence

HMQC:

Heteronuclear multiple quantum coherence

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

JSTX:

Joro spider toxin

KA:

Kainic acid

kDa:

Kilodalton

l-Arg-3,4:

l-Arginyl-3,4-spermidine

LC-MS:

Liquid chromatography mass spectrometry

LMM:

Low molecular mass

MALDI-TOF:

Matrix-assisted laser desorption/ionization time of flight

MS/MS:

Tandem mass spectrometry

nACh-R:

Nicotinic acetylcholine receptor

NMDA:

N-Methyl- d-aspartate

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser enhancement spectroscopy

THβC:

Tetrahydro-β-carbolines

References

  • Antonov SM, Dudel J, Franke C, Hatt H. Argiopine blocks glutamate-activated single-channel currents on crayfish muscle by Two mechanisms. J Physiol. 1989;419:369.

    Article  Google Scholar 

  • Aramaki Y, Yasuhara T, Higashijima T, Miwa A, Kawai N, Nakajima T. Chemical characterization of spider toxin. NSTX Biomed Res. 1987;8:167–72.

    CAS  Google Scholar 

  • Attygalle A, Mccormick KD, Blankspoor CL, Eisner T, Meinwald J. Azamacrolides – a family of alkaloids from the pupal defensive secretion of a ladybird beetle (Epilachna-Varivestis). Proc Natl Acad Sci. 1993;90:5204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesar-Tognoli LMM, Salamoni SD, Tavares AA, Elias CF, Da Costa JC, Bittencourt JC, Palma MS. Effects of spider venom toxin PWTX-I (6-hydroxytrypargine) on the central nervous system of rats. Toxins. 2011;3:142–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SK, Kalivretenos AG, Usherwood PNR, Nakanishi K. Labeling studies of photolabile philanthotoxins with nicotinic acetylcholine receptors – mode of interaction between toxin and receptor. Chem Biol. 1995;2:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Coddington JA, Levi HW. Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst. 1991;22:565–92.

    Article  Google Scholar 

  • Collingridge GL, Lester RA. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev. 1989;41(2):143–210.

    CAS  PubMed  Google Scholar 

  • Eisner T, Meinwald J. Chemical Ecology: the chemistry of biotic interaction. Washington D.C.; National Academy Press; 1995; p.214.

    Google Scholar 

  • Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie. 2000;82:893–907.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, Quinton L, Nicholson GM. Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom. 2008;43:279–95.

    Article  CAS  PubMed  Google Scholar 

  • Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007;24:145–61.

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF. Biology of spiders. 2nd ed. Oxford and New York: Oxford University Press and Georg ThiemeVerlag; 1996.

    Google Scholar 

  • Gittos MW. Pharmaceutical Compositions and Medical Uses of Dioxopiperidine Derivatives (London, GB2) 4835151. United States National Research Development Corporation. http://www.freepatentsonline.com/4835151.html; 1989.

  • Gomes PC, De Souza BM, Dias NB, Cesar-Tognoli LM, Silva-Filho LC, Rittner R, Tormena CF, Cordeiro MN, Richardson M, Palma MS. Nigriventrine: a low molecular mass neuroactive compound from the venom of the spider Phoneutria nigriventer. Toxicon. 2011;57:266–74.

    Article  CAS  PubMed  Google Scholar 

  • Grishin E. Spider neurotoxins and their neuronal receptors. Pure Appl Chem. 1994;66:783–90.

    Article  CAS  Google Scholar 

  • Hagiwara S, Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125.

    Article  CAS  PubMed  Google Scholar 

  • Horni A, Weickmann D, Hesse M. The main products of the low molecular mass fraction in the venom of the spider Latrodectus menavodi. Toxicon. 2001;39:425–8.

    Article  CAS  PubMed  Google Scholar 

  • Jackson H, Usherwood PNR. Spider toxins as tools for dissecting elements of excitatory amino acid transmission. TINS. 1988;11:278–83.

    CAS  PubMed  Google Scholar 

  • Kawai N. Spider Polyam Toxin Toxin Rev. 2005;24:271–87.

    Article  Google Scholar 

  • Kawai N, Nakajima T. Neurotoxins from spider venoms. In: Harvey AL, editor. Natural and synthetic neurotoxins. London: Academic; 1993. p. 319–45.

    Google Scholar 

  • Kawai N, Miwa A, Abe T. Spider venom contains specific receptor blocker of glutaminergic synapses. Amsterdam: Elsevier Science BV Brain Research; 1982. p. 169–71.

    Google Scholar 

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9.

    Article  CAS  PubMed  Google Scholar 

  • Lewin E, Bleck V. Electroshock seizures in mice: effect on brain adenosine and its metabolites. Epilepsia. 1981;22:577–81.

    Article  CAS  PubMed  Google Scholar 

  • Lokensgard J, Smith RL, Eisner T, Meinwald J. Pregnanes from defensive glands of a belostomatid bug. Experientia Basel. 1993;49:175–6.

    Article  CAS  Google Scholar 

  • Manzoli-Palma MF, Gobbi N, Palma MS. The chelation of metal ions by the acylpolyamine toxins from the web-spider Nephilengys cruentata: effects in the intoxication/detoxification of preys. Chemoecology. 2006;16:203–8.

    Article  CAS  Google Scholar 

  • Marques MR, Mendes MA, Tormena CF, Souza BM, Ribeiro SP, Rittner R, Palma MS. Structure determination of an organometallic 1-(diazenaryl) ethanol: a novel toxin subclass from the web of the spider Nephila clavipes. Chem Biodiv. 2004;1:830–8.

    Article  CAS  Google Scholar 

  • Mccormick J, Meinwald J. Neurotoxic acylpolyamines from spider venoms. J Chem Ecol. 1993;19:2411–51.

    Article  CAS  PubMed  Google Scholar 

  • Meinwald J, Eisner T. The chemistry of phyletic dominance. Proc Natl Acad Sci. 1995;92:14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor IR, Usherwood PNR. Targeting ionotropic receptors with polyamine-containing toxins. Toxicon. 2004;43:493–508.

    Article  CAS  PubMed  Google Scholar 

  • Menez A, Stocklin R, Mebs D. ’Venomics’ or: the venomous systems genome project. Toxicon. 2006;47:255.

    Article  CAS  PubMed  Google Scholar 

  • Palma MS, Nakajima T. A natural combinatorial chemistry strategy in acylpolyamine toxins in nephilinae Orb-Web-spiders. J Toxicol Toxin Rev. 2005;24:209–34.

    Article  CAS  Google Scholar 

  • Palma MS, Itagaki Y, Fujita T, Hisada M, Naoki H, Nakajima T. Mass spectrometric structure determination of spider toxins: arginine-containing acylpolyamines from venom of Brazilian garden spider Nephilengys cruentata. Nat Toxins. 1997;5:47–57.

    Article  CAS  PubMed  Google Scholar 

  • Palma MS, Itagaki Y, Fujita T, Naoki H, Nakajima T. Structural characterization of a new acylpolyamine toxin from the venom of Brazilian garden spider Nephilengys cruentata. Toxicon. 1998;36:485–93.

    Article  CAS  PubMed  Google Scholar 

  • Parks TN, Mueller AL, Artman LD, Albensi BC, Nemeth EF, Jackson H, Jasys VJ, Saccomano NA, Volkmann RA. Arylamine toxins from funnel-web spider (Agelenopsisaperta) venom antagonize N-methyl-d-aspartate receptor function in mammalian brain. J Biol Chem. 1991;266:21523–9.

    CAS  PubMed  Google Scholar 

  • Quistad GB, Lam WW, Casida JE. Identification of bis(agmatine) oxalamine in venom from the primitive hunting spider, Plectreuris tristis (Simon). Toxicon. 1993;31:920–4.

    Article  CAS  PubMed  Google Scholar 

  • Rash LD, Hodgson WC. Pharmacology and biochemistry of venoms. Toxicon. 2002;40:225–54.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues MCA, Guizzo R, Gobbo Neto L, Ward RJ, Lopes NP, Santos WF. The biological activity in mammals and insects of the nucleosidic fraction from the spider Parawixia bistriata. Toxicon. 2004;43:375–83.

    Article  CAS  PubMed  Google Scholar 

  • Salamoni SD, Costa JC, Palma MS, Konno K, Nihei K, Tavares AA, Abreu DS, Venturin GTV, Cunha FB, Oliveira RM, Breda RV. Antiepileptic effect of acylpolyamine toxin JSTX-3 on rat hippocampal CA1 neurons in vitro. Brain Res. 2005;1048:170–6.

    Article  CAS  PubMed  Google Scholar 

  • Schambacher FL, Lee CK, Hall JE, Wilson IB, Howell DE, Odell GV. Composition and properties of tarantula Dugesiella hentzi (Girard) venom. Toxicon. 1973;11:21–9.

    Article  Google Scholar 

  • Schroeder FC, Taggi AE, Gronquist M, Malik RU, Grant JB, Eisner T, Meinwald J. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species. Proc Natl Acad Sci. 2008;105:14283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schurr A. Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr Drug Targ. 2004;5:603–18.

    Article  CAS  Google Scholar 

  • Stone TW. Neuropharmacology. 1st edn. Oxford and New York; W.H. Freeman/Spektrum; 1995.

    Google Scholar 

  • Willians K. Interactions of polyamines with ion-channels. Biochem J. 1997;325:289–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Cesar Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gomes, P.C., Palma, M.S. (2016). The Nonpeptide Low Molecular Mass Toxins from Spider Venoms. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_14

Download citation

Publish with us

Policies and ethics