Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

Dialysis-related amyloidosis (DRA) is a clinical syndrome of pain, loss of function and other symptoms due to the deposition of amyloid consisting of β2-microglobulin (β2m) in the musculoskeletal system. The condition is seen in patients who suffer from chronic kidney disease and are treated with hemodialysis for a long time. Even though β2m easily can be manipulated to form amyloid in laboratory experiments under non-physiological conditions the precise mechanisms involved in the formation of β2m-amyloid in patients with DRA have been difficult to unravel. The current knowledge which is reviewed here indicates that conformational fluctuations centered around the D-strand, the DE-loop, and around the cis-configured Pro32 peptide bond are involved in β2m amyloidosis. Also required are highly increased concentrations of circulating β2m and possibly various post-translational modifications mediated by the pro-inflammatory environment in uremic blood, together with the influence of divalent metal ions (specifically Cu2 +), uremic toxins, and dialysis-enhanced redox-processes. It seems plausible that domain-swapped β2m dimers act as building blocks of β-spine cross-β -sheet fibrils consisting of otherwise globular, roughly natively folded protein. An activated complement system and cellular activation perpetuate these reactions which due to the affinity of β2m-amyloid for the collagen of synovial surfaces result in the DRA syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Amino Acid

2m:

β2-microglobulin amyloidosis

β2m:

β2-microglobulin

DRA:

Dialysis-Related Amyloidosis

GAG:

Glycosaminoglycan

GFR:

Glomerular Filtration Rate

MHC:

Major Histocompatibility Complex

SAP:

Serum Amyloid P component

References

  • Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW (2004) Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 47:355–374

    Article  PubMed  CAS  Google Scholar 

  • Ahn M, Kang S, Koo HJ, Lee JH, Lee YS, Paik SR (2010) Nanoporous protein matrix made of amyloid fibrils of beta2-microglobulin. Biotechnol Prog 26:1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Annuk M, Soveri I, Zilmer M, Lind L, Hulthe J, Fellstrom B (2005) Endothelial function, CRP and oxidative stress in chronic kidney disease. J Nephrol 18:721–726.

    PubMed  CAS  Google Scholar 

  • Argiles A, Mourad G, Axelrud-Cavadore C, Watrin A, Mion C, Cavadore JC (1989) High-molecular-mass proteins in haemodialysis-associated amyloidosis. Clin Sci (Lond) 76:547–552

    CAS  Google Scholar 

  • Argiles A, Derancourt J, Jauregui-Adell J, Mion C, Demaille JG (1992) Biochemical characterization of serum and urinary beta 2 microglobulin in end-stage renal disease patients. Nephrol Dial Transplant 7:1106–1110

    PubMed  CAS  Google Scholar 

  • Argiles A, Garcia-Garcia M, Derancourt J, Mourad G, Demaille JG (1995) Beta 2 microglobulin isoforms in healthy individuals and in amyloid deposits. Kidney Int 48:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Assenat H, Calemard E, Charra B, Laurent G, Terrat JC, Vanel T (1980) Hémodialyse, syndrome du canal carpien et substance amyloïd. Nouv Presse Med 24:1715

    Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75:1219–1233

    Article  PubMed  CAS  Google Scholar 

  • Azinas S, Colombo M, Barbiroli A et al (2011) D-strand perturbation and amyloid propensity in beta-2 microglobulin. FEBS J 278:2349–2358

    Article  PubMed  CAS  Google Scholar 

  • Barbet-Massin E, Ricagno S, Lewandowski JR, Giorgetti S, Bellotti V, Bolognesi M, Emsley L, Pintacuda G (2010) Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy. J Am Chem Soc 132:5556–5557

    Article  PubMed  CAS  Google Scholar 

  • Bartl R, Frisch B, Diem H, Mundel M, Fateh-Moghadam A (1989) Bone marrow histology and serum beta 2 microglobulin in multiple myeloma—a new prognostic strategy. Eur J Haematol Suppl 51:88–98

    PubMed  CAS  Google Scholar 

  • Baz M, Durand C, Ragon A, Jaber K, Andrieu D, Merzouk T, Purgus R, Olmer M, Reynier JP, Berland Y (1991) Using ultrapure water in hemodialysis delays carpal tunnel syndrome. Int J Artif Organs 14:681–685

    PubMed  CAS  Google Scholar 

  • Bellotti V, Stoppini M, Mangione P, Sunde M, Robinson C, Asti L, Brancaccio D, Ferri G (1998) Beta2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur J Biochem 258:61–67

    Article  PubMed  CAS  Google Scholar 

  • Berggård I (1965) Identification and isolation of urinary proteins. In: Peeters H (ed) Protides of the biological fluids (Proceedings of the 12th Colloquium, Bruges, 1964), Elsevier, Amsterdam, pp 285–291

    Google Scholar 

  • Berggard I, Bearn AG (1968) Isolation and properties of a low molecular weight beta-2-globulin occurring in human biological fluids. J Biol Chem 243:4095–4103

    PubMed  CAS  Google Scholar 

  • Bhalla RB, Safai B, Pahwa S, Schwartz MK (1985) Beta 2-microglobulin as a prognostic marker for development of AIDS. Clin Chem 31:1411–1412

    PubMed  CAS  Google Scholar 

  • Bjorck L, Akerstrom B, Berggard I (1979) Occurrence of beta 2-microglobulin in mammalian lymphocytes and erythrocytes. Eur J Immunol 9:486–490

    Article  PubMed  CAS  Google Scholar 

  • Borysik AJ, Morten IJ, Radford SE, Hewitt EW (2007) Specific glycosaminoglycans promote unseeded amyloid formation from beta2-microglobulin under physiological conditions. Kidney Int 72:174–181

    Article  PubMed  CAS  Google Scholar 

  • Bourantas KL, Hatzimichael EC, Makis AC, Chaidos A, Kapsali ED, Tsiara S, Mavridis A (1999) Serum beta-2-microglobulin, TNF-alpha and interleukins in myeloproliferative disorders. Eur J Haematol 63:19–25

    Article  PubMed  CAS  Google Scholar 

  • Brancaccio D, Gallieni M, Niwa T, Braidotti P, Coggi G (2000) Ultrastructural localization of advanced glycation end products and beta2-microglobulin in dialysis amyloidosis. J Nephrol 13:129–136

    PubMed  CAS  Google Scholar 

  • Buchholz NP, Moch H, Gasser TC, Linke RP, Thiel GT, Mihatsch MJ (1995) Ureteral amyloid deposits of beta 2-microglobulin origin in both kidney recipients of 1 donor. J Urol 153:399–401

    Article  PubMed  CAS  Google Scholar 

  • Calabrese MF, Eakin CM, Wang JM, Miranker AD (2008) A regulatable switch mediates self-association in an immunoglobulin fold. Nat Struct Mol Biol 15:965–971

    Article  PubMed  CAS  Google Scholar 

  • Campistol JM, Torregrosa JV, Ponz E, Fenollosa B (1999) Beta-2-microglobulin removal by hemodialysis with polymethylmethacrylate membranes. Contrib Nephrol 125:76–85

    Article  PubMed  CAS  Google Scholar 

  • Canale C, Relini A, Gliozzi A (2011) Atomic force microscopy of ex vivo amyloid fibrils. Methods Mol Biol 736:81–95

    Article  PubMed  CAS  Google Scholar 

  • Castillo GM, Cummings JA, Yang W, Judge ME, Sheardown MJ, Rimvall K, Hansen JB, Snow AD (1998) Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 47:612–620

    Article  PubMed  CAS  Google Scholar 

  • Charra B, Calemard F, Uzan M, Terrat JC, Vanel T, Laurent G (1984) Carpal tunnel syndrome, shoulder pain and amyloid deposits in long-term hemodialysis patients. Proc Eur Dial Transplant Assoc 21:291–295

    Google Scholar 

  • Cheung AK, Rocco MV, Yan G et al (2006) Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol 17:546–555

    Article  PubMed  CAS  Google Scholar 

  • Cohlberg JA, Li J, Uversky VN, Fink AL (2002) Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 41:1502–1511

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Ricagno S, Barbiroli A, Santambrogio C, Giorgetti S, Raimondi S, Bonomi F, Grandori R, Bellotti V, Bolognesi M (2011) The effects of an ideal beta-turn on beta-2 microglobulin fold stability. J Biochem 150:39–47

    Article  PubMed  CAS  Google Scholar 

  • Corazza A, Pettirossi F, Viglino P et al (2004) Properties of some variants of human beta2-microglobulin and amyloidogenesis. J Biol Chem 279:9176–9189

    Article  PubMed  CAS  Google Scholar 

  • Corlin DB, Sen JW, Ladefoged S, Lund GB, Nissen MH, Heegaard NH (2005) Quantification of cleaved b2-microglobulin in serum from patients undergoing chronic hemodialysis. Clin Chem 51:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Corlin DB, Johnsen CK, Nissen MH, Heegaard NH (2009) A beta2-microglobulin cleavage variant fibrillates at near-physiological pH. Biochem Biophys Res Commun 381:187–191

    Article  PubMed  CAS  Google Scholar 

  • Corlin DB, Johnsen CK, Nissen MH, Heegaard NH (2010) Glycosaminoglycans enhance the fibrillation propensity of the beta2-microglobulin cleavage variant--DeltaK58-beta2m. Biochem Biophys Res Commun 402:247–251

    Article  PubMed  CAS  Google Scholar 

  • Cresswell P, Springer T, Strominger JL, Turner MJ, Grey HM, Kubo RT (1974) Immunological identity of the small subunit of HL-A antigens and beta2-microglobulin and its turnover on the cell membrane. Proc Natl Acad Sci U S A 71:2123–2127

    Article  PubMed  CAS  Google Scholar 

  • Danesh F, Ho LT (2001) Dialysis-related amyloidosis: history and clinical manifestations. Semin Dial 14:80–85

    Article  PubMed  CAS  Google Scholar 

  • Davis DP, Gallo G, Vogen SM, Dul JL, Sciarretta KL, Kumar A, Raffen R, Stevens FJ, Argon Y (2001) Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain. J Mol Biol 313:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzi E, Colombo R, Sabella S, Corlin DB, Heegaard NH (2008) The influence of Cu(2 +) on the unfolding and refolding of intact and proteolytically processed beta(2)-microglobulin. Electrophoresis 29:1734–1740

    Article  PubMed  CAS  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Intermolecular alignment in beta(2)-microglobulin amyloid fibrils. J Am Chem Soc. [Epub ahead of print]

    Google Scholar 

  • Deng NJ, Yan L, Singh D, Cieplak P (2006) Molecular basis for the Cu2 + binding-induced destabilization of beta2-microglobulin revealed by molecular dynamics simulation. Biophys J 90:3865–3879

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) H-2 compatibility is required for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. J Exp Med 141:502–507

    Article  PubMed  CAS  Google Scholar 

  • Domanska K, Vanderhaegen S, Srinivasan V et al (2011) Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant. Proc Natl Acad Sci U S A 108:1314–1319

    Article  PubMed  CAS  Google Scholar 

  • Drueke TB, Massy ZA (2009) Beta2-microglobulin. Semin Dial 22:378–380

    Article  PubMed  Google Scholar 

  • Eakin CM, Miranker AD (2005) From chance to frequent encounters: origins of beta2-microglobulin fibrillogenesis. Biochim Biophys Acta 1753:92–99

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Attenello FJ, Morgan CJ, Miranker AD (2004) Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry 43:7808–7815

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13:202–208

    Article  PubMed  CAS  Google Scholar 

  • Ecroyd H, Thorn DC, Liu Y, Carver JA (2010) The dissociated form of kappa-casein is the precursor to its amyloid fibril formation. Biochem J 429:251–260

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2009) A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J Mol Biol 386:1312–1326

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2011) Understanding the complex mechanisms of beta(2) -microglobulin amyloid assembly. FEBS J 278:3868–3883

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Michelutti R, Verdone G et al (2000) Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci 9:831–845

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Ricagno S, Corazza A et al (2008) The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol 378:887–897

    Article  PubMed  CAS  Google Scholar 

  • Fabian H, Gast K, Laue M, Misselwitz R, Uchanska-Ziegler B, Ziegler A, Naumann D (2008) Early stages of misfolding and association of beta2-microglobulin: insights from infrared spectroscopy and dynamic light scattering. Biochemistry 47:6895–6906

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Tsuchihashi Z, Irrinki A et al (1997) The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 272:14025–14028

    Article  PubMed  CAS  Google Scholar 

  • Floege J, Ehlerding G (1996) Beta-2-microglobulin-associated amyloidosis. Nephron 72:9–26

    Article  PubMed  CAS  Google Scholar 

  • Fujimori A (2011) Beta-2-microglobulin as a uremic toxin: the Japanese experience. Contrib Nephrol 168:129–33. [Epub 2010, Oct 7]

    Article  PubMed  Google Scholar 

  • Garcia-Garcia M, Gouin-Charnet A, Mourad G, Argilés A (1997) Monomeric and dimeric b2-microglobulin may be extracted from amyloid deposits in vitro. Nephrol Dial Transplant 12:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Gejyo F, Yamada T, Odani S et al (1985) A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem Biophys Res Commun 129:701–706

    Article  PubMed  CAS  Google Scholar 

  • Gejyo F, Homma N, Suzuki Y, Arakawa M (1986) Serum levels of beta 2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 314:585–586

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti S, Rossi A, Mangione P et al (2005) Beta2-microglobulin isoforms display an heterogeneous affinity for type I collagen. Protein Sci 14:696–702

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti S, Stoppini M, Tennent GA et al (2007) Lysine 58-cleaved beta2-microglobulin is not detectable by 2D electrophoresis in ex vivo amyloid fibrils of two patients affected by dialysis-related amyloidosis. Protein Sci 16:343–349

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti S, Raimondi S, Pagano K et al (2011) Effect of tetracyclines on the dynamics of formation and destructuration of beta2-microglobulin amyloid fibrils. J Biol Chem 286:2121–2131

    Article  PubMed  CAS  Google Scholar 

  • Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, Millett PJ, Lee DM (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9:R36

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    Article  PubMed  CAS  Google Scholar 

  • Gorevic PD, Casey TT, Stone WJ, DiRaimondo CR, Prelli FC, Frangione B (1985) Beta-2 microglobulin is an amyloidogenic protein in man. J Clin Invest 76:2425–2429

    Article  PubMed  CAS  Google Scholar 

  • Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B (1986) Polymerization of intact b2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci U S A 83:7908–7912

    Article  PubMed  CAS  Google Scholar 

  • Gouin-Charnet A, Laune D, Granier C, Mani JC, Pau B, Mourad G, Argiles A (2000) Alpha2-macroglobulin, the main serum antiprotease, binds beta2-microglobulin, the light chain of the class I major histocompatibility complex, which is involved in human disease. Clin Sci (Lond) 98:427–433

    Article  CAS  Google Scholar 

  • Gumperz JE (2006) The ins and outs of CD1 molecules: bringing lipids under immunological surveillance. Traffic 7:2–13

    Article  PubMed  CAS  Google Scholar 

  • Hafner-Bratkovic I, Bester R, Pristovsek P et al (2011) Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem 286:12149–12156

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Tsutsumi-Yasuhara S, Ookoshi T, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H (2008) Growth of beta(2)-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH. Biochem J 416:307–315

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N, Naiki H, Gejyo F (1999) Modification of beta 2-microglobulin with D-glucose or 3-deoxyglucosone inhibits A beta 2M amyloid fibril extension in vitro. Amyloid 6:256–264

    Article  PubMed  CAS  Google Scholar 

  • Heegaard NH (2009) Beta(2)-microglobulin: from physiology to amyloidosis. Amyloid 16:151–173

    Article  PubMed  CAS  Google Scholar 

  • Heegaard NH, Roepstorff P, Melberg SG, Nissen MH (2002) Cleaved beta 2-microglobulin partially attains a conformation that has amyloidogenic features. J Biol Chem 277:11184–11189

    Article  PubMed  CAS  Google Scholar 

  • Heegaard NHH, Jørgensen TJD, Rozlosnik N, Corlin DB, Pedersen JS, Tempesta AG, Roepstorff P, Bauer R, Nissen MH (2005) Unfolding, aggregation, and seeded amyloid formation of Lysine-58-cleaved b2-microglobulin. Biochemistry 44:4397–4407

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson JP, Jahn TR, Radford SE, Ashcroft AE (2009) HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein beta(2)-microglobulin upon release from the MHC-1. J Am Soc Mass Spectrum 20:278–286

    Article  CAS  Google Scholar 

  • Hoshino M, Katou H, Hagihara Y, Hasegawa K, Naiki H, Goto Y (2002) Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 9:332–336

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev 71:481–539

    PubMed  CAS  Google Scholar 

  • Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci U S A 98:8531–8535

    Article  PubMed  CAS  Google Scholar 

  • Jadoul M (1998) Dialysis-related amyloidosis: importance of biocompatibility and age. Nephrol Dial Transplant 13(Suppl 7):61–64

    Article  PubMed  Google Scholar 

  • Jadoul M, Garbar C, Noel H, Sennesael J, Vanholder R, Bernaert P, Rorive G, Hanique G, van Ypersele de SC (1997) Histological prevalence of beta 2-microglobulin amyloidosis in hemodialysis: a prospective post-mortem study. Kidney Int 51:1928–1932

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, Serpell LC (2010) The common architecture of cross-beta amyloid. J Mol Biol 395:717–727

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Manning J, Kad NM, Radford SE (2003) Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. J Mol Biol 325:249–257

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen TJD, Cheng L, Heegaard NHH (2007) Mass spectrometric characterization of conformational preludes to b2-microglobulin aggregation. 268:207–216

    Google Scholar 

  • Kad NM, Thomson NH, Smith DP, Smith DA, Radford SE (2001) Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J Mol Biol 313:559–571

    Article  PubMed  CAS  Google Scholar 

  • Kameda A, Hoshino M, Higurashi T, Takahashi S, Naiki H, Goto Y (2005) Nuclear magnetic resonance characterization of the refolding intermediate of beta2-microglobulin trapped by non-native prolyl peptide bond. J Mol Biol 348:383–397

    Article  PubMed  CAS  Google Scholar 

  • Kang SJ, Cresswell P (2002) Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J Biol Chem 277:44838–44844

    Article  PubMed  CAS  Google Scholar 

  • Kardos J, Micsonai A, Pal-Gabor H, Petrik E, Graf L, Kovacs J, Lee YH, Naiki H, Goto Y (2011) Reversible heat-induced dissociation of beta2-microglobulin amyloid fibrils. Biochemistry 19(50):3211–3220

    Article  CAS  Google Scholar 

  • Karlsson FA, Wibell L, Evrin PE (1980) b2-microglobulin in clinical medicine. Scand J Clin Lab Invest 40(Suppl 154):27–37

    Google Scholar 

  • Kawano M, Muramoto H, Yamada M, Minamoto M, Araki H, Koni I, Mabuchi H, Nonomura A (1998) Fatal cardiac beta2-microglobulin amyloidosis in patients on long-term hemodialysis. Am J Kidney Dis 31:E4

    Article  PubMed  CAS  Google Scholar 

  • Khan AR, Baker BM, Ghosh P, Biddison WE, Wiley DC (2000) The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J Immunol 164:6398–6405

    PubMed  CAS  Google Scholar 

  • Kinoshita CM, Gewurz AT, Siegel JN, Ying SC, Hugli TE, Coe JE, Gupta RK, Huckman R, Gewurz H (1992) A protease-sensitive site in the proposed Ca(2 +)-binding region of human serum amyloid P component and other pentraxins. Protein Sci 1:700–709

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Keusch G, Zanetti M, Jung T, Schwarz A, Schocke M, Jaschke W, Czermak BV (2005) Dialysis-related amyloidosis revisited. AJR Am J Roentgenol 185:1460–1467

    Article  PubMed  Google Scholar 

  • Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8:770–774

    Article  PubMed  CAS  Google Scholar 

  • Kuntz D, Naveau B, Bardin T, Drueke T, Treves R, Dryll A (1984) Destructive spondylarthropathy in hemodialyzed patients. A new syndrome. Arthritis Rheum 27:369–375

    Article  PubMed  CAS  Google Scholar 

  • Kwon HK, Pyun SB, Cho WY, Boo CS (2011) Carpal tunnel syndrome and peripheral polyneuropathy in patients with end stage kidney disease. J Korean Med Sci 26:1227–1230

    Article  PubMed  Google Scholar 

  • Labriola L, Garbar C, Jadoul M (2007) Persistence of beta2-microglobulin amyloidosis 20 years after successful kidney transplantation. Am J Kidney Dis 50:167–168

    Article  PubMed  Google Scholar 

  • Lee S, Eisenberg D (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat Struct Biol 10:725–730

    Article  PubMed  CAS  Google Scholar 

  • Lee DM, Jackson KW, Knowlton N, Wages J, Alaupovic P, Samuelsson O, Saeed A, Centola M, Attman PO (2011) Oxidative stress and inflammation in renal patients and healthy subjects. PLoS ONE 6:e22360.

    Article  PubMed  CAS  Google Scholar 

  • Linke RP, Bommer J, Ritz E, Waldherr R, Eulitz M (1986) Amyloid kidney stones of uremic patients consist of beta 2-microglobulin fragments. Biochem Biophys Res Commun 136:665–671

    Article  PubMed  CAS  Google Scholar 

  • Linke RP, Hampl H, Bartel-Schwarze S, Eulitz M (1987) Beta 2-microglobulin, different fragments and polymers thereof in synovial amyloid in long-term hemodialysis. Biol Chem Hoppe Seyler 368:137–144

    Article  PubMed  CAS  Google Scholar 

  • Linke RP, Hampl H, Lobeck H, Ritz E, Bommer J, Waldherr R, Eulitz M (1989) Lysine-specific cleavage of beta 2-microglobulin in amyloid deposits associated with hemodialysis. Kidney Int 36:675–681

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Sawaya MR, Eisenberg D (2011) beta-Microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol 18:49–55

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH (2010) Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal Chem 82:5219–5226

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Marcelli D, Conte F, Limido A, Malberti F, Spotti D (1999) Comparison of mortality in ESRD patients on convective and diffusive extracorporeal treatments. The Registro Lombardo Dialisi E Trapianto. Kidney Int 55:286–293

    Article  PubMed  CAS  Google Scholar 

  • Magnus JH, Stenstad T, Kolset SO, Husby G (1991) Glycosaminoglycans in extracts of cardiac amyloid fibrils from familial amyloid cardiomyopathy of Danish origin related to variant transthyretin Met 111. Scand J Immunol 34:63–69

    Article  PubMed  CAS  Google Scholar 

  • McParland VJ, Kad NM, Kalverda AP, Brown A, Kirwin-Jones P, Hunter MG, Sunde M, Radford SE (2000) Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. Biochemistry 39:8735–8746

    Article  PubMed  CAS  Google Scholar 

  • Mendoza VL, Antwi K, Baron-Rodriguez MA, Blanco C, Vachet RW (2010) Structure of the preamyloid dimer of beta-2-microglobulin from covalent labeling and mass spectrometry. Biochemistry 49:1522–1532

    Article  PubMed  CAS  Google Scholar 

  • Mendoza VL, Baron-Rodriguez MA, Blanco C, Vachet RW (2011) Structural insights into the pre-amyloid tetramer of beta-2-microglobulin from covalent labeling and mass spectrometry. Biochemistry 50:6711–6722

    Article  PubMed  CAS  Google Scholar 

  • Mimmi MC, Jorgensen TJ, Pettirossi F et al (2006) Variants of beta-microglobulin cleaved at lysine-58 retain the main conformational features of the native protein but are more conformationally heterogeneous and unstable at physiological temperature. FEBS J 273:2461–2474

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Ishiyama T, Inomata A, Takeda T, Senma S, Okuyama K, Suzuki Y (1992) Radiolucent bone cysts and the type of dialysis membrane used in patients undergoing long-term hemodialysis. Nephron 60:268–273

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Oda O, Inagi R, Iida Y, Araki N, Yamada N, Horiuchi S, Taniguchi N, Maeda K, Kinoshita T (1993) beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 92:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Taneda S, Kawai R, Ueda Y, Horiuchi S, Hara M, Maeda K, Monnier VM (1996) Identification of pentosidine as a native structure for advanced glycation end products in b2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci U S A 93:2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Mogyorosi A, Schubert ML (1999) Dialysis-related amyloidosis: an important cause of gastrointestinal symptoms in patients with end-stage renal disease. Gastroenterology 116:217–220

    Article  PubMed  CAS  Google Scholar 

  • Morgan CJ, Gelfand M, Atreya C, Miranker AD (2001) Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. J Mol Biol 309:339–345

    Article  PubMed  CAS  Google Scholar 

  • Motomiya Y, Ando Y, Haraoka K, Sun X, Iwamoto H, Uchimura T, Maruyama I (2003) Circulating level of alpha2-macroglobulin-beta2-microglobulin complex in hemodialysis patients. Kidney Int 64:2244–2252

    Article  PubMed  CAS  Google Scholar 

  • Mount SL, Eltabbakh GH, Hardin NJ (2002) Beta-2 microglobulin amyloidosis presenting as bilateral ovarian masses: a case report and review of the literature. Am J Surg Pathol 26:130–133

    Article  PubMed  Google Scholar 

  • Mourad G, Argiles A (1996) Renal transplantation relieves the symptoms but does not reverse beta 2-microglobulin amyloidosis. J Am Soc Nephrol 7:798–804

    PubMed  CAS  Google Scholar 

  • Myers SL, Jones S, Jahn TR, Morten IJ, Tennent GA, Hewitt EW, Radford SE (2006) A systematic study of the effect of physiological factors on b2-microglobulin amyloid formation at neutral pH. Biochemistry 45:2311–2321

    Article  PubMed  CAS  Google Scholar 

  • Naiki H, Gejyo F, Nakakuki K (1997) Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry 36:6243–6250

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Wang X, Rodziewicz-Motowidlo S, Janowski R, Lindstrom V, Onnerfjord P, Westermark G, Grzonka Z, Jaskolski M, Grubb A (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245

    Article  PubMed  CAS  Google Scholar 

  • Nissen MH, Thim L, Christensen M (1987) Purification and biochemical characterization of the complete structure of a proteolytically modified beta-2-microglobulin with biological activity. Eur J Biochem 163:21–28

    Article  PubMed  CAS  Google Scholar 

  • Nissen MH, Roepstorff P, Thim L, Dunbar B, Fothergill JE (1990) Limited proteolysis of beta 2-microglobulin at Lys-58 by complement component C1s. Eur J Biochem 189:423–429

    Article  PubMed  CAS  Google Scholar 

  • Nissen MH, Johansen B, Bjerrum OJ (1997) A simple method for the preparation and purification of C1 complement cleaved beta 2-microglobulin from human serum. J Immunol Methods 205:29–33

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Katsuzaki T, Momoi T, Miyazaki T, Ogawa H, Saito A, Miyazaki S, Maeda K, Tatemichi N, Takei Y (1996) Modification of beta 2m with advanced glycation end products as observed in dialysis-related amyloidosis by 3-DG accumulating in uremic serum. Kidney Int 49:861–867

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Katsuzaki T, Miyazaki S, Momoi T, Akiba T, Miyazaki T, Nokura K, Hayase F, Tatemichi N, Takei Y (1997) Amyloid b2-microglobulin is modified with imidazolone, a novel advanced glycation end product, in dialysis-related amyloidosis. Kidney Int 51:187–194

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Tsukushi S (2001) 3-Deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int Suppl 78:S37-S41

    Article  PubMed  CAS  Google Scholar 

  • Odani H, Oyama R, Titani K, Ogawa H, Saito A (1990) Purification and complete amino acid sequence of novel b2-microglobulin. Biochem Biophys Res Commun 168:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Saito A, Oda O, Nakajima M, Chung TG (1988) Detection of novel beta 2-microglobulin in the serum of hemodialysis patients and its amyloidogenic predisposition. Clin Nephrol 30:158–163

    PubMed  CAS  Google Scholar 

  • Ohhashi Y, Kihara M, Naiki H, Goto Y (2005) Ultrasonication-induced amyloid fibril formation of beta2-microglobulin. J Biol Chem 280:32843–32848

    Article  PubMed  CAS  Google Scholar 

  • Okon M, Bray P, Vucelic D (1992) 1H NMR assignments and secondary structure of human beta 2-microglobulin in solution. Biochemistry 31:8906–8915

    Article  PubMed  CAS  Google Scholar 

  • Otten GR, Bikoff E, Ribaudo RK, Kozlowski S, Margulies DH, Germain RN (1992) Peptide and beta 2-microglobulin regulation of cell surface MHC class I conformation and expression. J Immunol 148:3723–3732

    PubMed  CAS  Google Scholar 

  • Ozawa D, Yagi H, Ban T, Kameda A, Kawakami T, Naiki H, Goto Y (2009) Destruction of amyloid fibrils of a beta2-microglobulin fragment by laser beam irradiation. J Biol Chem 284:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Ozawa D, Hasegawa K, Lee YH, Sakurai K, Yanagi K, Ookoshi T, Goto Y, Naiki H (2011a) Inhibition of beta2-microglobulin amyloid fibril formation by alpha2-macroglobulin. J Biol Chem 286:9668–9676

    Article  CAS  Google Scholar 

  • Ozawa D, Kaji Y, Yagi H, Sakurai K, Kawakami T, Naiki H, Goto Y (2011b) Destruction of amyloid fibrils of keratoepithelin peptides by laser irradiation coupled with amyloid-specific thioflavin T. J Biol Chem 286:10856–10863

    Article  CAS  Google Scholar 

  • Pedersen JT, Østergaard J, Rozlosnik N, Gammelgaard B, Heegaard NH (2011) Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-beta peptides. J Biol Chem 286:26952–26963

    Article  PubMed  CAS  Google Scholar 

  • Pepys MB (2006) Amyloidosis. Annu Rev Med 57:223–241

    Article  PubMed  CAS  Google Scholar 

  • Platt GW, Routledge KE, Homans SW, Radford SE (2008) Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation. J Mol Biol 378:251–263

    Article  PubMed  CAS  Google Scholar 

  • Praetor A, Hunziker W (2002) beta(2)-Microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J Cell Sci 115:2389–2397

    PubMed  CAS  Google Scholar 

  • Regazzoni L, Colombo R, Bertoletti L et al (2011) Screening of fibrillogenesis inhibitors of beta2-microglobulin: integrated strategies by mass spectrometry capillary electrophoresis and in silico simulations. Anal Chim Acta 685:153–161

    Article  PubMed  CAS  Google Scholar 

  • Relini A, Canale C, De SS et al (2006) Collagen plays an active role in the aggregation of beta2-microglobulin under physiopathological conditions of dialysis-related amyloidosis. J Biol Chem 281:16521–16529

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99:2754–2759

    Article  PubMed  CAS  Google Scholar 

  • Sacchettini JC, Kelly JW (2002) Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1:267–275

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Pietromonaco S, Loo AK, Farquhar MG (1994) Complete cloning and sequencing of rat gp330/“megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci U S A 91:9725–9729

    Article  PubMed  CAS  Google Scholar 

  • Sambashivan S, Liu Y, Sawaya MR, Gingery M, Eisenberg D (2005) Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437:266–269

    Article  PubMed  CAS  Google Scholar 

  • Santambrogio C, Ricagno S, Colombo M, Barbiroli A, Bonomi F, Bellotti V, Bolognesi M, Grandori R (2010) DE-loop mutations affect beta2 microglobulin stability, oligomerization, and the low-pH unfolded form. Protein Sci 19:1386–1394

    Article  PubMed  CAS  Google Scholar 

  • Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6A resolution. J Mol Biol 219:277–319

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Yagi H, Naiki H, Goto Y (2007) Heat-induced conversion of beta(2)-microglobulin and hen egg-white lysozyme into amyloid fibrils. J Mol Biol 372:981–991

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Drechsler C, Krane V, Krieter DH, Scharnagl H, Schneider MP, Wanner C (2011) The effect of high-flux hemodialysis on hemoglobin concentrations in patients with CKD: results of the MINOXIS study. Clin J Am Soc Nephrol 7(1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Schwalbe S, Holzhauer M, Schaeffer J, Galanski M, Koch KM, Floege J (1997) Beta 2-microglobulin associated amyloidosis: a vanishing complication of long-term hemodialysis? Kidney Int 52:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Yasui C, Yasukawa K, Nakamura H, Shimizu H, Tsuchiya K (2003) Subcutaneous nodules on the buttocks as a manifestation of dialysis-related amyloidosis: a clinicopathological entity? Br J Dermatol 149:400–404

    Article  PubMed  CAS  Google Scholar 

  • Skinner M, Pepys MB, Cohen AS, Heller LM, Lian JB (1980) In: Freitas AF de, Glenner GG, Costa PP (eds) Amyloid and amyloidosis: proceedings of the Third International Symposium on Amyloidosis, Póvoa de Varzim, Portugal, 23–28 September 1979. Amsterdam: Excerpta Medica, pp 384–391

    Google Scholar 

  • Smith DP, Jones S, Serpell LC, Sunde M, Radford SE (2003) A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation. J Mol Biol 330:943–954

    Article  PubMed  CAS  Google Scholar 

  • Snow AD, Kisilevsky R (1985) Temporal relationship between glycosaminoglycan accumulation and amyloid deposition during experimental amyloidosis. A histochemical study. Lab Invest 53:37–44

    PubMed  CAS  Google Scholar 

  • Snow AD, Willmer J, Kisilevsky R (1987) A close ultrastructural relationship between sulfated proteoglycans and AA amyloid fibrils. Lab Invest 57:687–698

    PubMed  CAS  Google Scholar 

  • Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am J Pathol 133:456–463

    PubMed  CAS  Google Scholar 

  • Snow AD, Bramson R, Mar H, Wight TN, Kisilevsky R (1991) A temporal and ultrastructural relationship between heparan sulfate proteoglycans and AA amyloid in experimental amyloidosis. J Histochem Cytochem 39:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Stoppini MS, Arcidiaco P, Mangione P, Giorgetti S, Brancaccio D, Bellotti V (2000) Detection of fragments of beta2-microglobulin in amyloid fibrils. Kidney Int 57:349–350

    Article  PubMed  CAS  Google Scholar 

  • Stoppini M, Mangione P, Monti M et al (2005) Proteomics of beta2-microglobulin amyloid fibrils. Biochim Biophys Acta 1753:23–33

    Article  PubMed  CAS  Google Scholar 

  • Takayama F, Miyazaki S, Morita T, Hirasawa Y, Niwa T (2001) Dialysis-related amyloidosis of the heart in long-term hemodialysis patients. Kidney Int Suppl 78:S172-S176

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Sadeghi M, Olumee Z, Vertes A, Braatz JA, McIlwain LK, Dreifuss PA (1996) Detection and quantitation of beta-2-microglobulin glycosylated end products in human serum by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 68:3740–3745

    Article  PubMed  CAS  Google Scholar 

  • Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92:4299–4303

    Article  PubMed  CAS  Google Scholar 

  • Terawaki H, Yoshimura K, Hasegawa T, Matsuyama Y, Negawa T, Yamada K, Matsushima M, Nakayama M, Hosoya T, Era S (2004) Oxidative stress is enhanced in correlation with renal dysfunction: examination with the redox state of albumin. Kidney Int 66:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Treuhaft PS, MCCarty DJ (1971) Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum 14:475–484

    Article  PubMed  CAS  Google Scholar 

  • Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE (2002) Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci U S A 99:9771–9776

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  PubMed  CAS  Google Scholar 

  • van Ypersele dS, Jadoul M, Malghem J, Maldague B, Jamart J (1991) Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney Int 39:1012–1019

    Article  Google Scholar 

  • Verdone G, Corazza A, Viglino P, Pettirossi F, Giorgetti S, Mangione P, Andreola A, Stoppini M, Bellotti V, Esposito G (2002) The solution structure of human beta2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci 11:487–499

    Article  PubMed  CAS  Google Scholar 

  • Villanueva J, Hoshino M, Katou H, Kardos J, Hasegawa K, Naiki H, Goto Y (2004) Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis. Protein Sci 13:797–809

    Article  PubMed  CAS  Google Scholar 

  • Vincent C, Dennoroy L, Revillard J-P (1994) Molecular variants of b2-microglobulin in renal insufficiency. Biochem J 298:181–187

    PubMed  CAS  Google Scholar 

  • Vorbeck-Meister I, Sommer R, Vorbeck F, Horl WH (1999) Quality of water used for haemodialysis: bacteriological and chemical parameters. Nephrol Dial Transplant 14:666–675

    Article  PubMed  CAS  Google Scholar 

  • Wahlbom M, Wang X, Lindstrom V, Carlemalm E, Jaskolski M, Grubb A (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem 282:18318–18326

    Article  PubMed  CAS  Google Scholar 

  • Warren DJ, Otieno LS (1975) Carpal tunnel syndrome in patients on intermittent haemodialysis. Postgrad Med J 51:450–452

    Article  PubMed  CAS  Google Scholar 

  • White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS, Muller S, Orlova EV, Radford SE, Saibil HR (2009) Globular tetramers of beta(2)-microglobulin assemble into elaborate amyloid fibrils. J Mol Biol 389:48–57

    Article  PubMed  CAS  Google Scholar 

  • Williams DB, Barber BH, Flavell RA, Allen H (1989) Role of beta 2-microglobulin in the intracellular transport and surface expression of murine class I histocompatibility molecules. J Immunol 142:2796–2806

    PubMed  CAS  Google Scholar 

  • Winchester JF, Salsberg JA, Levin NW (2003) Beta-2 microglobulin in ESRD: an in-depth review. Adv Ren Replace Ther 10:279–309

    Article  PubMed  Google Scholar 

  • Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035

    PubMed  CAS  Google Scholar 

  • Woods LA, Platt GW, Hellewell AL, Hewitt EW, Homans SW, Ashcroft AE, Radford SE (2011) Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nat Chem Biol 7:730–739

    Article  PubMed  CAS  Google Scholar 

  • Wu AHB (2006) Tietz Clinical Guide to Laboratory Tests, 4th edn. Saunders, St. Louis

    Google Scholar 

  • Yamaguchi I, Suda H, Tsuzuike N et al (2003) Glycosaminoglycan and proteoglycan inhibit the depolymerization of beta2-microglobulin amyloid fibrils in vitro. Kidney Int 64:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004a) Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43:11075–11082

    Article  CAS  Google Scholar 

  • Yamamoto S, Yamaguchi I, Hasegawa K, Tsutsumi S, Goto Y, Gejyo F, Naiki H (2004b) Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 15:126–133

    Article  CAS  Google Scholar 

  • Yamamoto K, Yagi H, Ozawa D, Sasahara K, Naiki H, Goto Y (2008) Thiol compounds inhibit the formation of amyloid fibrils by beta 2-microglobulin at neutral pH. J Mol Biol 376:258–268

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Kazama JJ, Narita I, Naiki H, Gejyo F (2009) Recent progress in understanding dialysis-related amyloidosis. Bone. 45(Suppl 1):S39–S42. [Epub 2009, Mar 19]

    Article  PubMed  CAS  Google Scholar 

  • Young ID, Willmer JP, Kisilevsky R (1989) The ultrastructural localization of sulfated proteoglycans is identical in the amyloids of Alzheimer’s disease and AA, AL, senile cardiac and medullary carcinoma-associated amyloidosis. Acta Neuropathol 78:202–209

    Article  PubMed  CAS  Google Scholar 

  • Young ID, Ailles L, Narindrasorasak S, Tan R, Kisilevsky R (1992) Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus. Arch Pathol Lab Med 116:951–954

    PubMed  CAS  Google Scholar 

  • Zhang P, Fu X, Sawashita J et al (2010) Mouse model to study human A beta 2M amyloidosis: generation of a transgenic mouse with excessive expression of human beta2-microglobulin. Amyloid 17:50–62

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) Beta 2-microglobulin deficient mice lack CD4-8 + cytolytic T cells. Nature 443:742–746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels H. H. Heegaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Corlin, D., Heegaard, N. (2012). β2-Microglobulin Amyloidosis. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_19

Download citation

Publish with us

Policies and ethics