Skip to main content

The mitochondrial genome of stygobitic sponge Eunapius subterraneus: mtDNA is highly conserved in freshwater sponges

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:
Ancient Animals, New Challenges

Abstract

The complete mitochondrial DNA (mtDNA) genome of the Eunapius subterraneus (Porifera, Demospongiae), a unique stygobitic sponge, was analyzed and compared with previously published mitochondrial genomes from this group. The 24,850 bp long mtDNA genome is circular with the same gene composition as found in other metazoans. Intergenic regions (IGRs) comprise 24.7% of mtDNA and are abundant with direct and inverted repeats and palindromic elements as well as with open reading fames (ORFs) whose distribution and homology was compared with other available mt genomes with a special focus on freshwater sponges. Phylogenetic analyses based on concatenated amino acid sequences from 12 mt protein genes placed E. subterraneus in a well-supported monophyletic clade with the freshwater sponges, Ephydatia muelleri and Lubomirskia baicalensis. Our study showed high homology of mtDNA genomes among freshwater sponges, implying their recent split.

Bruna Pleše and Lada Lukić-Bilela contributed equally to this work.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abascal, F., R. Zardoya & D. Posada, 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

    Article  CAS  Google Scholar 

  • Addis, J. S. & K. J. Peterson, 2005. Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. Zoologica scripta 34: 549–557.

    Article  Google Scholar 

  • Anisimova, M. & O. Gascuel, 2006. Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Systematic Biology 55: 539–552.

    Article  Google Scholar 

  • Aono, N., T. Shimizu, T. Inoue & H. Shiraishi, 2002. Palindromic repetitive elements in the mitochondrial genome of Volvox. FEBS Letters 521: 95–99.

    Article  CAS  Google Scholar 

  • Arunkumar, K. P. & J. Nagaraju, 2006. Unusually long palindromes are abundant in mitochondrial control regions of insects and nematodes. Plos ONE 1: e110.

    Article  CAS  Google Scholar 

  • Basrai, M. A., P. Hieter & J. D. Boeke, 1997. Small open reading frames: beautiful needles in the haystack. Genome Research 7: 768–771.

    CAS  Google Scholar 

  • Belinky, F., C. Rot, M. Ilan & D. Huchon, 2008. The complete mitochondrial genome of the demosponge Negombata magnifica (Poecilosclerida). Molecular Phylogenetics and Evolution 47: 1238–1243.

    Article  CAS  Google Scholar 

  • Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell & D. L. Wheeler, 2003. GenBank. Nucleic Acids Research 31: 23–27.

    Article  CAS  Google Scholar 

  • Bilandžija, H., J. Bedek, B. Jalžić & S. Gottstein, 2007. The morphological variability, distribution patterns and endangerment in the Ogulin cave sponge Eunapius subterraneus. Natura Croatica 16: 1–17.

    Google Scholar 

  • Bilandžija, H., J. Bedek & B. Jalžić, 2009. Ogulin cave sponge. In Ozimec, R., et al. (eds), Red Book of Croatia Cave Dwelling Fauna. Ministry of culture, State Institute for Nature Protection, Zagreb: 176–177.

    Google Scholar 

  • Boore, J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Research 27: 1767–1780.

    Article  CAS  Google Scholar 

  • Borchiellini, C., C. Chombard, M. Manuel, E. Alivon, J. Vacelet & N. Boury-Esnault, 2004. Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. Molecular Phylogenetics and Evolution 32: 823–837.

    Article  CAS  Google Scholar 

  • Burger, G., L. Forget, Y. Zhu, M. W. Gray & B. F. Lang, 2003. Unique mitochondrial genome architecture in unicellular relatives of animals. Proceedings of the National Academy of Sciences USA 100: 892–897.

    Article  CAS  Google Scholar 

  • Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.

    Article  CAS  Google Scholar 

  • Drummond, A. & K. Strimmer, 2001. PAL: An object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 17: 662–663.

    Article  CAS  Google Scholar 

  • Erpenbeck, D., O. Voigt, M. Adamski, M. Adamska, J. N. A. Hooper, G. Wörheide & B. M. Degnan, 2007. Mitochondrial diversity of early-branching metazoa is revealed by the complete mt genome of a Haplosclerid Demosponge. Molecular Biology and Evolution 24: 19–22.

    Article  CAS  Google Scholar 

  • Erpenbeck, D., O. Voigt, G. Wörheide & D. V. Lavrov, 2009. The mitochondrial genomes of sponges provide evidence for multiple invasions by repetitive hairpin-forming elements (RHE). BMC Genomics 10: 591.

    Article  Google Scholar 

  • Flot, J. F. & S. Tillier, 2007. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401: 80–87.

    Article  CAS  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  Google Scholar 

  • Harcet, M., H. Bilandžija, B. Bruvo-Mađarić & H. Ćetković, 2010. Taxonomic position of Eunapius subterraneus (Porifera, Spongillidae) inferred from molecular data—a revised classification needed? Molecular Phylogenetics and Evolution 54: 1021–1027.

    Article  Google Scholar 

  • Hixson, J. E., T. W. Wong & D. A. Clayton, 1986. Both the conserved stem-loop and divergent 59-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. The Journal of Biological Chemistry 261: 2384–2390.

    CAS  Google Scholar 

  • Hooper, J. N. A. & R. W. M. van Soest, 2002. Class Demospongiae Sollas, 1885. In Hooper, J. N. A. & R. W. M. van Soest (eds), Systema Porifera: A guide to the Classification of Sponges. Kluwer, New York: 15–18.

    Google Scholar 

  • Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

    Article  CAS  Google Scholar 

  • Kastenmayer, J. P., L. Ni, A. Chu, L. E. Kitchen, W. C. Au, H. Yang, C. D. Carter, D. Wheeler, R. W. Davis, J. D. Boeke, M. A. Snyder & M. A. Basrai, 2006. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Research 16: 365–373.

    Article  CAS  Google Scholar 

  • Kornberg, A. & T. Baker, 1992. DNA Replication. W. Freeman & Co, New York.

    Google Scholar 

  • Lavrov, D. V., 2007. Key transitions in animal evolution: a mitochondrial DNA perspective. Integrative and Comparative Biology 47: 734–743.

    Article  CAS  Google Scholar 

  • Lavrov, D. V., 2009. Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis. Molecular Biology and Evolution. doi:10.1093/molbev/msp317.

  • Lavrov, D. V., L. Forget, M. Kelly & B. F. Lang, 2005. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Molecular Biology and Evolution 22: 1231–1239.

    Article  CAS  Google Scholar 

  • Lowe, T. M. & S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 31: 176–178.

    Google Scholar 

  • Lukić-Bilela, L., D. Brandt, N. Pojskić, M. Wiens, V. Gamulin & W. E. G. Müller, 2008. Mitochondrial genome of Suberites domuncula: Palindromes and inverted repeats are abundant in non-coding regions. Gene 412: 1–11.

    Article  Google Scholar 

  • Manconi, R. & R. Pronzato, 2002. Suborder Spongillina subord. nov: Freshwater sponges. In Hooper, J. N. A. & R. W. M. van Soest (eds), Systema Porifera: A Guide to the Classification of Sponges. Kluwer, New York: 921–1019.

    Google Scholar 

  • Meixner, M. J., C. Lüter, C. Eckert, V. Itskovich, D. Janussen, T. von Rintelen, A. V. Bohne, J. M. Meixner & W. R. Hess, 2007. Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Molecular Phylogenetics and Evolution 45: 875–886.

    Article  CAS  Google Scholar 

  • Nedelcu, A. M. & R. W. Lee, 1998. Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution. Molecular Biology and Evolution 15: 690–701.

    Article  CAS  Google Scholar 

  • Paquin, B., M. J. Laforest & B. F. Lang, 2000. Double-hairpin elements in the mitochondrial DNA of allomyces. Molecular Biology and Evolution 17: 1760–1768.

    Article  CAS  Google Scholar 

  • Peterson, K. J. & N. J. Butterfield, 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences USA 102: 9547–9552.

    Article  CAS  Google Scholar 

  • Rice, P., I. Longden & A. Bleasby, 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends in Genetics 16: 276–277.

    Article  CAS  Google Scholar 

  • Rosengarten, R. D., E. A. Sperling, M. A. Moreno, S. P. Leys & S. L. Dellaporta, 2008. The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: evidence for programmed translational frameshifting. BMC Genomics 9: 33.

    Article  Google Scholar 

  • Saito, S., K. Tamura & T. Aotsuka, 2005. Replication origin of mitochondrial DNA in insects. Genetics 171: 1695–1705.

    Article  CAS  Google Scholar 

  • Sanderson, M. J., 2003. r8 s; inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301–302.

    Article  CAS  Google Scholar 

  • Shao, Z., S. Graf, O. Y. Chaga & D. V. Lavrov, 2006. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381: 92–101.

    Article  CAS  Google Scholar 

  • Sket, B. & M. Velikonja, 1984. Prethodni izvještaj o nalazima slatkovodnih spužvi (Porifera, Spongillidae) u spiljama Jugoslavije, In Deveti jugoslavenski speleološki kongres: 553–557.

    Google Scholar 

  • Smith, D. R. & R. W. Lee, 2009. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA. BMC Genomics 10: 132.

    Article  Google Scholar 

  • Swofford, D. L., 2000. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0. Sinauer, Sunderland.

    Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Veynberg, E., 2009. Fossil sponge fauna in lake baikal region. Progress in Molecular and Subcellular Biology 47: 185–205.

    Article  Google Scholar 

  • Wagner, E., 1991. Herpesvirus Transcription and its Regulation. CRC Press, Boca Raton.

    Google Scholar 

  • Wang, X. & D. V. Lavrov, 2008. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. Plos ONE 3(7): e2723.

    Article  Google Scholar 

  • Weinberg, E., I. Weinberg, S. Efremova, A. Tanichev & Y. Masuda, 2003. Late Pliocene spongial fauna in Lake Baikal (from material from the Deep Drilling Core BDP-96–1). In Kashiwaya, K. (ed.), Long Continental Records from Lake Baikal. Springer-Verlag, Tokyo: 283–293.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruna Pleše or Helena Ćetković .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 2.67 mb)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pleše, B. et al. (2011). The mitochondrial genome of stygobitic sponge Eunapius subterraneus: mtDNA is highly conserved in freshwater sponges. In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_6

Download citation

Publish with us

Policies and ethics