Skip to main content

Qualitative variation in colour morphotypes of Ianthella basta (Porifera: Verongida)

  • SPONGE RESEARCH DEVELOPMENTS
  • Chapter
  • First Online:
Ancient Animals, New Challenges

Part of the book series: Developments in Hydrobiology ((DIHY,volume 219))

  • 728 Accesses

Abstract

Natural populations of marine invertebrates often exhibit measureable morphologic variation resulting in taxonomic confusion. This potentially has severe consequences for experimental design and data management. Species of the sponge genus Ianthella embody a number of different morphologies and a diverse range of secondary metabolites. Among them, Ianthella basta (Pallas, 1776), a common sponge in Papua New Guinea and the Great Barrier Reef (GBR), exhibits two dominant colour morphotypes: yellow and purple. Specimens collected from Orpheus Island on the GBR were investigated using phylogenetic (CO1, ITS-2 sequence analysis), chemical (mass spectrometry) and microbial (DGGE and 16S rRNA clone library) techniques in an effort to fully characterise the two colour morphs. Phylogenetic analyses indicated sharp genetic discontinuities within I. basta sensu lato independent of colour variation. The two morphotypes did, however, correspond to distinct DGGE profiles largely due to the presence of additional bands in the purple morpho-group. Further comparison of the microbial communities by 16S rRNA gene sequencing revealed that whilst both colour morphs were dominated by only two bacterial symbionts (residing within the Gamma and Alphaproteobacteria), the purple morph also contained minor representatives of the Cyanobacteria, Chloroflexi and Verrucomicrobia. Untargeted metabolic profiling by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) indicated two distinct clusters corresponding to the different sponge colours. A clear association was found between the araplysillin class of compounds and the purple morphotype of I. basta, indicating the utility of a metabolomic approach to assess differences between colour morphs. These results have important implications for ecological investigations in sponges and other invertebrate taxa whose morphology is fundamentally dynamic, stressing the need for precise taxonomic, chemical and microbial descriptions.

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdo, D. A., C. A. Motti, C. N. Battershill & E. S. Harvey, 2007. Temperature and spatiotemporal variability of salicylihalamide A in the sponge Haliclona sp. Journal of Chemical Ecology 33: 1635–1645.

    Article  CAS  Google Scholar 

  • Ackers, R. G. & D. Moss, 1987. Current problems with field recognition and species differentiation in shallow water British sponges. In Earll, R. & S. Gubbay (eds), Marine Recordings, Vol. 2. Marine Conservation Society, Herefordshire: 22–27.

    Google Scholar 

  • Ackers, R. G., D. Moss & B. E. Picton, 1992. Sponges of the British Isles (Sponge V). Marine Conservation Society, Herefordshire. 175.

    Google Scholar 

  • Aharoni, A., C. H. Ric de Vos, H. A. Verhoeven, C. A. Maliepaard, G. Kruppa, R. Bino & D. B. Goodenowe, 2002. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6: 217–234.

    Article  CAS  Google Scholar 

  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

    Article  CAS  Google Scholar 

  • Bandelt, H. J., P. Forster & A. Röhl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

    Article  CAS  Google Scholar 

  • Barkauskas, D., 2009. FTICRMS: programs for analyzing Fourier transform-ion cyclotron resonance mass spectrometry data. R package version 0.8. http://CRAN.R-project.org/package=FTICRMS.

  • Bell, J. J. & D. K. A. Barnes, 2001. Sponge morphological diversity: a qualitative predictor of species diversity? Aquatic Conservation: Marine and Freshwater Ecosystems 11: 109–121.

    Article  Google Scholar 

  • Bergquist, P. R. & R. Wells, 1983. Chemotaxonomy of the Porifera: the development and current status of the field. In Scheuer, P. (ed.), Chemical and Biological Perspectives, Vol. 5. Academic Press, New York: 1–50.

    Google Scholar 

  • Bewley, C. A., N. D. Holland & D. J. Faulkner, 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722.

    Article  CAS  Google Scholar 

  • Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155.

    Article  Google Scholar 

  • Blanquer, A. & M. J. Uriz, 2007. Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Molecular Phylogenetics and Evolution 45: 392–397.

    Article  CAS  Google Scholar 

  • Bond, C. & A. K. Harris, 1988. Locomotion of sponges and its physical mechanism. Journal of Experimental Zoology 246: 271–284.

    Article  CAS  Google Scholar 

  • Calcul, L., W. D. Inman, A. A. Morris, K. Tenney, J. Ratnam, J. H. McKerrow, F. A. Valeriote & P. Crews, 2010. Additional insights on the Bastadins: isolation of analogues from the sponge Ianthella cf. reticulata and exploration of the oxime configurations. Journal of Natural Products 73: 365–372.

    Article  CAS  Google Scholar 

  • Caputi, L., N. Andreakis, P. Cirino, F. Mastrototaro & P. Sordino, 2007. Cryptic speciation in a model invertebrate chordate. Proceedings of the National Academy of Science of the USA 104: 9364–9369.

    Article  Google Scholar 

  • DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu & G. L. Andersen, 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 172: 5069–5072.

    Article  Google Scholar 

  • Donia, M. S., W. F. Fricke, J. Ravel & E. W. Schmidt, 2011. Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS One. 6:e17897.

    Google Scholar 

  • Doyle, J. R., J. N. Burnell, D. S. Haines, L. E. Llewellyn, C. A. Motti & D. M. Tapiolas, 2005. A rapid screening method to detect specific inhibitors of pyruvate, orthophosphate dikinase as leads for C4 plant-selective herbicides. Journal of Biomolecular Screening 10: 67–75.

    Article  CAS  Google Scholar 

  • Erwin, P. M. & R. W. Thacker, 2007. Phylogenetic analyses of marine sponges within the order Verongida: a comparison of morphological and molecular data. Invertebrate Biology 126: 220–234.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (Phylogenetic Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle, WA.

    Google Scholar 

  • Ferris, M. J., G. Muyzer & D. M. Ward, 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology 62: 340–346.

    CAS  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome C oxidases subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–297.

    CAS  Google Scholar 

  • Gaino, E., R. Manconi & R. Pronzato, 1995. Organisational plasticity as a successful conservative tactics in sponges. Animal Biology 4: 31–43.

    Google Scholar 

  • Garson, M. J., 1993. The biosynthesis of marine natural products. Chemical Reviews 9: 1699–1733.

    Article  Google Scholar 

  • Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 41: 95–98.

    CAS  Google Scholar 

  • Hertzberg, S., P. Bergquist & S. Liaaen-Jensen, 1989. Further occurrence of sulphated carotenoids in Ianthella species (Demospongia). Biochemical Systematics and Ecology 17: 51–53.

    Article  CAS  Google Scholar 

  • Hillis, D. M. & J. P. Huelsenbeck, 1992. Signal, noise and reliability in molecular phylogenetic analysis. Journal of Heredity 83: 189–195.

    CAS  Google Scholar 

  • Huber, T., G. Faulkner & P. Hugenholtz, 2004. Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319.

    Article  CAS  Google Scholar 

  • Lane, D. J., 1991. 16S rRNA sequencing. In Stackerbrandt, E. & M. Goodfellow (eds), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Inc, New York: 115–148.

    Google Scholar 

  • Lee, W. L. & B. M. Gilchrist, 1985. Carotenoid patterns in twenty-nine species of sponges in the order Poecilosclerida (Porifera: Demospongiae): a possible tool for chemosystematics. Marine Biology 86: 21–35.

    Article  CAS  Google Scholar 

  • Loukaci, A., G. Muricy, J.-P. Brouard, M. Guyot, J. Vacelet & N. Boury-Esnault, 2004. Chemical divergence between two sibling species of Oscarella (Porifera) from the Mediterranean Sea. Biochemical Systematics and Ecology 32: 93–899.

    Article  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Y. Kumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K. H. Schleifer, 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.

    Article  CAS  Google Scholar 

  • Luter, H. M., S. Whalan & N. S. Webster, 2010. Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Applied and Environmental Microbiology 76: 5736–5744.

    Article  CAS  Google Scholar 

  • Marchesi, J. R., T. Sata, A. J. Weightman, T. A. Martine, J. C. Fry, S. J. Hiom & W. G. Wade, 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology 64: 795–799.

    CAS  Google Scholar 

  • Mcgovern, T. M. & M. E. Hellberg, 2003. Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoans Bugula neritina. Molecular Ecology 12: 1207–1215.

    Article  CAS  Google Scholar 

  • Miller, K., B. Alvarez, C. Battershill, P. Northcote & H. Parthasarathy, 2001. Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. Marine Biology 139: 235–250.

    Article  CAS  Google Scholar 

  • Motti, C. A., M. L. Freckelton, D. M. Tapiolas & R. H. Willis, 2009. FTICR-MS and LC-UV/MS-SPE-NMR Applications for the rapid dereplication of a crude extract from the sponge Ianthella flabelliformis. Journal of Natural Products 72: 290–294.

    Article  CAS  Google Scholar 

  • Muyzer, G., E. C. de Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.

    CAS  Google Scholar 

  • Poore, C. B. G. & N. Andreakis, 2011. Morphological, molecular and biogeographic evidence support two new species in the Uroptychus naso complex (Crustacea: Decapoda: Chirostylidae). Molecular Phylogenetics and Evolution 60: 152–169.

    Article  Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  Google Scholar 

  • Sordino, P., N. Andreakis & E. R. Brown, 2008. Natural variation of model mutant phenotypes in Ciona intestinalis. PLoS One 3: e2344.

    Article  Google Scholar 

  • Swofford, D. L., 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland.

    Google Scholar 

  • Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Tarjuelo, I., D. Posada, K. A. Crandall, M. Pascual & X. Turon, 2004. Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Molecular Ecology 13: 3125–3136.

    Article  CAS  Google Scholar 

  • Taylor, M. W., R. Radax, D. Steger & M. Wagner, 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71: 295–347.

    Article  CAS  Google Scholar 

  • Thacker, R. W. & S. Starnes, 2003. Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Marine Biology 142: 643–648.

    CAS  Google Scholar 

  • Thomas, T. R. A., D. P. Kavlekar & P. A. LokaBharathi, 2010. Marine drugs from sponge-microbe association – a review. Marine Drugs 8: 1417–1468.

    Article  CAS  Google Scholar 

  • Thompson, J. E., P. T. Murphy, P. R. Bergquist & E. A. Evans, 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochemical Systematics and Ecology 15: 595–606.

    Article  CAS  Google Scholar 

  • Want, E. J., A. Nordstro, H. Morita & G. Siuzdak, 2007. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. Journal of Proteome Research 6: 459–468.

    Article  CAS  Google Scholar 

  • Webster, N. S. & M. W. Taylor, 2011. Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology (Online Early). doi:10.1111/j.1462-2920.2011.02460.x.

  • Webster, N. S., M. W. Taylor, F. Behnam, S. Lücker, T. Rattel, S. Whalan, M. Horn & M. Wagner, 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology 12: 2070–2082.

    CAS  Google Scholar 

  • Wilson, K., L. Yutao, V. Whan, S. Lenhnert, K. Byrne, S. Moore, S. Pongsomboon, A. Tassanakajon, G. Rosenberg, E. Ballment, Z. Fayazi, J. Swan, M. Kenway & J. Benzie, 2002. Genetic mapping of the black tiger shrimp Panaeus monodon with amplified fragment length polymorphism. Aquaculture 204: 297–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie A. Motti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Freckelton, M.L., Luter, H.M., Andreakis, N., Webster, N.S., Motti, C.A. (2011). Qualitative variation in colour morphotypes of Ianthella basta (Porifera: Verongida). In: Maldonado, M., Turon, X., Becerro, M., Jesús Uriz, M. (eds) Ancient Animals, New Challenges. Developments in Hydrobiology, vol 219. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4688-6_16

Download citation

Publish with us

Policies and ethics