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Abstract  Mathematical modelling is a valuable tool for the analysis of the infectious 
diseases spread. Dynamical models may help to represent and summarize available 
knowledge on transmission and disease evolution, to test assumptions and analyse 
scenarios, and to predict outcomes of the host-pathogen interactions. This chapter 
aims at introducing basic concepts and methods of epidemiological modelling, in 
order to provide a starting point for further developments. After positioning model-
ling in the process of disease investigation, we first present the main principles of 
model building and analysis, using simple biological and also mathematical sys-
tems. We then provide an overview of the methods that can be employed to describe 
more complex systems. Last, we illustrate how the modelling approach may help 
for different practical purposes, including evaluation of control strategies. A brief 
conclusion discusses the challenge of including genetic and molecular variability in 
epidemiological modelling.
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5.1 � Introduction

Daniel Bernoulli was the first to use a mathematical model approach for assessing 
the effectiveness of prophylaxis method to control the spread of an epidemic disease 
(Bernoulli 1766, targeted to smallpox propagation). He simplified a rather generic 
first model based on the fate of a cohort of individuals, keeping only what was 
clearly needed for his own purposes. Then, Bernoulli performed a mathematical 
analysis of the resulting model using a celebrated method to solve in closed form a 
specific class of nonlinear ordinary differential equations (sometimes referred to as 
Bernoulli’s equations). He carried out a sensitivity analysis and evaluated the robust-
ness of his conclusions with respect to the simplifications made and thus tested their 
relevance (Valleron 2000).

After Bernoulli’s pioneer researches, developments in epidemiological model-
ling mainly occurred in the early twentieth century. Hamer (1906) was interested in 
the recurrence of measles epidemics. He introduced one of the fundamental ideas in 
epidemiology, that is, the epidemic spread depends on the rate of contact between 
susceptible and infected individuals. Hamer formalized this idea using the ‘mass 
action principle’, which states that the transmission rate of an infection is propor-
tional to the product of the densities in both susceptible and infected individuals 
(Anderson and May 1991). At about the same period, Ross (1908) found a relation-
ship between malaria and mosquito abundance. A few years later, the first complete 
formulation of a generic epidemiological model was proposed by Kermack and 
McKendrick (1927). The analysis of their model led to the statement of the thresh-
old theorem: after the introduction of a few infected individuals into a fully suscep-
tible population, an epidemic will occur provided the number of susceptible 
individuals exceeds a critical threshold. Finally, in 1931 Greenwood introduced 
the idea that chance may intervene in the process of transmission: during a given 
contact, transmission may occur or not with a certain probability. These three 
fundamental concepts, contact rate, threshold theorem and randomness in trans-
mission, are at the origin of the modern theoretical epidemiology.

The very first analysis by Bernoulli which encompassed both observations and 
theoretical hypotheses to predict the effect of vaccination already showed how such 
an approach is useful and complementary to experimentations and observations. In 
order to formulate a relevant model, biologists and modellers have to work together 
to establish the simplest set of rules that summarizes the biological system of inter-
est, according to the objective of the study. The biological side of model building 
consists in providing observed or experimental data, expert opinion, or knowledge 
on similar systems, while the modeller perspective is dedicated to choosing and 
adapting available methods or develop new ones that are appropriate to the system 
and questions under study. Interaction between biology and modelling is particularly 
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important to define the scale of the representation (within or between hosts, popula-
tions, etc.) and to identify established knowledge together with unlikely or contro-
versial aspects. Hypotheses to be tested can then be formulated. This process gives 
rise to a mutual input: biology provides the necessary pieces to formalise and vali-
date models, while modelling leads to the formulation of new hypotheses and to the 
identification of key points and gaps of knowledge that should be investigated 
through experimental or observational studies (Fig. 5.1).

According to what is known about the system under study and depending on the 
question to be answered, modelling approaches are used in a variety of manners 
(Becker 1979; Hethcote 2000; Valleron 2000). The first aim can consist in summariz-
ing available knowledge and constructing a formal representation of the system, in 
order to facilitate the understanding of underlying complex processes and to provide 
general qualitative conclusions. Analytical formulations (deterministic dynamical 
systems, stochastic processes…), computer-based models, graphical schemes or 
diagrams (conceptual models) are some of possible representations. A classical 
example of such a descriptive model is the representation of the spatio-temporal 
dynamics of rabies in wild-living populations (Fig.  5.2): the paradigm of spatio-
temporal waves constitutes a reasonable representation of the complex processes 
underlying rabies expansion, thus it was much used to summarize and explain these 
processes, including in communication towards non-specialists.

A second aim is to assess the relative importance (essential, secondary or irrele-
vant) of each of the various mechanisms involved in the system dynamics. With 
such an objective, an accurate description of the system with clearly stated assump-
tions and biologically relevant parameters is necessary. Then the model may be used 
to test biological hypotheses (such as those justifying the structure, parameter values, 
or the form of transition functions of the model), by comparing the dynamical 
behaviour of different sub-models including the hypothesis or not. As an example, 
in order to test whether immune protection or age-dependent infection rates are 
important processes in the transmission of Theileria equi and Babesia caballi among 
horses, Rüegg et al. (2008) compared the goodness-of-fit of predictions issued from 

Fig. 5.1  Mutual input of biology and modelling
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different models. They showed that both mechanisms are important in the transmis-
sion dynamics of B. caballi (i.e., their inclusion significantly improved the quality 
of model prediction), but not for T. equi.

The same kind of analytical models may also be used to compare different sce-
narios, and thus answer ‘what if’ questions. For instance, infection dynamics in 
different host populations (with different structures, sizes, etc.), in different regions, 
at different periods, for different variants of a pathogen, etc. can be compared 
(Becker 1979). Such comparisons cannot generally be carried out in the field or in 
the laboratory, whereas numerous numerical experiments can be performed by sim-
ulation. As an example, Ezanno et al. (2008) evaluated the influence of herd struc-
ture on the spread of bovine viral diarrhoea virus within a dairy herd: enhancing 
contacts between young animals before breeding or isolating lactating cows from 
other groups both decreased virus spread compared to a herd with a typical structure 
with indirect contacts between groups.

A last context to use analytical models is the estimation of key parameters from 
data. For example, the spatial variation of the infection probability for foot-and-
mouth disease has been estimated by modelling (Gerbier et al. 2002). Control points 
of the system and factors of uncertainty that may decrease our confidence in estima-
tions can be identified. Models can also help guiding further data collection in order 
to improve estimation accuracy.

Third, if the model has been validated against data, it can be used to predict future 
states of the system depending on observed past ones and on assumptions on mecha-
nisms acting in the future. Whereas quantitative predictions are still subject to some 
uncertainty even after model validation, qualitative forecasts can be provided for a 

Fig. 5.2  Description of racoon rabies spatio-temporal dynamics through the evolution of host 
density. Time increases to the left of the epidemic front, while distance increases to the right of the 
front (From Real and Childs 2006)
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variety of situations. For instance the assessment of the relative effectiveness of 
interventions used to control infectious diseases spread may help to design optimal 
strategies. This approach was largely used for a variety of diseases such as the 
foot-and-mouth disease (Ferguson et al. 2001), avian influenza (Boender et al. 2007; 
Le Menach et al. 2006) and human pandemic influenza (Ferguson et al. 2006; Flahault 
et al. 2009; Kernéis et al. 2008; Longini et al. 2005 amongst many others).

5.2 � Principles of Model Formulation for a Single  
Homogeneous Population

The formulation and analysis of epidemiological models include several steps: defi-
nition of the model structure involving a preliminary choice of a formal representa-
tion, analysis of model properties and outputs and identification of thresholds which 
determine radical changes in model dynamics depending on whether they are 
exceeded. If an analytical representation of the system in question is chosen, a 
mathematical formalism should be specified with respect to the context and the 
question motivating the study. Deterministic or stochastic models in discrete or 
continuous time are possible representations. Both approaches have their strengths: 
deterministic models are appropriate in large populations where fluctuations have 
relatively little overall impact whereas stochastic formulations are more suited for 
small populations and rare events where randomness has large effects. Although 
most theoretical aspects presented in this chapter are valid for both categories of 
models, examples are often related to deterministic models that are more easily 
described in short terms and appropriate for an introductory text. Stochastic model-
ling is by no means less relevant for the study of diseases spread and we invite the 
reader to refer to excellent monographs specifically developing this methodology 
(Andersson and Britton 2000; Daley and Gani 1999; Keeling and Rohani 2008 to 
quote only a few). A brief overview of simple prototypes of epidemiological models 
illustrated by examples is provided in this section, where all the basic models assume 
a single homogeneous population.

5.2.1 � Model Structure

Most epidemiological models start from the description of the infection dynamics at 
the individual level (Fig. 5.3) to infer pathogen spread at the population level.

At least two individual states should be defined with respect to the disease: sus-
ceptible (S) and infected (I). The implicit assumptions when limiting to a two state 
model are a negligible latency period and an instantaneous return to the susceptible 
state after infection (this corresponds to the SIS model; Fig.  5.4) or life-lasting 
infection (the SI model).
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Fig. 5.3  Definition of the individual infection status vs. clinical status during a much simplified 
infection process (Modified from Keeling and Rohani 2008). It has to be noted that the symptomatic 
period is not necessary simultaneous to the infection status
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Fig. 5.4  Diagram of a SIS model (susceptible – infected – susceptible) (left) and example of simu-
lated dynamics (right). The transition from S to I corresponds to the infection process and depends 
on the transmission rate b, and on the numbers of S and I individuals, f being the force of infection. 
The transition from I to S corresponds to a recovery (without immunisation) and depends on the 
mean infection duration (1/g if the sojourn time in compartment I is exponentially distributed)

In order to describe the flows of individuals between compartments within the 
simplest mathematical framework, additional assumptions have to be made: homo-
geneous population (i.e., in a SI model, all S individuals are of identical susceptibil-
ity, all I individuals have identical infectiousness), homogeneous contacts between 
individuals, a short infection period relatively to the host life expectancy (which 
allows to neglect population vital dynamics), and a transition from I to S that does 
not depend on the time since infection. Based on these assumptions, a model may 
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be formulated in discrete time (e.g. the Reed-Frost first models, Daley and Gani 
1999; Thrusfield 1995) or continuous time (e.g. through a system of ordinary dif-
ferential equations). When one or several of the above assumptions are not valid, the 
model should be modified. Typically, if two compartments are not sufficient to 
describe the infection process, other states may be defined. A recovered (R) status 
indicates a non negligible delay between the end of the infectious period and the 
moment individuals lose their immunity (SIRS model). An exposed status (E) is to 
be considered when there is a non negligible delay between infection and infec-
tiousness. Classically, the probability of recovery per unit of time is constant, which 
corresponds to an exponential distributed infectious duration (a classical assump-
tion routinely used for mathematical tractability-based reasons). However, more 
realistic probability distributions can be used. For instance, a gamma distribution 
can be assumed for the infectious duration by replacing the single previous I com-
partment by a series of n stages, where the rate of transition between stages is equal 
to ng (the mean duration of the infectious period being still equal to 1/g, according 
to the known property stating that the sum of n equally exponentially distributed 
variables of mean 1/ng is a gamma distributed variable of mean 1/g).

5.2.2 � Model Analysis

The qualitative behaviour of the analyzed system may first be deduced from the 
mathematical properties of the model. For both discrete and continuous time system 
models, the resulting mathematical analysis fits into the framework of dynamical 
systems, a well known and developed branch of mathematics. An important pre-
liminary question is the non-negativity of solution components that is also part of 
the validation of the rationale underlying model building. Forward invariance is a 
convenient tool to answer this question.

A second step is the understanding of the population dynamics behaviour before 
the parasite introduction. Various paradigms are available: constant population 
size, logistic or mono-stable behaviour (regulation toward a limited carrying capac-
ity), Allee effect or bi-stable behaviour (existence of a population size threshold 
separating population extinction vs. regulation), as well as exponential growth or 
time-periodic dynamics, to name a few. The exploration of population dynamics 
requires sorting stationary states (constant solutions) of the model, that can be 
achieved either in closed form or by using suitable software for numerical or 
algebraic computation.

Then, a local stability analysis (LAS) should be developed. This consists in 
assessing whether a small initial departure from a given stationary state will result 
into the model driving back the population to the original stationary state, or else, 
driving it toward a new stationary state or to some new horizon, e.g. periodic vs. 
chaotic dynamics. A generic mathematical methodology goes through devising a 
dedicated matrix made of partial derivatives of the model system – referred to as 
Jacobian matrix of the system evaluated at the given stationary state – and then 
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computing its spectrum, that is its real and complex eigenvalues. The system is 
locally stable when all eigenvalues are negative or have negative real parts. Global 
stability analysis (GAS), that is stability for any nonnegative departure from a given 
stationary state, is much more complicated since it requires more sophisticated 
mathematical tools such as building Lyapunov functional. Although complex eigen-
values can make non-mathematician modellers feel uneasy, they are a nice tool to 
support the existence of oscillatory behaviours in transient solutions as well as to 
exhibit periodic solutions when time gets large (e.g. Hopf biburcation).

The main step now arises: what are the likely outcomes after introducing an 
infective individual into a naive population? From a mathematical point of view, 
most questions and answers are identical to those in the foregoing paragraph: 
stationary states, stability analysis, transient and long time behaviour, put in a some-
what different setting. A first question is whether infection will persist after the 
introduction of a few infective individuals, i.e., LAS of the stationary state without 
any latent, infectious and immune individuals, the so-called disease free equilib-
rium (DFE). Computing eigenvalues of a suitable Jacobian matrix will yield an 
answer (see above). Mathematically this will select a (nonlinear) combination of the 
parameter set from the model that is to be compared to 0, negativity implying LAS 
while positivity yields instability (see also R

0
 in the next subsection). Heuristically, 

one may expect the emergence of a LAS endemic stationary state (with infectious 
individuals) as soon as the DFE becomes unstable, due to one or several parameter(s) 
variation. This step requires looking for all possible LAS endemic states. What is 
mostly expected is a forward bifurcation, that is the emergence of a unique LAS 
endemic stationary state when the DFE looses its stability. Dynamics can be much 
more complex with a backward bifurcation, that is the existence of an extraneous 
LAS endemic state right before the DFE looses its stability (see also the R

0
 limit in 

the next subsection). This means that two different dynamics and LAS regime can 
coexist: a DFE one and an endemic one, which could make the control of the disease 
quite uneasy. It may also happen that a LAS endemic state may loose its stability 
yielding oscillations and time periodic dynamics (cf. rabies model). Numerical 
simulations can be supported by a suitable mathematical analysis (e.g. Hopf bifur-
cation). For exponentially growing populations (before introduction of the disease) 
no DFE can exist but the actual question is whether the disease can control and 
regulate the given population. For time periodic population dynamics (before intro-
duction of the disease), the existence and stability of both DFE and periodic endemic 
states is challenging to prove from a mathematical point of view, though sophisti-
cated theoretical and numerical tools are available (Bacaër and Gernaoui 2006).

Besides mathematical analysis, numerical simulations are conveniently used to 
observe or guess transient and long-time dynamics, especially for models using a 
large number of parameters and state variables. As an example, studying host-
macroparasite systems, Rosà et al. (2003) showed that, while a deterministic system 
predicts oscillatory behaviour, taking into account stochastic events in the system 
dynamics leads to larger oscillations that may threaten parasite or host persistence 
(Fig. 5.5). Interactions between model components can be studied, which may give 
rise to unexpected behaviours. Simulations first require adequate parameterisation 
of the model, using demographic or epidemiological data (Becker 1989). Then a 
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sensitivity analysis is a relevant approach to evaluate how model outputs vary 
according to variations in model inputs (parameter values, functions, model 
structure, etc.; see Saltelli et al. 2000 for a review of methods of sensitivity analysis). 
First, such an analysis is useful to test modelling assumptions: what if other 
functions had been chosen? What if the model were simpler with less state 
variables? etc. A sensitivity analysis also constitutes the first step before using a 
model to evaluate strategies of control of the system. Only parameters that signifi-
cantly influence model output and can be managed on the field are potential control 
points of the modelled system (Ezanno et al. 2007).

5.2.3 � Reproductive Numbers: R
0
 and Related Threshold 

Parameters

The basic reproductive number, R
0
, is one of the most important concepts in epide-

miology, population dynamics and ecology provided by the mathematical thinking. 
Generally speaking, R

0
 is the expected number of secondary individuals generated 

by a typical individual during its lifetime. The term “secondary” depends on con-
text: it means “secondary cases” in epidemiology (where a typical individual refers 
to an infectious one) and “offspring” in ecology and demography (Heffernan et al. 
2005; see Heesterbeek 2002 for a historical perspective on R

0
).
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Fig. 5.5  Deterministic prediction and two stochastic simulations for the evolution of the number 
of hosts across time in the red grouse – Trichostrongylus tenuis model (From Rosà et al. 2003)
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The threshold behaviour of R
0
 renders this parameter very useful for predicting 

the emergence of a new epidemic, the outcome of a started outbreak and the efficacy 
of mitigation strategies. In a deterministic formulation, if R

0
 < 1, a pathogen intro-

duced in a completely susceptible population will not be able to invade, whereas if 
R

0
 > 1 an epidemic can occur. In a stochastic framework, the interpretation of R

0
 is 

less straightforward: a value of R
0
 below 1 predicts the extinction with probability 

1, whereas if R
0
 > 1, invasion is not the only possible outcome because the probability 

of extinction is not equal to 0. More specifically, in the case of an entirely suscep-
tible population where a single individual is initially introduced, and the dynamics 
is described by a branching process (with three state variables S, I and R), the 
probability of extinction before a major epidemic is equal to 1/R

0
 for R

0
 > 1 (Fig. 5.6). 

Beyond the context of an entirely susceptible and homogeneous population, other 
formulations of the reproductive number exist, as briefly stated below.

A general method, developed by Diekmann et al. (1990) (and then described in 
detail in Diekmann and Heesterbeek 2000, illustrated on a number of specific mod-
els in van den Driessche and Watmough 2002 and clearly summarized in Heffernan 
et al. 2005) allows deriving R

0
 as a function of model parameters for a variety of 
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Fig. 5.6  R
0
 and epidemic dynamics: proportion of infectious hosts for 100 simulations of an 

epidemic starting in a susceptible population of size 1,000 after the introduction of one infectious, 
using a SIR model with R

0
 = 2. Black lines represent simulations where extinction occurs before 

major epidemics (defined as epidemics leading to infections of more than 90% of the initial 
susceptibles)



895  Modelling the Dynamics of Host-Parasite Interactions: Basic Principles

situations where the population is split into disjoint classes. This method is based on 
the next generation matrix and R

0
 is then calculated as its dominant eigenvalue. 

Situations as diverse as the following ones are handled by this approach (see van 
den Driessche and Watmough 2002 for more details): heterogeneous populations 
divided in several groups with specific behaviours with respect to the disease, such 
as sexually transmitted diseases; multi-strain systems, such as influenza spread, 
where several strains may co-circulate and are in competition for the same hosts; 
vector-borne diseases where both vectors and hosts dynamics should be considered 
simultaneously. For any of these types of models, a next generation matrix can be 
built after having identified and separated terms defining new infections. More pre-
cisely, for each compartment i, F

i
 is defined as the rate of appearance of new infec-

tions and V
i
 as the difference between out and in transfers of individuals by any 

other means. The next generation matrix is then equal to FV−1, where F and V are 
the matrices of partial derivatives of F

i
 and V

i
 respectively, under some particular 

conditions met by F
i
 and V

i
. Applied to a simple SIR model with no demography, 

this method would yield to R
0
 = b/g (see Fig. 5.4 for parameter definition).

The R
0
 value derived in this way and more exactly its position with respect to 1 

helps assessing questions such as the capability of a pathogen introduced into a fully 
susceptible population to generate an epidemic. As stated in the previous subsec-
tion, for dynamical systems, this can also be assessed by studying the LAS of the 
DFE which reduces to finding a relationship between parameters that makes all the 
Jacobian matrix eigenvalues to be negative or have negative real parts. It is impor-
tant to note that, while these two approaches are qualitatively equivalent with respect 
to the answer concerning the invasion of the host population by the pathogen, the 
latter one may supply a threshold parameter different from R

0
 (Roberts 2007). 

Roberts and Heesterbeek (2003) emphasize that if this threshold does not have the 
same biological interpretation as the dominant eigenvalue of the next generation 
matrix, it “can therefore not be called the basic reproduction ratio nor denoted by 
R

0
”. It should also be pointed out that both methods can define algebraic threshold 

parameters with no sound epidemiological interpretation.
If the population is not entirely susceptible, the appropriate term to be calculated 

is the effective reproduction number, R
eff

, which is equal for an SIR system to bS/gN, 
where S is the size of the susceptible population and N is the total population size. 
More generally, while R

0
 is uniquely defined for a couple pathogen/host population, 

R
eff

 may change over time, as the proportion of susceptible hosts S/N varies.
Beyond derivations of R

0
 and R

eff
 as combinations of model parameters in order 

to identify threshold criteria, various methods were also developed for estimating 
the value of R

0
 and its related variants from data. One of the simplest methods, valid 

for SIR models and closed populations, connects R
0
 to the final epidemic size: 

( )( ) ( )= ∞ ∞ −0R ln s / (s 1) where s(∞) represents the final proportion of susceptible 
hosts (Diekmann and Heesterbeek 2000). This assumes that the epidemic is observed 
until the end which is not always the case. Moreover, it is also of great importance 
not only to provide a posterior characterization of the epidemic, but mostly to assess 
the epidemic intensity at its very beginning, in order to tailor mitigation strategies. 
This is possible for instance by calculating R

0
 from r, the initial rate of the exponential 
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growth of the number of infectious individuals. Several expressions relate R
0
 to r, 

depending on the distribution of the generation time, W (defined as the delay 
between the moment one individual becomes infected and he/she infects another 
individual; Roberts and Heesterbeek 2007; Svensson 2007; Wallinga and Lipsitch 
2007; Yan 2008). For a simple SIR model and assuming a constant infectivity, 

= + = +0 W IR 1 r * T 1 r * T , where T
W

 and T
I
 are the mean generation time and the 

mean duration of the infectious period respectively. R
0
 is certainly of great interest, 

but it is often more convenient to focus on R
eff

, since it reflects the actual capability 
of the epidemic to progress over time and provides information on the impact of 
control measures in real time. The estimation of R

eff
 reduces to a simple counting 

of secondary cases if all infected individuals are traced until their index case 
(“who infected whom” chain). However, most often, this information is not avail-
able. In this case, R

eff
 can be estimated for instance by fitting a transmission model 

to data (Riley et al. 2003). A statistical approach that avoids mechanistic assump-
tions was proposed by inferring “who infected whom” from the observed curve 
and times of symptoms by using pairs of cases instead of the entire infection net-
work (Wallinga and Teunis 2004, estimations for the 2003 SARS epidemic in sev-
eral geographic locations). The scenario where not all secondary cases have been 
detected was tackled through a Bayesian approach by Cauchemez et  al. (2006) 
who estimated the reproduction number in an ongoing epidemic for the 2003 SARS 
epidemic in Hong Kong.

As already stated, information on R
0
 and its related variants provides valuable 

insights mainly in two situations: for the evaluation of the invasion risk of a host 
population by a pathogen and for evaluating and comparing control strategies. For 
both cases, the choice of an appropriate method for estimating R

0
 or R

eff
 should be 

done with respect to data and objectives and comparison of estimations to previous 
values and interpretation of discrepancies (if any) should also be provided.

Despite its incontestable role in handling infectious diseases spread, R
0
 could 

sometimes be mis- or overused. Roberts (2007) draws our attention on some 
exceptions where the basic statements generally fulfilled by R

0
 and cited in this 

subsection are not true (see also the backward bifurcation in the previous sub-
section). The author cites several mechanisms allowing persistence of an 
endemic infection even for R

0
 < 1 (for example assuming that exposure to infec-

tion accelerates the transition from the exposed to the infectious state) and 
points out the existence of situations where the evolution of a pathogen does not 
necessarily maximise its R

0
. Another important point raised by Roberts (2007) 

and initially fully described in Roberts and Heesterbeek (2003) and then in 
Heesterbeek and Roberts (2007) concerns structured populations where inter-
ventions are targeted at specific subpopulations. In this case, R

0
 is less useful 

and should be replaced by T, the type-reproduction number. Both R
0
 and T 

exhibit the threshold behaviour and are equivalent in homogeneous population, 
but T is more appropriate in heterogeneous populations since it summarizes the 
control effort required to eliminate an infection when measures are applied to a 
specific host type (rather than to the entire population). Finally, care has to be 
taken when evaluating control efficacy through R

0
 values: as pointed out by 



915  Modelling the Dynamics of Host-Parasite Interactions: Basic Principles

Heffernan et al. (2005), since sometimes the use of R
0
 could ignore other issues 

such as the potential negative effect of interventions on population, it is impor-
tant to simultaneously consider other indicators (the total morbidity or mortality) 
in addition to R

0
.

5.3 � More Realistic Models for Complex Situations

The simple models cited in the previous section give a very general idea of two 
processes involved in epidemiological dynamics: transmission and immunity. 
However, these may be not sufficient if pathogen dynamics is affected by other traits 
of the host population, such as heterogeneity among individuals, demographic pro-
cesses or population structure. Here, we provide a brief overview of further possible 
models for more complex systems.

5.3.1 � Heterogeneity Among Individuals

Individuals in a population do not equally contribute to infection dynamics. First, 
infectious individuals do not equally shed the pathogen, either because shedding 
routes are numerous and possibly not simultaneous, or because excretion depends 
on infection duration or other individual characteristics such as age, genetics, physi-
ological stage, etc. Second, susceptible individuals do not have equal susceptibility, 
due to individual intrinsic characteristics or previous exposure to the pathogen. 
Compared to naïve (never exposed) individuals, those that have already been 
exposed to the pathogen often have a reduced susceptibility and infection duration. 
Depending on the reduction in susceptibility after a first infection, such a model 
goes from an SIS model (no protection) to an SIR model (full protection). The same 
approach is also adequate to represent immunity acquired by vaccination (Glass and 
Grenfell 2003; Greenhalgh et al. 2000). Lastly, a cross protection may arise when 
many variants of a given pathogen co-circulate in the population for example (Restif 
and Grenfell 2007). These heterogeneities in infectiousness and susceptibility inter-
fere with pathogen spread and control both in non-structured (Lloyd-Smith et al. 
2005b; Matthews et  al. 2006) and structured (Ball and Lyne 2001) populations. 
Therefore, heterogeneity should be considered, especially when specific individuals 
are targeted by a surveillance or control program.

Such heterogeneities can be modelled through several methods. A first way is to 
consider as many categories of S or I individuals as necessary to describe variability in 
susceptibility (Fig. 5.7) or infectiousness. This has been used to model the spread of 
human tuberculosis considering that individual may have either a susceptible or a 
resistant phenotype, assumed to be consistent for an individual over time (Murphy 
et al. 2003). Another way is to use partial derivative equations when susceptibility or 
infectiousness continuously varies among individuals (Novozhilov 2008; Veliov 2005).
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5.3.2 � Accounting for Population Dynamics

The assumption that demographic processes may be neglected in front of epidemio-
logical dynamics cannot hold in all situations, specifically when the duration of 
infection is of the same order of magnitude as life expectancy, but also when 
considering the long-term dynamics of the system, instead of a single epidemic 
process. In this case, birth, death and migratory processes should be included in the 
model. This may be done by adding input and output flows to each compartment.

Including demographic processes in epidemiological models may first help to 
investigate their influence on disease dynamics. Generally speaking, birth acts to 
replenish the pool of susceptible individuals and thus to favour disease spread, while 
mortality has the opposite effect. This has been studied in plant diseases: when crop 
growth is taken into account, it first entails a dilution effect on leaf lesions, followed 
by an increase in R

0
 due to higher density in susceptible host tissue (Ferrandino 

2008). The situation becomes more complex when density-dependent processes 
occur, which is the case in most natural-living populations: then fecundity and mor-
tality are not independent from population sizes. This gives rise to complex effects, 
including the possibility that the threshold theorem is not longer valid or observable 
(Lloyd-Smith et  al. 2005a). Disease may also be a major determinant in host 

Fig. 5.7  Diagrams of SIR models accounting for heterogeneity in susceptibility. Top left: the level 
of susceptibility varies among individuals but is consistent over life (a proportion p

k
 of individuals 

are born with susceptibility k and thus has a force of infection l
k
); bottom left: susceptibility varia-

tion over lifetime; top right: reduced susceptibility following exposure to infection (l
2
 < l

1
); bot-

tom right: reduced susceptibility because of cross-protection after infection with a close variant of 
the pathogen
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population dynamics through its effect on fecundity or survival. HIV infection is 
one of the leading examples when population demographics need to be accounted 
for, the virus being able to turn population growth rates from positive to negative 
values (Anderson et al. 1988). Another case when host population dynamics should 
be considered is represented by animal populations managed by humans. Rapid 
changes in density, demographic parameters, spatial distribution and contact struc-
ture may result from management decisions and affect disease transmission. 
Complex dynamics may arise from the interactions between demographic and 
disease processes. A recent example is the study of hunting on transmission of 
classical swine fever in wild boar Sus scrofa (Choisy and Rohani 2006, Fig. 5.8). 
The model showed that the drastic reduction in population density due to harvesting 
results into an overcompensation due to density-dependent birth and death rates. 
After the next birth period, the population reaches high density, which results in a 
high level of disease transmission and prevalence. Overall, harvesting is predicted 
to increase disease spread.

5.3.3 � Pathogen Spread in Structured Populations

Beside their heterogeneity, individuals are clustered in groups within which prefer-
ential contacts occur. Age, social groups, households, schools or herds strongly 
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Fig. 5.8  Effect of harvesting on the total host population size in wild boar infected by Classical 
Swine Fever (From Choisy and Rohani 2006). Numerical solution of the model for a 2-year period, 
after stationary dynamics has been reached. The periods of mating and harvest (H) are represented 
in grey, and the duration of gestation is represented by the length of the double arrow above the 
graph. The dashed curve represents the total host population size in the absence of harvesting and 
the full line curve represents the dynamics of the total host population size in the presence of 
harvesting
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Fig. 5.9  Smoothed contact matrices among age classes in Great Britain, including all contacts 
(left) or physical contacts only (right) (Modified from Mossong et al. 2008). White indicates high 
contact rates, while dark grey stands for low contact rates

structure the contact network among individuals (Keeling and Rohani 2008; Mossong 
et al. 2008, Fig. 5.9). This structure may have spatial (due to environmental structure), 
behavioural (e.g., related to sexual behaviour) or social components. In all cases, 
pathogen spread occurs at two scales: local or within-group transmission is related 
to direct (between individuals) or indirect (e.g. because of a shared environment) 
contacts, while between-group transmission is possible through long-distance indi-
vidual movements (migration, visits, etc., Barlow et al. 1998).

It is important to understand how these structures affect pathogen invasion, 
spread and persistence for helping decision making in public and veterinary health 
(Cross et al. 2005; Grenfell and Harwood 1997; Hagenaars et al. 2004; Keeling and 
Rohani 2002; Lloyd and Jansen 2004). The most studied aspect is spatial structure, 
which has been modelled in a variety of ways, considering either continuous or 
discrete space, and sometimes including real environmental characteristics. One of 
the most widely used concepts is the metapopulation (described in the next subsec-
tion), where space is divided into discrete patches, each patch representing a poten-
tial localisation of a group of hosts.

5.3.4 � Disease Spread in Metapopulations

A metapopulation structure corresponds to an inter-patches contact network in 
which space is either implicit or explicit (Fig. 5.10). Each unit corresponds to either 
an individual (Rhodes and Anderson 1996), or a local population (Cross et al. 2005; 
Park et al. 2002). The concept of metapopulation has been largely used in ecology 
and population genetics to study dynamics of fragmented populations and genes 
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flow on heterogeneous landscapes (Grenfell and Harwood 1997). Numerous epide-
miological models have been developed in a context of metapopulation, accounting 
for patch infection dynamics in addition to the extinction-colonisation process. Hess 
(1996) has been a precursor by conceptualising an epidemiological model based on 
Levin’s model: the migration of infectious individuals is a source of infection for 
susceptible individuals from pathogen-free populations.

Infection spread between patches has been modelled either mechanistically, i.e., 
explicitly representing the phenomena that are at the origin of disease transmission 
(Cross et al. 2005; Jesse et al. 2008; Keeling and Rohani 2002), or phenomenologi-
cally, by considering that the presence of infection in a patch results in a positive 
force of infection on patches in contact without explicitly representing the transmis-
sion process between patches (Hagenaars et al. 2004; Keeling and Rohani 2002; 
Park et al. 2002).

From a mechanistic point of view, three types of metapopulations can be defined 
based on the type of contacts between patches (for a review, see Keeling and Rohani 
2008). First, individuals do not encounter explicitly but indirect contacts exist 
because of the wind, a mobile reservoir, a vector, or through neighbouring contacts 
between adjacent populations. This mechanism is well adapted to plants which are 
static, but also to cases when animal diseases are vectored among herds, such as in 
the case of foot-and-mouth virus aerial transmission among herds, and to neigh-
bouring populations sharing a common environment (water point, feeding area, 
etc.). Second, individuals may explicitly move between patches with no return to 
their source patch, as it is the case when individuals disperse, are sold or bought. 
Third, individuals may move between patches and then return to their source patch 
(human populations or seasonal migration). In this last case, the duration of the visit 
influences the number of cases generated by a visitor if infected or the probability 
for a susceptible visitor of being infected.

The contact pattern may be represented by a contact matrix among patches. For 
homogeneous networks, all patches are equally connected to each other (Hagenaars 
et al. 2004; Jesse et al. 2008). For heterogeneous networks, a contact matrix defines 
which patches are in contact (Cross et al. 2005; Park et al. 2002). In a simplistic 

Fig. 5.10  A spatially explicit metapopulation with a contact structure based on individual 
movements and neighbouring relationships
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approach, the intensity of contacts may be equivalent for all couples of patches, 
whereas more refined models consider variable contact rates among patches, using 
observed or modelled contact networks.

Last, metapopulation models may have various levels of complexity, depending on 
whether they account for the within-patch infection dynamics. Metapopulations may 
first have no explicit within-patch dynamics (each patch is considered to have a global 
infection status). Such an approach has been used to study the persistence of a meta-
population when infected by a pathogen (Gog et al. 2002; Hess 1996; McCallum and 
Dobson 2002) or pathogen spread and persistence when local infection dynamics 
rapidly reaches an equilibrium (e.g., avian flu: Le Menach et al. 2006; foot-and-mouth 
disease: Le Menach et al. 2005). When the within-patch infection dynamics is mod-
elled, the infection status of each individual is considered (Cross et al. 2005; Hess 
1996; Jesse et al. 2008; Park et al. 2002) and the status of patches is derived from 
patch composition. This approach is useful when there is a high variability in the 
within-patch prevalence among infected patches or for a given patch over time. For 
example, considering bovine paratuberculosis, infected animals may exit the herd 
long before being infectious because of a long latency period between infection and 
shedding (Marcé et al. 2011). These models are more realistic and give a better over-
view of all possible epidemiological situations, but are also far more complex.

Representing or not the within patch dynamics depends, in addition to the ques-
tion under study, on the separation between time-scales of processes occurring 
within and between patches. If local dynamics are fast and global dynamics are 
slow, it is possible to neglect the first ones under certain stability assumptions and 
thus to reduce complexity.

5.4 � Models for Evaluating Control Strategies of Pathogen 
Spread in a Population

Providing help guide for decision making about diseases spread prevention and 
control is one of the major purposes of epidemiological modelling. The objective of 
such interventions is to prevent emergence and to reduce the incidence in new cases 
and hence the total epidemic burden. More generally, this aims at optimizing eco-
nomic animal or human-health outcomes. If we consider the case of animal infec-
tious diseases, their control relies on three principles: increasing resistance in 
infection of susceptible animals (e.g. through vaccination or genetic selection), 
reducing or preventing shedding of the pathogen by infectious animals (through 
treatment, test-and-cull strategies), or preventing contacts between susceptible ani-
mals and pathogens (through confinement, quarantine, movement restrictions) 
(Garner et al. 2007). Disease control may also involve indirect measures such as 
acting on population dynamics (through culling, contraception, modified hunting 
strategy or renewal strategy in a herd) or acting on the environment (e.g. through 
sanitary fences, Ward et al. 2009). Each strategy is based on a single or a combina-
tion of measures, which may be implemented at different levels and scales.
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Modelling is an adequate tool for comparing, implementing, evaluating and opti-
mizing control strategies, by allowing to test ex-ante a large number of scenarios, 
resulting from the multiplicity of measures that can be combined and from the inter-
action between disease spread and population dynamics. Questions to be answered 
are numerous and various: what size for the zone of preventive vaccination? Which 
animals should be targeted by tests, vaccination?

Models – for which the consistence between outputs and expectations has  
been evaluated – can then be used to qualitatively compare control strategies.  

Fig. 5.11  High-risk areas for epidemic spread of the H7N7 avian influenza in poultry for various 
local culling strategies in the Netherlands (Modified from Boender et al. 2007). (a) Results for the 
default scenario (no culling); (b) Results for a scenario with immediate culling of all farms within 
a range of 1 km around an infected farm; (c, d) Culling is carried out in a range of 3 and 5 km 
around infected farms, respectively. Farms in light grey pose no risk of epidemic spread for the 
chosen control strategy, while farms in dark grey constitute a risk of epidemic spread even in the 
presence of interventions
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For example, Wilkinson et  al. (2004) compared various vaccination strategies 
designed to limit the transmission of bovine tuberculosis in badgers, such as pro-
active vaccination versus vaccination in reaction to cattle infection, or large-scale 
versus localized implementation. Models that have been validated on data can be 
used to provide predictions on the effectiveness of interventions, at least compara-
tively. Boender et al. (2007, Fig. 5.11) used data from a recent epidemic of avian 
influenza H7N7 in the Netherlands to fit an explicitly spatial model. Various 
levels of culling were then tested, to examine the balance between cost and effec-
tiveness of culling.

However, using quantitative predictions requires accurate parameterisation of 
models and thorough validation of their forecasts using appropriate data sets 
which are not always recorded. In particular, when a new pathogen emerges, no 
historical data are available. Moreover, a reference situation in the absence of any 
intervention or with a perfectly known control strategy is rarely described, espe-
cially for endemic diseases. Therefore, the use of modelling approaches to evalu-
ate control strategies should be preferentially considered for qualitative assessment 
of their impact.

5.5 � Conclusion

Modelling is a powerful tool for representing complex systems, testing hypotheses, 
estimating key parameters from data and predicting the outcome of host-pathogen 
interactions without or in the presence of interventions. When knowledge and data 
are available at different scales, models also allow relating fine scales at which 
mechanisms are known to larger scales at which observations can be made, in order 
for instance to estimate parameter values (Soubeyrand et al. 2007).

Any model involves a trade-off between simplicity and mathematical tractabil-
ity on one hand and complexity allowing a closer similarity to the specific prob-
lem under study on the other. In this process, taking into account the genetic and 
molecular variability of both hosts and pathogens is the coming challenge 
(Anderson 1995; Galvani 2003). Several attempts have been made to integrate the 
genetic diversity of strains, or represent simple selective processes. For instance, 
taking into account both epidemiological and molecular relationships between 
infected premises allowed Cottam et al. (2008) to trace back the spatio-temporal, 
as well as the evolutionary history of a beginning foot-and-mouth epidemic (see 
the following chapters). For influenza viruses, several models have been built to 
analyze the interaction between the pattern of reinfection and the mutation pro-
cess (Gordo et al. 2009). However, classical tools of epidemiological modelling 
may not be relevant when genetic variability is involved. The development of 
specific tools is required to integrate evolutionary ecology and epidemiological 
patterns.
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