Skip to main content

Photoacoustic Tomography

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2–31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise – determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties – propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell AG. On the production and reproduction of sound by light. Am. J. Sci., 20:305–324 (1880).

    Google Scholar 

  2. Karabutov AA, Podymova NB, and Letokhov VS. Time-resolved laser optoacoustic tomography of inhomogeneous media. Appl. Phys. B-Lasers Opt., 63(6):545–563 (1996).

    ADS  Google Scholar 

  3. Esenaliev RO, Karabutov AA, and Oraevsky AA. Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors. IEEE J. Sel. Top. Quant. Electron., 5(4):981–988 (1999).

    Article  Google Scholar 

  4. Kruger RA, Reinecke DR, and Kruger GA. Thermoacoustic computed tomography-technical considerations. Med. Phys., 26(9):1832–1837 (1999).

    Article  Google Scholar 

  5. Wang LHV, Zhao XM, Sun HT, and Ku G. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum., 70(9):3744–3748 (1999).

    Article  ADS  Google Scholar 

  6. Karabutov AA, Savateeva EV, Podymova NB, and Oraevsky AA. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys., 87(4):2003–2014 (2000).

    Article  ADS  Google Scholar 

  7. Ku G and Wang LHV. Scanning thermoacoustic tomography in biological tissue. Med. Phys., 27(5):1195–1202 (2000).

    Article  Google Scholar 

  8. Kostli KP, Frauchiger D, Niederhauser JJ, Paltauf G, Weber HP, and Frenz M. Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quant. Electron., 7(6):918–923 (2001).

    Article  Google Scholar 

  9. Kostli KP, Frenz M, Weber HP, Paltauf G, and Schmidt-Kloiber H. Optoacoustic tomography: Time-gated measurement of pressure distributions and image reconstruction. Appl. Opt., 40(22):3800–3809 (2001).

    Article  ADS  Google Scholar 

  10. Ku G and Wang LHV. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys., 28(1):4–10 (2001).

    Article  Google Scholar 

  11. Xu MH, Ku G, and Wang LHV. Microwave-induced thermoacoustic tomography using multi-sector scanning. Med. Phys., 28(9):1958–1963 (2001).

    Article  Google Scholar 

  12. Xu Y and Wang LHV. Signal processing in scanning thermoacoustic tomography in biological tissues. Med. Phys., 28(7):1519–1524 (2001).

    Article  Google Scholar 

  13. Paltauf G, Viator JA, Prahl SA, and Jacques SL. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoustical Soc. Am., 112(4):1536–1544 (2002).

    Article  ADS  Google Scholar 

  14. Xu MH and Wang LHV. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging, 21(7):814–822 (2002).

    Article  Google Scholar 

  15. Xu Y, Feng DZ, and Wang LHV. Exact frequency-domain reconstruction for thermoacoustic tomography – I: Planar geometry. IEEE Trans. Med. Imaging, 21(7):823–828 (2002).

    Article  Google Scholar 

  16. Xu Y, Xu MH, and Wang LHV. Exact frequency-domain reconstruction for thermoacoustic tomography – II: Cylindrical geometry. IEEE Trans. Med. Imaging, 21(7):829–833 (2002).

    Article  Google Scholar 

  17. Andreev VG, Karabutov AA, and Oraevsky AA. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control, 50(10):1383–1390 (2003).

    Article  Google Scholar 

  18. Finch D, Patch SK, and Rakesh. Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal., 35(5):1213–1240 (2003).

    Article  MathSciNet  Google Scholar 

  19. Karabutov AA, Savateeva EV, and Oraevsky AA. Optoacoustic tomography: New modality of laser diagnostic systems. Laser Phys., 13(5):711–723 (2003).

    Google Scholar 

  20. Kostli KP and Beard PC. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. Appl. Opt., 42(10):1899–1908 (2003).

    Article  ADS  Google Scholar 

  21. Wang XD, Pang YJ, Ku G, Stoica G, and Wang LHV. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt. Lett., 28(19):1739–1741 (2003).

    Article  ADS  Google Scholar 

  22. Xu MH and Wang LHV. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E, 67(5):056605 (2003).

    Article  ADS  Google Scholar 

  23. Eghtedari M, Copland JA, Kotov NA, Oraevsky AA, and Motamedi M. Optoacoustic imaging of nanoparticle labeled breast cancer cells: A molecular based approach for imaging of deep tumors. Lasers Surg. Med., 52–52 (2004).

    Google Scholar 

  24. Haltmeier M, Scherzer O, Burgholzer P, and Paltauf G. Thermoacoustic computed tomography with large planar receivers. Inverse Problems, 20(5):1663–1673 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Ku G, Wang XD, Stoica G, and Wang LHV. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol., 49(7):1329–1338 (2004).

    Article  Google Scholar 

  26. Xu Y and Wang LHV. Time reversal and its application to tomography with diffracting sources. Phys. Rev. Lett., 92(3):033902 (2004).

    Article  ADS  Google Scholar 

  27. Cox BT and Beard PC. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoustical Soc. Am., 117(6):3616–3627 (2005).

    Article  ADS  Google Scholar 

  28. Ku G and Wang LHV. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett., 30(5):507–509 (2005).

    Article  ADS  Google Scholar 

  29. Ku G, Wang XD, Xie XY, Stoica G, and Wang LHV. Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl. Opt., 44(5):770–775 (2005).

    Article  ADS  Google Scholar 

  30. Zhang J, Anastasio MA, Pan XC, and Wang LHV. Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans. Med. Imaging, 24(6):817–820 (2005).

    Article  Google Scholar 

  31. Wang LHV and Wu HI. Biomedical optics: Principles and imaging. Wiley, Hoboken, NJ (2007).

    Google Scholar 

  32. Xu M and Wang LHV. Biomedical photoacoustics. Rev. Sci. Instruments, 96(16):163902 (2006).

    Google Scholar 

  33. Gusev VE and Karabutov AA. Laser optoacoustics. American Institute of Physics, New York (1993).

    Google Scholar 

  34. Morse PM and Feshbach H. Methods of theoretical physics. McGraw-Hill, Boston, MA (1999).

    Google Scholar 

  35. Maslov K, Stoica G, and Wang LHV. In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett., 30(6):625–627 (2005).

    Article  ADS  Google Scholar 

  36. Zhang HF, Maslov K, Stoica G, and Wang LHV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 24(7):848–851 (2006).

    Article  Google Scholar 

  37. Briggs GAD. Acoustic microscopy. Clarendon, Oxford (1992).

    Google Scholar 

  38. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267 (1977).

    Article  ADS  Google Scholar 

  39. Chance B, Leigh JS, Miyaka H, Smith DS, Niola DS, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M, Chen P, Yoshioka P, and Boretsky R. Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. Proc. Natl. Acad. Sci. USA, 85:4971–4975 (1988).

    Article  ADS  Google Scholar 

  40. Ambach G and Palkovits M. Blood supply of the rat hypothalamus I. nucleus supraopticus. ACTA Morphologica Academiae Scientiarum Hungaricae, 22:291–310 (1974).

    Google Scholar 

  41. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2000, American National Standards Institute, New York, NY (2000).

    Google Scholar 

  42. Zhang HF, Maslov K, and Wang LHV. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat. Protocols, 2:797– 804 (2007).

    Article  Google Scholar 

  43. Xu MH and Wang LHV. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71(1):016706 (2005).

    Article  ADS  Google Scholar 

  44. Wang XD, Pang YJ, Ku G, Xie XY, Stoica G, and Wang LHV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 21(7):803–806 (2003).

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks H. Zhang and K. Maslov for providing unpublished Fig. 19.4. This work was sponsored by National Institutes of Health grants R01 EB000712 and R01 NS46214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong V. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, L.V. (2010). Photoacoustic Tomography. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics