
Cellular and Humoral Markers of Tissue Damage 

W. URACZ, R.J. GRYGLEWSKI 

Introduction 

Patients with sepsis who are hospitalized in intensive care units frequently 
develop multiple organ dysfunction failure syndrome (MODFS) with a poor 
prognosis (1-3). It is believed that injury in MOFDS is brought about by factors 
which under normal conditions playa regulatory role in homeostatic mechanisms 
(Table 1). 

Table 1. Factors involved in septic shock 

Cytokines 
Growth factors 
Adhesins 
CD antigens 
Lipid mediators 
Gas mediators 
Transcription factors 
Oncogenes 
Genes 

Some of these factors are humoral like cytokines, growth factors, lipid and gas 
mediators while others like oncogenes and their protein products, transcription 
factors (i.e. nuclear factor kappa B, NFKB) or DNA nuclear material are widely 
recognized as cellular ones. Adhesins might be viewed both as cellular (or 
membrane-bound) and soluble (humoral) factors. The distinction between 
cellular and humoral factors tends to be more and more vague. 

A widely used classification for the cluster of differentiation (CD) antigens 
involves not only cellular markers but also some cytokines and their receptors in 
membrane-bound and soluble forms (4). The best example of the dual role of 
cellular markers is class I major histocompatibility antigens (MHC or HLA) (5). 
These were first recognized as membrane-bound molecules on all nucleated 
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cells, and the existence of soluble HLA antigens has also been reported. HLA 
antigens are known markers of severe brain damage or of the onset of transplant 
rejection (5, 6). 

Many of the mediators associated with MODFS are generated by 
macrophages which being maximally stimulated already escaped physiological 
regulatory mechanisms and are genetically recoded to their death. This state is 
known as programmed cell death or apoptosis (7, 8). At a cellular level apoptosis 
and necrosis are responsible for the release of cellular markers to the body fluids. 
Apoptosis regulates cell number and eliminates damaged or infected cells. Also 
shedding off the cell-bound molecules from macrophages, or from other cells 
with the fast membrane turnover might be a source of soluble forms of cellular 
markers. 

Baue and Faist suggested the following stages of development of MODFS: 
infection, increased permeability of intestinal mucosa, involvement of immune 
system (macrophages, cytokines, antibodies, receptors); generalized 
inflammation associated with a damage to endothelium, oedema and impaired 
oxygen availability; and finally ischaemia with reduced microcirculatory flow, 
necrosis and eventually MODFS (2). 

This systemic inflammatory response syndrome (SIRS) caused by infection is 
characterized by the exacerbation of the production of pro- and 
anti-inflammatory mediators (9). The cascade of cellular and humoral factors 
(Table 1) released by endotoxin (LPS) includes thromboxane A2 (TXA2), nitric 
oxide (NO), oxygen free radicals (Or, OH'), lipid peroxides (LOa'), 
leukotrienes (LTB4-E4)' platelet-activating factor (PAF), tumour necrosis factor 
(TNFa), interleukins (IL-I, IL-4, IL-6, IL-8, IL-lO, IL-I2, IL-13), interferons a 
and y (IFNa, IFNy) , cytoadhesins (ELAM, ICAM, sPAGEM), soluble TNF 
(sTNF R) and IL-I (IL-Ira) receptors, transforming growth factor ~ (TGF~) and 
many others. 

Although in many animal models of septic shock removal of the above 
mediators has conferred successful protection, so far very poor results have been 
achieved in humans. Current understanding of the setting of an anti­
inflammatory response by the host seems to indicate that the host organism is 
responsible for putting into motion most of the necessary regulatory processes. 
Indeed, both pro- and anti-inflammatory mediators appear to be markers of the 
severity of the disease. However, after exhaustion of adaptive mechanisms, 
therapeutic help in SIRS is required. 

Various therapeutic approaches have been proposed to interfere with the 
development of SIRS (9-11). These include antibodies to: endotoxin (LPS), 
anti-IL-I, anti-IL-8, anti-IL-12, anti-CDI4, anti-73kDa LPS receptor, anti-IFNy, 
monoclonal antibodies to TNFa, macrophage migration inhibitory factor (MIF) 
and lymphocyte migration inhibitory factor (LIF) , anti-CDllb, anti-ICAM-I, 
anti-ELAM-I, anti-superoxide dismutase, IL-I receptor antagonists, sTNF R, 
IL-l ~ converting enzyme inhibitors (ICE), aprotinin, hirudin, heparin, platelet 
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activating factor (PAF) antagonists, cyc100xygenases (COX-l and COX-2) 
inhibitors (nonsteroidal anti-inflammatory drugs, NSAID), steroid hormones, 
lipooxygenase inhibitors and NO synthase (NOS) inhibitors, prostacyc1in 
analogues, tyrosine kinase inhibitors, lipid X, lipoaminoacids, as well as 
infusions of various electrolytes or buffers containing catecholamines, 
vasopressin, angiotensin II or sometimes phenoxybenzamine (10, 12-22). A 
relapse of time between an infection and administration of a putative drug is 
crucial for its efficacy. Lack of success in the treatment of MODFS with curative 
molecules which were effective in the experimental models of septic shock might 
be explained, at least partially, by a late stage of SIRS at which the therapy is 
usually implemented (9). 

Out of a broad scope of tissue damage markers which are important in 
MODFS we will focus on: i) LPS/ceramide CD14 system in the induction of 
septic shock, ii) cytokines - inhibition of their production and cytokine-binding 
proteins, iii) serum HLA class I antigens, iv) lipid mediators, v) NO as a marker 
of septic shock and vi) apoptosis. 

LPS/ceramide CD14 system 

Most cases of sepsis and septic shock are secondary to infections with 
Gram-negative bacteria (23, 24). The Gram-negative bacterial cell wall consists 
of inner and outer membranes, the latter portion of which contains proteins as 
well as LPS (14, 25). It is useful to review briefly the structure of LPS. LPSs are 
complex molecules composed of three major parts: a polysaccharide side chain 
(O-antigen), which is attached via a bridging (core) polysaccharide to a 
glucosamine-based phospholipid (lipid A). The most variable part of the LPS 
structure is the 0 antigen. In contrast, the lipid A and to some extend also core 
region are more conserved (26). This is why antibodies are produced which may 
cross-react. 

Endotoxin is measured utilizing the haemolymph of amoebocytes from the 
Limus horseshoe crab (27). This substance contains a proenzyme which is 
directly activated by endotoxin leading to visible gelling of the mixture. 
Spectrophotometric modification of the Limus amoebocyte lysate (LAL) assay 
detects endotoxin to less than 10 pg/dl. Unfortunately, the accuracy of the LAL 
assay is affected by numerous circulating plasma proteins (i.e. antithrombin III, 
anti-endotoxic antibodies, etc.) and it can be positive in patients with 
Gram-positive bacterial and fungal infections (28). This may be related to the gut 
leak which accompanies these infections. Measurement of LPS levels in 
diagnostic practice shows that endotoxin is often present in sepsis; its presence 
might correlate with the severity of clinical manifestations and end-organ 
dysfunction. However, the same literature consistently finds out that 
endotoxaemia, as detected by LAL assay, is not invariably present in clinical 
sepsis as the results of LAL assay must be viewed with scepticism (14). In 
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clinical practice, useful markers that may indicate the presence of Gram-negative 
bacteria sepsis are: blood culture for Gram-negative microbe or culture or Gram 
stain positive for a Gram-negative microbe at a local site of infection (26). 

It has been shown that nerve growth factor (NGF), TNFa, IL-l ~ or Fas ligand 
after binding to their specific CD40 transmembrane receptors stimulate cells by 
releasing the intracellular messenger ceramide (29-32). This stimulation is 
completed through activating neutral sphingomyelinases. Agonist-induced 
hydrolysis of sphingomyelin puts in motion the sphingomyelin cycle analogous 
to the signal transduction by the phosphatidyloinositol and glycerophospholipid 
system (33). 

Recent studies on the composition of the outer leaflet of the outer membrane 
of some Gram-negative bacteria emphasize the presence of a glycosphingolipid 
but not the LPS. This bacterium has been named Sphingomonas (34). The 
substitution of sphingolipids for LPS in this bacterium confirms that the physical 
properties of sphingolipids may be interchangeable with those of LPS. Indeed, 
the examination of the structure of LPS and ceramide have revealed a strong 
similarity between their molecules. Computer molecular modelling and 
conformational dynamics yielded a solution structure for the acylated 
glucosamine I of LPS with a strong similarity to that of ceramide (35). Identical 
chirality at two optical active carbon centres and approximately similar lengths 
of the hydrocarbon chains make the molecules of LPS and ceramide very much 
alike. LPS along with TNF and IL-l cause common events in cells such as: 
(i) mitogen-activated protein kinase activation; (ii) NF-KB translocation; 
(iii) activator protein 1 stimulation; (iv) phospholipase A2 activation and (v) TNF 
gene expression (35). 

For recognition of endotoxin, a binding protein/receptor system involving 
LPS-binding protein (LBP) and CD14 molecule has been postulated. However, 
effects of LPS occur also in CD 14-negative cells, and not all of them depend on 
the presence of LPB. This is why not all pathways in recognition of endotoxin 
are already defined. Several cellular structures have been found to bind LPS. For 
instance, the scavenger receptor or CD 11lCD 18 are involved in the detoxification 
of LPS (36). Several not well characterized membrane proteins with 18,25,38, 
55, and 65 kDa were found to bind LPS. Also, 40- and 80 kDa, as well as 70- to 
80 kDa proteins have been postulated in LPS recognition by various cell types 
(25). The CD14 molecule, however, has been unequivocally established to be a 
LPS receptor (37). CD14 is found as a 53 kDa glycoprotein on the cell surface 
(mCDI4) of all mature myeloid cells. The gene for CD14 is located on the fifth 
chromosome in a region known to encode several cytokines including 
granulocyte/macrophage colony stimulating factor (GM-CSF), CSF-l, IL-3, 
endothelial cell growth factor (ECGF), as well as receptors like CSF-l receptor, 
platelet-derived growth factor receptor, FMS (c-fms photooncogen) and 
~-adrenergic receptor. The 32 identified amino acid residues have 40 kDa and 
almost completely match the amino acid sequence deduced from the CD14 
cDNA. In the plasma of healthy adults 4-6 Jlg/ml of soluble CD14 (sCDI4) are 
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found and sCD 14 is highly elevated up to 200 llg/ml in the plasma of septic 
patients. Two slightly different soluble forms of CD 14 molecules exist which can 
be found in normal serum, most likely due to shedding of mCD14 as it was 
shown for endothelial cells (38). 

Endotoxins or LPS are undoubtedly the molecules responsible for most of the 
pathophysiological phenomena associated with Gram-negative infections. 
Experimental and clinical observations indicate that endotoxin may exert its 
deleterious effects upon the host to a large part by provoking the release of a 
variety of endogenous mediators, although direct toxicity may also occur. In 
1968, Chedid et al. proposed and used an antibody capable of neutralizing 
endotoxins. In 1982, Ziegler et al. used antiserum prepared in healthy volunteers 
injected with J5 LPS of rough mutant of Escherichia coli and substantially 
reduced deaths from bacteraemia (10, 11, 14). Modern technology has enabled 
researchers to prepare monoclonal antibodies (mAb). Many mAbs have been 
generated and studied. The most well known are those which reached the stage 
of clinical studies. E5 mAb from Xoma Corporation and HA.1 A mAb from 
Centocor were reported to be effective for patients with sepsis and 
Gram-negative bacteraemia (39, 40). The neutralizing therapy is extremely 
expensive and the results of double blind randomized placebo controlled 
multi centre trials are indicative but not conclusive. The current limitations of 
treatment of septic patients with anti-LPS antibodies, beside the not trivial 
financial impact, are connected with the fact that an increasing proportion of 
cases of sepsis are related to infection with Gram-positive bacteria; it is difficult 
to demonstrate cross-reactivity against rough mutants and so far neutralization of 
the effect of endotoxin by antibodies has not been described. The theoretical 
premise that LPS antibodies are cross-protective is attractive but requires further 
investigation (14). 

Soluble CD 14 can act as an inhibitor at the monocyte/macrophage level. In 
contrast, sCD 14 is involved in the activation of endothelial cells by LPS (41). 
This observation limits the therapeutic use of sCD14 but leaves room for the use 
of anti-CD14 antibodies. It was reported that the anti-CD14 strategy reduced 
hypotension, lowered cytokine production and prevented pulmonary oedema. 

Proinflammatory cytokine in sepsis 

While the initiating event in sepsis may be the release of endotoxin, many of the 
clinical symptoms of sepsis result from the release of endogenous mediators such 
as TNF, IL-1, IL-6, IL-8, PAF etc., mononuclear phagocytes and other cells, 
including endothelial cells. Each of these mediators stimulates both its own 
release and the release of other mediators and acts in concert to produce 
symptoms of sepsis. The proinflammatory cytokines TNFa and IL-1 ~ have been 
studied extensively. It is generally accepted that these cytokines playa central 
role in the pathogenesis of sepsis (13, 19,20,42). 
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Plasma levels of TNF are a marker of sepsis and depend on the severity of 
disease. After bolus injection of endotoxin, blood levels of TNFa typically 
increase at 30 min and peak at 90 min (9, 19,20). TNF is known to stimulate not 
only the release of several other cytokines (e.g. IL-1, IL-6, PAF) , but also the 
production of endothelial adhesion molecules which promote neutrophil­
endothelial cell adherences. Likewise, TNF enhances neutrophil phagocytosis 
and injures endothelial cells as manifested by an increase of endothelial cell 
permeability. TNF is rapidly cleared from the systemic circulation due to its short 
half-life (14-18 min in humans) and returns to base levels within a few hours 
(43). This is why plasma TNF activity alone is not a reliable prognostic factor in 
septicaemia and supports the concept that TNFa is an early mediator that 
initiates the changes that lead to the extensive cellular injury (44). However, the 
strongest evidence supporting the role of the TNF in the pathogenesis of septic 
shock, SIRS and MODFS comes from studies that employed anti-TNF 
antibodies (10). The favourable effect of anti-TNF antibodies in experimental 
septic shock were most prominent when antibody was administered prior to the 
infusion of LPS. Based on these observations, it is clear that for TNF antibodies 
to be effective, the antibody must be given before or very soon after the onset of 
bacterial infection (14). 

The polypeptide hormone IL-1 is another important factor in host defence and 
exists in two forms: IL-1 a and IL-l~. Both are potent proinflammatory 
monokines with biological effects that include endothelial cell activation and 
increase of adhesion molecule receptor expression. In addition, IL-1 promotes 
the release of other cytokines (TNF, IL-6, PAF) and acts synergistically with 
TNF in the production of many of its biological and inflammatory effects such 
as hypotension, endothelial cell injury, increased vascular permeability and, 
finally, death (45). Like TNF, serum levels ofIL-l rise after endotoxin infusion. 
However, in contrast with TNF, serum levels of IL-l reach their peak 3-4 h after 
LPS challenge (20). 

IL-6 is another cytokine in the inflammatory network. Expression of IL-6 is 
induced in many cells, including mononuclear phagocytes and endothelial cells, 
after stimulation with LPS, IL-l and TNF. IL-6 is thought to promote neutrophil 
activation and accumulation at sites of inflammation (46). In keeping with these 
properties of IL-6, increased plasma concentrations of IL-6 have been detected 
in patients with sepsis and are associated with increased mortality. For that 
reason, most authors now agree that IL-6 is a marker of the severity of the 
infection (45, 47, 48). 

IL-8 is a recently described peptide that is secreted by a variety of cells such 
as alveolar macrophages, monocytes, endothelial cells in response to endotoxin, 
IL-I and TNF (15, 49). IL-8 causes chemoattraction and activation ofneutrophils 
and is believed to mediate neutrophil recruitment in host defence and disease 
(50-52). It was also demonstrated that IL-8 enhances binding affinity of adhesion 
molecules on human neutrophils (53, 54). The accumulation of activated 
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neutrophils in lungs and other organs is felt to playa key role in the pathogenesis 
of SIRS and MODFS (55, 56). 

An important first step in the process of neutrophil-mediated organ injury 
involves the binding of neutrophils to endothelial cells (57, 58). This interaction 
is largely regulated by complementary adherence molecules that are present on 
these cells and expressed in increasing numbers in response to endotoxin, TNF, 
IL-l, and IL-8. Endothelial and neutrophil cell activation by these cytokines is 
accompanied by enhanced expression of adhesin molecules such as ELAMl, 
VCAMl, ICAMI (59). Anti-CD18 antibodies, in contrast to anti-CDII 
antibodies, are able to reduce LPS-induced neutrophil sequestration in tissue and 
organ injury (59, 60). This antibody worsened endotoxaemia, acidosis and 
cardiovascular function in a canine model of LPS shock and in the baboon model 
of sepsis. In the same model, anti-ELAMI therapy was beneficial. The 
contribution of the adhesion molecule and the interaction between endothelial 
and circulating cells playa major role in tissue damage and organ dysfunction. 
However, the use of antibodies to interfere in this process remains controversial 
(13). 

Cytokine-binding proteins 
Cytokine-binding proteins (CBPs), such as cytokine receptors and antibodies, 
mostly monoclonal, impair interactions of cytokines with their cellular receptors 
and so these agents can potentially provide a means for treating pathological 
conditions that have a significant cytokine involvement as is the case in septic 
shock. Indeed, the efficacy of such treatment was demonstrated for the first time 
a decade ago whereby experimental shock was prevented by antibodies against 
TNFa (61,62). The cloning of genes encoding cytokine receptor chains, and the 
characterization of their soluble forms, has opened the way to new strategies in 
anticytokine therapy. These molecules clearly act as antagonists of their 
respective ligands through competition with the membrane receptors that 
transduce the biological signal into the target cell. As anticipated, the injection of 
sIL-IR modulate the allogenic response in vitro and prevent allograft rejection 
(63). Cerami's group and many others have confirmed the protective activities of 
anti-TNF antibodies in various models. Also in humans, anti-TNF antibodies 
were effective when combined with antibiotics (10, 14, 61). Counteracting the 
effect of another proinflammatory cytokine, IL-l has been investigated with the 
IL-l receptor antagonist (IL-l-ra) (64-66). This natural IL-l-like molecule binds 
to the same receptors as IL-l, but fails to transmit any signal (61). A second 
phase III study of IL-lra was dropped after an interim analysis had failed to show 
any evidence of benefit (10). Another possibility for containing IL-l is the use of 
IL-l ~ converting enzyme (ICE) inhibitors. ICE is responsible for cleaving a 
biologically inactive IL-l precursor into the mature IL-l active form (67). The 
results of the INTERSEPT placebo-controlled trial of anti-TNF mAb 
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(Bayx1351) in 563 patients with severe sepsis shows lack of significantly altered 
mortality between the studied groups (68). 

In contrast, the results of the Immunex study of p75 sTNFR-Fc which have 
now been reported indicate an increase of mortality among patients in the treated 
group. In patients with sepsis, plasma levels of both sTNFR p55 and p75 are 
markedly increased and highly correlate with simultaneously obtained 
APACHE II and MODFS scores. Since the degree of increased sTNFR levels 
correlated poorly with patient survival, elevated sTNFR levels represent a good 
marker for severity of sepsis and predict an outcome (69). 

However, exceptions do exist: soluble IL-6 receptor and cilliary neurotrophic 
factor act as agonists (70). A potential advantage of soluble receptors over high 
affinity mAbs is that they are of human origin and, accordingly, the problem of 
patient immunization is obviated. There are two drawbacks of soluble receptors: 
(i) their usually lower affinity than that of mAb and (ii) their shorter half-life in 
vivo because they are molecules smaller than antibodies. To overcome these 
problems, for instance, immunoadhesins have been generated that comprise two 
soluble receptor fragments linked genetically to a human immunoglobulin 
constant region (i.e. sTNFR-Fc) (71-74). Additionally, this procedure decreases 
the therapeutic dose of soluble CBPs in vivo. However, the major drawback of 
using CBPs relates to the fact that they stabilize the cytokine in the form of a 
cytokine-CBP complex in vivo (61). The first demonstration that CBPs are 
capable of stabilizing cytokines was provided by treatment with anti-IL-6 mAbs. 
The longer in vivo half-life of IL-6-anti-IL-6 complexes (3.5 days) provides a 
pharmacokinetic explanation for the accumulation of cytokine (the half-life of 
free IL-6 is as low as 20 min) and for their potential action as agonists (62). 
However, when CBPs are present in excess over the cytokine-membrane 
receptor, they seem to act as antagonists. 

Inhibition of proinflammatory cytokine production 

Rather than counteracting cytokines already generated, inhibition of their 
production may prevent these mediators from becoming involved in the 
immunoinflammatory cascade. Glucocorticoids were thought to do it; however, 
using them in sepsis has not been successful (13). Pentoxyphylline, a 
phosphodiesterase inhibitor, limits the synthesis of TNF (75). Various drugs 
which reduced TNF and/or IL-1 production (e.g. linomide, prostacyc1in 
analogues or chlorpromazine) also had beneficial effects in experimental models 
of septic shock (76-78). More recently, it has been shown that tyrosine kinase 
inhibitors block LPS-induced TNF and NO production (79). 

Cytokines such as IL-4, IL-10, IL-13 and TGF~ possess anti-inflammatory 
properties because they inhibit the generation of the most of proinflammatory 
cytokines in monocytes/macrophages. Moreover, these particular cytokines also 
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induce IL-l-ra (13). Among other putative beneficial cytokines is IFNa (80). Its 
usefulness in septic shock is still controversial. Maybe the natural balance 
between pro- and anti-inflammatory cytokines is not sufficient to slow down the 
running inflammatory cascade. 

Serum HLA class I antigens 

More than 20 years ago, MHC class I antigens were reported to be present in 
serum. The development of anti-HLA mAbs had a significant impact on the 
analysis of serum HLA class I antigens. Similar to their cell-membrane 
associated counterpart, the serum HLA class I molecular complex comprises a 
polymorphic heavy a-chain noncovalently associated with ~2 micro globulin. The 
level of serum HLA class I antigens markedly increases in the course of viral 
infections caused by cytomegalovirus, hepatitis B virus, hepatitis C virus, 
varicella-zostervirus, and human immunodeficiency-l virus. During HIV-l 
infection, the level of serum HLA class I antigens correlates with stages of 
disease and represents a good prognostic marker of the disease progression. An 
increase in the level of total serum HLA class I antigens has also been observed 
in recipients of heart, kidney or liver transplants. The rapid decrease in the level 
of serum HLA antigens observed following immunosuppressive therapy of acute 
episodes of graft rejection suggests that their level may be the result of immune 
system activation. The elevation of donor-derived serum HLA class I 
allospecificities precedes the clinical evidence of a graft rejection episode. It 
means that measurement of donor-derived serum HLA antigens may represent a 
test to diagnose graft rejection episodes (5, 6, 81, 82). 

Lipid mediators 

Many other mediators produced by activated cells contribute to the inflammatory 
syndrome. Some may be directly induced by LPS while others may be induced 
following target cell activation by proinflammatory cytokines. As a consequence, 
prostaglandins (PGs), thromboxane, leukotrienes and PAF are other potential 
targets for therapeutic approach (13, 21). Inhibition of PG formation by COX-2 
rather than COX-I inhibitors (e.g. ibuprofen) attenuate many alterations 
associated with LPS injection in animal models of endotoxin shock and inhibit 
TNF production. However, the experiments in human volunteers show that an 
injection of ibuprofen immediately before administration of endotoxin caused a 
significant increase in the level of circulating TNF. Prostaglandin E, (PGE,) has 
several properties that could be beneficial for the treatment of severe sepsis. It is 
a potent vasodilator of the pulmonary and systemic circulation. Like 
prostacyclin, it has also important anti-inflammatory effects by blocking 
macrophage activation. It can influence coagulation by inhibiting platelet 
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aggregation and by inducing fibrynolysis. In dogs, PGE, almost entirely restored 
tissue oxygen extraction after endotoxin challenge (83). PAF antagonists have 
led to successful protection in various septic shock models induced by LPS. 
Recent study in patients with sepsis has shown that BN52021 (a PAF inhibitor) 
offered an improvement (10, 13). Another PAF antagonist, TCV-309, inhibited 
cytokine production in experimental endotoxaemia in chimpanzees (84). 

Nitric oxide as a marker of septic shock 

The free radical of NO is synthesized from L-arginine by a family of enzymes -
NO synthases (NOS) (85). The continuous biosynthesis of NO by the constitutive 
endothelial isoform of NOS (eNOS) keeps the vasculature in active 
vasodilatation and reduces platelets and polymorphonuclear cell adhesion to the 
endothelium. The inducible isoform of NOS (iNOS) is expressed in response to 
immunological stimuli. iNOS produces NO at nanomolar amounts and then acts 
as a cytostatic and cytotoxic agent. 

The role of NO in septic shock will be presented in a separate contribution 
and this is why only a very short summary of available data will be presented 
here. It has been suggested that the overproduction of NO is responsible for death 
during endotoxic shock or sepsis (86-91). In 1989, Vallance et al. showed that 
inhibition of NO synthesis by NG-monomethyl-L-arginine (L-NMMA) had 
elevated blood pressure in rats (92). Furthermore, it was demonstrated that local 
infusion of L-NAME into brachial artery of healthy volunteers caused a dose­
dependent fall in resting forearm blood flow and attenuated the dilator response 
to acetylcholine. The effect of L-NAME was stereospecific (D-NAME was 
ineffective) and reversed by supplying an excess of L-arginine (93). Ochoa et al. 
found elevated nitrite/nitrate levels (stable breakdown products of NO) in 
patients with septic shock but these levels were decreased in patients with trauma 
(94, 95). Recently, Wang and Chaudry pointed out the complexity of the 
alteration in NO production with the progression of sepsis (91). They 
hypothesized that NO inhibition under some septic conditions might be 
detrimental. We also observed ambiguous effects of NOS inhibitors in rats with 
LPS-induced shock. When NOS inhibitors had been administered before LPS 
was given, the removal of NO potentiated LPS-induced shock. Administration of 
NO inhibitors in the second hour after injection of LPS caused a temporary 
improvement. The activity of eNOS is regulated by calmodulin and changes in 
intracellular calcium. The enhanced formation of NO in the early stage of shock 
is due to the activation of eNOS. We observed the induction of iNOS mRNA in 
the lungs, spleen and heart of LPS-treated rats as early as 1 h after endotoxin 
administration. This is why we postulate that in early and late stages of shock, 
differential effects of nonselective NOS inhibitors might account for their action 
on different isoforms of NOS. So far, the role of NOS inhibitors in the treatment 
of sepsis remains to be defined. The availability of specific inhibitors of iNOS 



Cellular and Humoral Markers of Tissue Damage 119 

would help to answer the relevant questions. Such agents are in the early stages 
of development but they have not as yet been studied in humans (96, 97). 

Programmed cell death - apoptosis 

Apoptosis constitutes an efficient system in cell biology designed to eliminate 
superfluous, unwanted, altered, aged, or transformed cells without eliciting 
damage to adjacent normal cells or surrounding tissues. The mechanism of 
apoptosis has long been neglected in clinical research and in clinical thinking. 
Nevertheless, apoptosis offers understanding of a number of pathological 
syndromes and clinical observations which otherwise cannot be explained by 
well-known biological processes. Leucocytes, monocytes and macrophages are 
selectively eliminated from inflammatory tissues by the occurrence of 
programmed cell death. The therapeutic regulation of apoptosis during and after 
an inflammation offers a new approach for promoting rapid healing and 
reduction of unwanted pathological sequelae of inflammation processes (7, 8, 
98,99). 

Necrosis, or accidental cell death, occurs in response to harmful insults such 
as physical damage, hypoxia, hyperthermia, complement attack or chemical 
injury. Table 2 shows the differences between apoptosis and necrosis. 

Analysis of the mechanism that prevents cell death, such as activation of the 
bcl-2 gene, addition of growth factors and the use of protein synthesis inhibitors 
or calcium entry blockers, might aid in the development of new treatment 
strategies. Drug and therapy designs directed at the modulation of apoptotic 
process will offer new opportunities for the treatment and control of tissue 
damage in the coming years. If these goals can be accomplished, we may finally 
see a reduction in the morbidity and mortality associated with MODFS. 

Conclusion 

Comprehension of the basic mechanisms involved in the host inflammatory 
response is necessary for clinicians to make educated choices and decisions 
regarding therapies. The discovery of the sphingomyelin cycle as a target of LPS 
action that mimics natural mediator ceramide promoted progress in our 
understanding of the events during the development of septic shock. Advances in 
molecular biology and in the cytokine network led to the development of novel 
approaches to the treatment of septic shock, SIRS and MODFS. As noted in this 
review, therapies are directed to distinct levels: the initiating event (i.e. 
endotoxin), to various mediators, and the effector cells (i.e. macrophages, 
endothelial cells). These factors are not merely markers of sepsis and its severity, 
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Table 2 

Apoptosis Necrosis 

Origin Lack of growth factors, Anoxia, starvation, 
hormonal factors, mild physical and chemical 
toxic stimuli damage 

Occult phase Minutes to hours None 
First manifestation Shrinking Swelling 
Nuclear changes Pyknosis, condensation, Karyolysis 

internucleosome 
cleavage, DNA laddering 

Chromatin Segmentation and Nuclear folding 
margination 

Nucleolar changes Intact Granulated 
Membrane integrity Persists Failure 
Surface Smoothing Lysis, blebbing 
Cytoskeleton Formation of apoptotic Fragmentation 

bodies 
Mitochondria Unaffected Swelling 
Endoplasmic reticulum Unaffected Dilated 
and Golgi apparatus 
Organelles Intact Swollen, leaky 
Gene expression p53 i ' bcl-2l , c-myc i No change 
Protein synthesis Blocked by Not affected by 

cycloheximide and antibiotics 
actinomycin D 

Cytoplasmic changes Endonuclease activity i ' Release of lysosome 
trans glutaminase i content 

Cells affected Dispersed cells Diffuse degradation 
Cell elimination Engulfment by Inflammatory response 

macrophages and in adjacent tissues 
endothelial cells 

but play an important role in the pathophysiological mechanisms. The era of 
cytokine response modification in patients with severe sepsis has evolved rapidly. 
These therapies if they prove effective in clinical trials are in progress and it 
should be stressed that current interventional capacities are far ahead of our 
comprehension of the mechanisms involved. Moreover, we should remember that 
these therapies are enormously expensive. Finally, taking into account that 
apoptosis is a natural route of macrophage elimination, some present therapies 
might be ineffective because they act on cells already programmed to their death, 
no matter how much effort is engaged to keep them alive. 
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