
Chapter 21

Animal Models of Demyelination of the
Central Nervous System

A. UCCELLI

Experimental Autoimmune Encephalomyelitis

Experimental autoimmune encephalomyelitis (EAE) is possibly the best animal
model for studying autoimmune diseases and in particular demyelinating dis­
eases of the central nervous system (CNS) such as multiple sclerosis (MS). Since
the classic studies of Rivers et al. (1) in monkeys immunized with CNS
homogenate, EAE has been an invaluable tool for dissecting mechanisms of the
immune response against self-antigens within the CNS, as well for testing new
therapies for the treatment of autoimmune diseases. An autoimmune response
leading to EAE in susceptible species can be obtained by active immunization
with CNS proteins or by passive transfer of T lymphocytes reactive against myelin
antigens to syngeneic recipients. The role of T lymphocytes in EAE was first
demonstrated by Paterson who succeeded in transferring disease by means of
T cells from immunized animals [2]. Since then, many researchers have attempt­
ed to characterize the role of T cells in EAE. Over the years it became clear that
activated CD4+ T cells mediate EAE upon recognition of the target antigen bound
to class II molecules of the major histocompatibility complex (MHC) [3].
Encephalitogenic T cells can be retrieved from the blood of immunized as well as
naive animals, supporting the concept that autoaggressive lymphocytes are part
of the natural immune repertoire [4,5].

Virtually all mammalian species can be susceptible to EAE as long as they are
properly immunized; several species and strains have been utilized including
mice, rats and guinea pigs (Table 1). The clinical, pathological and immunologi­
cal picture of autoimmune models of demyelination depends upon the mode of
sensitization, the nature of the immunogen, and the genetic background of each
species and strain.

Modes of sensitization include the route of immunization, primarily subcuta­
neously, and the use of immunogens emulsified with an equal volume of complete
Freund's adjuvant containing Mycobacterium tuberculosis to create an antigen
depot. Boosts with Bordetella pertussis are often used to help open the blood­
brain barrier (BBB).

Whole myelin homogenate as well as distinct myelin proteins, including myelin
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Table 1. Models of experimental autoimmune encephalomyelitis

Species MHC Immu- Encephalitogenic TCR Course Reference
nogen epitope (amino

acid sequence)

Mice Inbred
Biozzi/ABH dql MH RR Baker et al. [27]

MOG 1-22/43-47/134-148 CR Amor et al. [28]
SJL H-2s MH AM Brown [15]

MBP 89-101 VP17 AM Zamvil [3]
PLP 139-151 RR Tuohy [95]
PLP 40-70/100-119/178-209 - RR Greer [30J
MOG 92-106 CR Amor [28]

PLlJ H-2u MH AM Zamvil [3]
MBP Acl-9 Vp8.2/Va2 CR Zamvil [3]
MBP 35-47 CR Zamvil [3]
MOG 35-55 CR Kerlero de Rosbo [97]

C57BLl6 H-2B MOG 35-55 VP8 CP Mendel [96]
C3H.SW H-2K MOG 35-55 Vp8 CP Mendel [96J
B.IO.PL H-2u MH Acl-9 Vp8.2/Va2 AM Zamvil [3]

MBP 1-37 CR Zamvil [31

Rats Inbred
Lewis RTI.Bl MH AM Hoffman et al. [98]

MBP 68-88 Vp8.2/Va2 AM Burns et al. [18]
MOG 35-55 RR Linington et al. [8]

DA avl MH CR Lorentzen et al. [29]

Guinea Pig Inbred
13 MH AM Freud [99J

Primates Outbred
Macaque MH Heterogeneous AM Rivers [1]
Marmoset MH Heterogeneous Diverse CR Massacesi et al. [78]

MHC, major histocompatibility complex; MH, myelin homogenate; MOG, myelin oligodendrocyte
glycoprotein; MBP, myelin basic protein; PLP, proteolipid protein; RR, relapsing-remitting; CR, chron-
ic relapsing; AM, acute monophasic; CP, chronic progressing; -, Not determined.

basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and prote­
olipid protein (PLP), have been used to induce EAE in different species. The role
of MBP, an abundant hydrophilic myelin protein, was first characterized by Ben­
Nun and colleagues who successfully induced EAE by transferring MBP-specific
T cell lines to naive Lewis rats [6]. Passive transfer studies also elucidated the role
of other myelin antigens, including PLP [7] and MOG [8]. MOG, a minor glyco­
protein exposed on the surface of the myelin sheath, is the target of both humoral
and cellular immune responses. The importance of the humoral response to MOG
was first demonstrated by Linington et al. who showed the presence of sharp
demyelination following the injection of anti-MOG auto-antibodies into animals
with T-cell-mediated EAE [9]. Other encephalitogenic proteins include a lipid­
bound form of MBP [10] as well as non-myelin auto-antigens such as the astro­
cyte-derived calcium binding protein SlOOp [11].
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Depending upon the species, the antigen and the mode of sensitization, the
course of EAE can be monophasic acute, chronic relapsing, or even primarily pro­
gressive, mimicking human MS. The classic picture of acute EAE is characterized
by perivascular inflammation mainly represented by CD4+ and CD8+ T lympho­
cytes and macrophages within the cerebral white matter. Nevertheless, manipula­
tion of the above-mentioned factors can lead to a wide spectrum of neuropatho­
logical patterns including demyelination, remyelination, gliosis, loss ofaxons and,
in certain species, also necrosis [12].

EAE in Inbred Species

Olitsky and Yager were the first to establish EAE in mice [13]. Since then, thou­
sands of scientists have used inbred rodents as the most suitable species for EAE
studies. EAE has been successfully induced in guinea pigs [14] as well as in sev­
eral strains of rats and mice. Some mice strains such as SJLlJ develop a relapsing­
remitting disease following active immunization with spinal cord homogenate
[15]. Pathological investigations show the presence of mononuclear cell infiltrates
within the CNS and demyelination. A similar disease can also be obtained by the
adoptive transfer of MBP-specific T lymphocytes [16]. In this H-2s strain, a few
epitopes of MBP concentrated within the sequence of amino acids 89-101 are rec­
ognized by encephalitogenic T cells which preferentially use the T cell receptor
(TCR) Vp17 segment [17]. A more restricted response to encephalitogenic deter­
minants of MBP has been reported for EAE-susceptible H-2u mice such as PLlJ
and R10.PL. Both encephalitogenic and non-encephalitogenic T cells recognize
the N-terminal peptide Acl-9 utilizing the same TCR Vp8.2/Va2 (or V(4) gene
combination [3]. Interestingly, the same TCR gene segments are characteristic of
the T cell response to MBP in Lewis rats [18]. In Lewis rats, EAE induced either by
active immunization or by passive transfer of T cells is an acute monophasic dis­
ease mostly characterized by inflammation [19]. In this species, EAE is mediated
by CD4+ encephalitogenic T lymphocytes that are specific for the peptide MBP
68-88 in the context of the class II MHC molecule RTl.Bl [20] and that rapidly
home to and persist at the site of inflammation [21]. The dominant use of a
restricted TCR repertoire has been successfully exploited in designing
immunospecific therapies by means of anti-Vp monoclonal antibodies [22] and
active vaccination with epitopes of the encephalitogenic TCR molecule [23].
Nevertheless, the presence of an epitope dominance, as well as limited TCR usage
within the T cell response to MBP, seems to be confined to the early phases of EAE
and remains controversial in humans. Later stages of EAE are characterized by a
more diverse recognition of previously cryptic determinants inside the MBP mol­
ecule (intra-molecular spreading) and within other CNS antigens (inter-molecu­
lar spreading) [24]. The appearance of a diverse T cell repertoire is further con­
firmed by the presence, in the spinal cord of rats with EAE, of a heterogeneous Vp
population during the recovery phase of disease [25]. This may result from apop­
tosis of encephalitogenic T cell clones [26] followed by secondary recruitment of
activated cells from the recirculating T cell pool specific for minor antigens.
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Recently, a chronic relapsing form of EAE has been successfully induced in
Biozzi (AB/H) mice by immunization with spinal cord homogenate [27] or MOG
[28]. The full spectrum of pathological lesions seen in MS, including sharp
demyelination and remyelination, is seen in this species. Another useful model,
recently described in DA rats, is characterized by a chronic relapsing course,
inflammation and demyelination [29].

In contrast to the rather restricted response to MBP, a diverse recognition of
determinants within other myelin antigens such as PLP [30] and MOG [28] seems
to occur in most rodents. However as a general rule for all inbred species, strains
of different haplotype appear to react with different epitopes of myelin antigens.

The presence of encephalitogenic T cells reacting against self-antigens in naive
animals is of remarkable conceptual importance and supports the fact that
autoaggressive T cells "escaping thymic deletion are maintained within the normal
circulating T lymphocyte pool [4,5]. A possible explanation for self-reactive T
cells escaping negative selection has been recently clarified in a MBP-I- transgenic
model in which endogenous MBP inactivated high avidity clones reactive against
the immunodominant epitope and made that determinant appear cryptic [31].

Thus, other factors are also necessary to cause autoimmune disease. The genet­
ic background is a major factor conferring susceptibility to EAE; a number of
murine loci have already been identified [32]. Both MHC and non-MHC genes
have been reported to control the development and severity of EAE [33]. The role
of environmental factors has been elegantly elucidated by Goverman and col­
leagues [34] who created transgenic mice expressing an MBP-specific TCR; these
mice spontaneously developed EAE only when challenged with microbial stimuli.
In a similar model, the complete cohort of anti-MBP TCR transgenic mice, defi­
cient for mature T and B cells, developed spontaneous EAE, suggesting that other
cells may have a protective role counteracting encephalitogenic cells [35]. A pro­
tective or regulatory role has been claimed for almost all cells involved in the
immune response including CD4+ [36], CD8+ [37], and CD4-CD8- [38] T cells,
macrophages [39], B cells [40], y6 T cells [41] and NK cells [42].

The environment exerts a major effect on EAE, leading to the activation of
potentially autoaggressive T cells which consequently home to the brain and
induce disease [43]. Activation state is the necessary prerequisite for T cells to
migrate through the BBB irrespective of their antigen specificity. Activation of
myelin-specific T lymphocytes in the peripheral compartment can occur through
a mechanism of molecular mimicry [44) and by stimulation with microbial
superantigens [45]. Other theoretical possibilities such as activation of T cells car­
rying two sets of receptors, one specific for a foreign protein and another for a
self-antigen, have never been demonstrated to playa role in autoimmunity [46].
Migration through the BBB involves adhesion molecules on both T cells (LFA-1
and VLA-4) and endothelial cells (ICAM-1 and VCAM-1) [47]. Following migra­
tion through the BBB, neuroantigen-specific CD4+ T cells are reactivated in situ
by fragments of myelin antigens presented in the framework of class II MHC mol­
ecules on the surface of local antigen-presenting cells including macrophages,
microglia and, although less efficient, astrocytes [48). These events are associated
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with the release of proinflammatory cytokines leading to the upregulation of
MHC molecules on a variety of resident, antigen-presenting cells [49]. The kinet­
ics of cytokines along the EAE clinical course suggests the role ofT helper 1 (Thl)
cytokines such as tumor necrosis factor (TNF)-a, TNF-~, interleukin (IL)-12, and
interferon (IFN)-y before and at the peak of disease. The recovery phase corre­
lates with Th2 cytokines such as transforming growth factor (TGF)-~, IL-I0 and
possibly IL-4 [50]. The onset of overt inflammation also maintains endothelial
activation and leads to a second wave of inflammatory recruitment, including T
cells and macrophages that damage tissue by means of TNF-a [51], oxygen and
nitrogen intermediates, perforin and complement [52] and demyelinating anti-
bodies [9]. .

Thus far, no consistent evidence differentiates between activated MBP-specific
T lymphocytes with no encephalitogenic capabilities and their pathogenic coun­
terparts, in spite of identical growing and stimulation conditions, sharing of epi­
tope specificity, and MHC restriction. Some studies suggest that differences in
encephalitogenicity correlate with a predominant Thl cytokine profile [53], their
brain homing capacity [54] and the ability to mediate a delayed-type hypersensi­
tivity (DTH) response [55]. Moreover, encephalitogenic T cells, despite their CD4+
phenotype, were cytotoxic for cells (e.g. astrocytes) presenting myelin antigens in
an MHC-restricted manner [56]. On the other hand, non-encephalitogenic T cells
may initiate autoimmune regulatory mechanisms through the production of IL-3
[57]. At least in Lewis rats, encephalitogenicity of MBP-specific T cells may corre­
late with the cytokine profile which depends on the MHC haplotype of the strain
[58].

A rather simplistic picture of the EAE cytokine network suggests that TNF-a,
TNF-~, IFN-y and IL-12 (proinflammatory cytokines) have a disease-promoting
role while TGF-~, IL-I0 and possibly IL-4 (anti-inflammatory cytokines) protect
from disease. Although a detailed analysis of the current literature on this topic is
beyond the scope of this chapter, an enormous amount of data states that the real
picture is much more complicated. Several factors influence the cytokine profile
of effector' and regulatory cells in EAE and, therefore, the final outcome of the
immune response within the target organ. These include age of the animal [59],
nature of antigen-presenting cells [60,61], local cytokine micro-environment
[62], selective engagement with costimulatory molecules [63] interaction with
altered forms of the immunizing antigen [64], and the route of immunization
[65].

Based on the hypothesis that Thl cytokines playa promoting effect on autoim­
munity while Th2 cytokines may have a protective role, immune deviation toward
a Th2 profile has been exploited for successfully treating EAE by administration
of anti-inflammatory cytokines [66], altered peptide ligands [64], monoclonal
antibodies (MAb) affecting B7/CD28 interactions [63] or anti-inflammatory
cytokines [67, 68], and by induction of oral tolerance [65]. Despite the success of
most experimental treatments targeting Thl cytokines, the Thl versus Th2
dichotomy underscores the complexity of interactions that lead to reciprocal
cross-regulation of Thl/Th2 responses. This has been dramatically elucidated by
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the severe aggravation of EAE in primates due to an enhanced ThZ response
occurring after discontinuation of treatment for immune deviation [69].
Moreover, conflicting results arise from the utilization of genetically manipulated
mice either lacking or over-expressing cytokines, as is the case in a number of
TNF-a studies which demonstrated a different clinical phenotype depending on
the experimental conditions. For example, over-expression of TNF-a in trans­
genic mice leads to spontaneous inflammation and demyelination within the CNS
[70], while TNF-a deficient knock-out mice can still develop EAE, thus challeng­
ing the role of this cytokine in EAE pathogenesis [71]. Surprisingly, in a recent
study, MOG-immunized, TNF-deficient mice developed severe EAE but were
remarkably ameliorated by the administration of TNF-a, possibly supporting a
protective role for this cytokine [72]. Targeting cytokine genes has helped to elu­
cidate the role of other cytokines such as INF-y [73], IL-4 and IL-I0 [74], nitric
oxide [75], and also of Fas/Fas-ligand and perforin pathways [76]. Nevertheless, it
must be kept in mind that genetic manipulation results in experimental condi­
tions that only partially represent the in vivo situation and that likely underscore
the redundancy of the cytokine system.

Overall, the deep knowledge of the immunogenetics of inbred species and the
possibility of successfully manipulating these animals, together with their acces­
sibility and moderate costs, make these species the first choice for studies on
autoimmune diseases of the CNS.

EAE in Outbred Species

EAE in non-human primates represented the first experimental model for
demyelinating diseases of the CNS [1]. The recent advances in primate housing
and handling techniques, knowledge of primate anatomy, immunology and
genetics, and the compatibility with most human reagents and diagnostic tech­
niques have sparked wide interest in EAE in these species. A unique advantage of
monkeys arises from their outbred condition that closely resembles the human
status. Moreover, the transfer of immunocompetent cells in outbred primates is
allowed by the possibility of crossing the trans-species barrier among closely
related species [77] and by the natural bone marrow chimerism in some others
[5]. Therefore, in primates it is possible to elucidate the role of pathogenic cells by
means of passive transfer experiments in a polymorphic setting. Recently, EAE
has been induced in the common marmoset Callithrix jacchus, a unique primate
species whose offspring develop in utero as genetically distinct twins or triplets
sharing bone marrow-derived elements through a common placental circulation
[78]. It has been recently demonstrated that C. jacchus TCR genes are extensively
conserved [79] and that class II MHC region genes, despite a relatively low poly­
morphism, encode the evolutionary equivalents of the HLA-DR and -DQ mole­
cules [80]. A fully demyelinating form of EAE has been induced by active immu­
nization with whole myelin [78], MOG or MBP followed by administration of
MOG-specific antibodies [81]. Passive transfer experiments have demonstrated
that encephalitogenic MBP-specific T cells are part of the normal marmoset
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repertoire [5]. As in humans, MBP-reactive T cells recognize different determi­
nants by means of a diverse TCR repertoire (A. Uccelli, unpublished results). EAE
induced with whole myelin or MOG is characterized pathologically by perivascu­
lar inflammation with conspicuous primary demyelination whose topography
correlates with magnetic resonance imaging (MRI) abnormalities [82]. On the
contrary, immunization with MBP or passive transfer of MBP-reactive T cells
leads to mild inflammation and no demyelination ([5] and G.L. Mancardi and A.
Uccelli, unpublished results). A complex role for cytokines, possibly released by
activated T lymphocytes and macrophages during the immune response, is sug­
gested by the high expression of CD40 and CD40-ligands in marmoset active
lesions [83]. The role of Thl cytokines has been demonstrated by the prevention
of disease following treatment with the cAMP-specific type IV phosphodiesterase
inhibitor Rolipram [84]. On the other hand, the ambiguous role of Th2 cytokines
was highlighted by the enhancement of EAE occurring after discontinuation of a
MOG-based tolerization treatment due to an enhanced proliferative and antibody
response to the antigen. Hence, it is likely that Th2-like T cells playa different role,
protecting or favoring autoimmunity, under different conditions [69].

EAE has also been induced in macaques by immunization with myelin or MBP
emulsified in complete adjuvant [85]. The EAE course is primarily hyperacute or
acute, often with a lethal outcome, and is characterized by intense inflammation
associated with hemorrhages and necrosis resembling acute disseminated ence­
phalomyelitis [86]. The association of EAE-susceptibility with a class II MHC
allele [87], the presence of myelin-reactive T cells correlating with the course of
EAE [86], the beneficial effect of anti-CD4 antibodies on EAE outcome [88], and
the possibility of inducing a mild form of EAE by adoptive transfer of MBP-spe­
cific T cells from unprimed animals [89] all provide strong evidence that T cells
playa central role in this model.

At the moment, the major advantage of a non-human primate EAE model for
human MS resides in the molecular and functional organization of the primate
immune system, leading to the possibility of evaluating the safety and efficacy of
biological molecules as therapy for MS.

Virus-Induced Demyelinating Diseases

CNS demyelination spontaneously occurs following infection with neurotropic
viruses such as Theiler's virus [90]. Theiler's murine encephalomyelitis virus
(TMEV), a natural mouse pathogen, is a picornavirus that induces a chronic
demyelinating disease with a clinical course and histopathology similar to that of
chronic-progressive MS. Viral persistence within the CNS is required for the
immune system to mount a cellular and humoral response leading to demyelina­
tion [91]. The host response may trigger both protective and pathogenic immune
responses which are the result of a balance between persistent viral infection and
immune injury mediated by CD4+ or CD8+ T cells and antibodies [92]. In suscep­
tible animals the lack of virus-specific cytotoxicity has been postulated to lead to
demyelination. On the other hand, resistant strains clear the infection following
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acute encephalomyelitis, possibly due to the ability to generate an effective class
I-restricted T-cell response [93]. As in EAE, epitope spreading to endogenous
myelin determinants has been shown to playa key role in the chronic-progressive
course of disease. Demyelination in TMEV-infected mice is initiated by a
mononuclear inflammatory response mediated by virus-specific CD4+ T cells tar­
geting viruses, which chronically persists in the CNS. Following myelin destruc­
tion, activation of CD4+ T cells specific for multiple myelin epitopes occurs, lead­
ing to disease progression [94]. Other models of virus-mediated demyelinating
disease of the CNS are obtained by infections with the mouse hepatitis virus
strain JHM (MHV-JHM) and corona virus.

Although almost the complete spectrum of MS-like lesions can be observed in
virus models of demyelination, the mechanisms underlying the pathogenesis of
immune response within the CNS are extremely complex and depend on the
mutual interaction between virus and host, thus making it difficult to dissect the
role of each factor in the pathogenesis of demyelinating diseases of the CNS.
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