Skip to main content

Origin and evolution of human malaria parasite, P. falciparum and P. vivax

  • Chapter
Nature at Work: Ongoing Saga of Evolution

Abstract

The global occurrences of malaria make it the major killer among all diseases. Many initiatives are being taken worldwide to control the disease. But, despite all these initiatives, its incidences are increasing constantly. Antimalarial drug resistance and lack of method to assess efficacy of any control initiatives have also worsen the situation. In this scenario phylogenetic study of malaria pathogen, can be effective in helping to develop new drugs and vaccines for the disease as well as to understand host parasite interactions and evolution of drug resistance in the pathogen. Malaria is likely originated in tropical Africa and later spread to other parts of the world due to human movement. Presence of plastid in Plasmodium sp. indicates its affinity with cynobacteria and green algae. Recent phylogenetic studies have indicated that all the four human malaria sp. are remotely related to each other. Close relation between P. falciparum and chimpanzee malaria parasite (P. reichenowi) and P. vivax and malaria parasite species of Asian monkeys has been observed. P. vivax shows higher genomic diversity than P. falciparum which indicates that it is older than the latter. Evolutionary studies suggest origin of P. falciparum and P. vivax in Africa and Asia respectively, and support ancient population expansions for both Plasmodium sp. Resistance in Plasmodium sp. for widely used antimalarial drugs was also developed along with spread of the disease It is Darwin’s fundamental contribution that fired the imagination of scientist’s interest in evolutionary studies, and these studies have already proved of much value in understanding the origin, spread and control measures in malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin C (1859) In: On the Origin of Species by Means of Natural Selection. John Murray, London

    Google Scholar 

  2. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodiumfalciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  Google Scholar 

  3. Allison AC (1954) Protection afforded by sickle, cell trait against subtertian malaria infection. Br Med J I:290–294

    Article  Google Scholar 

  4. Allison AC (1964) Polymorphism and natural selection in human populations. Cold spring Harbor Symp Quant Biol 29:137–149

    Article  PubMed  CAS  Google Scholar 

  5. Allison AC (2009) Genetic control of resistance to human malaria. Curr Opin Immunol 21:1–7

    Article  Google Scholar 

  6. Das A, Bajaj R, Mohanty S, Swain V (2007) Genetic diversity and evolutionary history of Plasmodium falciparum and P. vivax. Curr Sci 92(11):1516

    Google Scholar 

  7. Rodríguez-Morales AJ, Benitez JA, Franco-Paredes C (2006) Impact of imported malaria on the burden of disease in northeastern Venezuela. J Travel Med 13:15–20

    Article  PubMed  Google Scholar 

  8. Waters AP, Higgins DG, McCutchan TF (1991) Plasmodium falciparum appears to have arisen as a result of a lateral transfer between avian and human hosts. Proc Natl Acad Sci USA 88:3140–3144

    Article  PubMed  CAS  Google Scholar 

  9. Waters AP, Higgins DG, McCutchan TF (1993) Evolutionary relatedness of some primate models of Plasmodium. Mol Biol Evol 10(4):914–923

    PubMed  CAS  Google Scholar 

  10. Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91:11373–11377

    Article  PubMed  CAS  Google Scholar 

  11. Escalante AA, Barrio E, Ayala FJ (1995) Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein. Mol Biol Evol 12:616–626

    PubMed  CAS  Google Scholar 

  12. McCutchan TF, Kissinger JC, Touray MG, Rogers MJ, et al. (1996) Comparison of circumsporozoite proteins from avain and mammalian malaria. Proc Natl Acad Sci USA 93:11889–11894

    Article  PubMed  CAS  Google Scholar 

  13. Escalante AA, Freeland DE, Collins WE, Lal AA (1998) The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci USA 95:8124–8129

    Article  PubMed  CAS  Google Scholar 

  14. Perkins SL, Schall JJ (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88(5):972–978

    PubMed  CAS  Google Scholar 

  15. Escalante AA, Goldman IF De RP De WR Collins WE Qari SH Lal AA(1997) Phylogenetic study of the genus Plasmodium based on the secondary structure-based alignment of the small subunit ribosomal RNA. Mol Biochem Parasitol 90:317–321

    Article  PubMed  CAS  Google Scholar 

  16. Kedzierski L, Escalante AA, Isea R, Black CG, Barnwell JW, Coppel RL (2002) Phylogenetic analysis of the genus Plasmodium based on the gene encoding adenylosuccinate lyase. Infect Genet Evol 1(4):297–301

    Article  PubMed  CAS  Google Scholar 

  17. Ayala FJ, Escalante A, Lal A, Rich S (1998) Evolutionary relationships of human malarias. In: Malaria: Parasite Biology, Pathogenesis, and Protection. Sherman IW (Ed.), American Society of Microbiology, Washington, DC

    Google Scholar 

  18. Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    Article  PubMed  CAS  Google Scholar 

  19. Bray RS (1957) Studies on the exo-erythrocystic cycle of the genus Plasmodium. Lewis, London

    Google Scholar 

  20. Bruce-Chwatt LJ (1965) Paleogenesis and paleo-epidemiology of primate malaria. Bull Wld Hlth Org 32:363–387

    CAS  Google Scholar 

  21. Contacos PG, Coatney GR (1963). J Parasit 49:912

    Article  PubMed  CAS  Google Scholar 

  22. Chin W, Contacos PG, Coatney GR, Kimball HR (1965) A natuarally acquired quotidian type malaria in man transferable to monkeys. Science 149:865

    Article  PubMed  CAS  Google Scholar 

  23. Moskovskij SD (1948). Tr Akad Med Nauk SSSR 1:155

    Google Scholar 

  24. Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium andclosely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273

    Article  PubMed  CAS  Google Scholar 

  25. Russell PF (1955) Man’s mastery of malaria. Oxford University Press, London

    Google Scholar 

  26. Coatney GR (1963). J Parasit 49:919

    Google Scholar 

  27. Hirsch A. Handbook of geographical and historical pathology. New Sydenham Society (English translation) 1883–1886, London

    Google Scholar 

  28. Koch R (1898). Arb K Gesundh Amt 14:292

    Google Scholar 

  29. Stephans, JW, Cristophers SR (1900). Rep Malar Com Roy Soc Series 3:4

    Google Scholar 

  30. Garnham PCC (1963) An introduction to protozoal immunity. In: Immunity to Protozoa. Garnham PCC, Pierce AE, Roitt I (Eds.), Blackwell, Oxford

    Google Scholar 

  31. Campbell CC, Chin W, Collins WE, Teutsch SM, Moss DM (1979) Chloroquine-resistant Plasmodium falciparum from East Africa: cultivation and drug sensitivity of the Tanzanian I/CDC strain from an American tourist. Lancet 35(II):1151–1154

    Article  Google Scholar 

  32. Fogh S, Jepsen S, Effersoe P (1979) Chloroquine-resistant Plasmodium falciparum malaria in Kenya. Trans R Soc Trop Med Hyg 73:228–229

    Article  PubMed  CAS  Google Scholar 

  33. Aronsson B, Bengtsson E, Bjorkman A, Pehrson PO, Rombo L, Wahlgren M (1981) Chloroquine-resistant falciparum malaria in Madagascar and Kenya. Ann Trop Med Parasitol 75:367–373

    PubMed  CAS  Google Scholar 

  34. Kihamia CM, Gill HS (1982) Chloroquine-resistant falciparum malaria in semi-immune African Tanzania. Lancet 2:43

    Google Scholar 

  35. Markwalder KA, Meyer HE (1982) Possible sulfadoxine-pyrimethamine resistance in Plasmodium falciparum malaria from Kenya. Trans R Soc Trop Med Hyg 76:281

    Article  PubMed  CAS  Google Scholar 

  36. Wellems TE Pantons LJ Gluzman IY Do RV, Gwadz RW, Walker-Jonah A, Krogstad DJ (1990) Chloroquine-resistant malaria. J Infect Dis 184:770–776

    Article  Google Scholar 

  37. Bredenkamp BL, Sharp BL, Mthembu SD, Durrheim DN, Barnes KL (2001) Failure of sulphadoxine-pyrimethamine in treating Plasmodium falciparum malaria in KwaZulu-Natal. S Afr Med J 91:970–972

    PubMed  CAS  Google Scholar 

  38. Phillips EJ Keystone JS Kain KC (1996) Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis 23:1171–1173

    Article  PubMed  CAS  Google Scholar 

  39. Baird JK, Wiady I, Fryauff DJ, Sutanihardja MA, Leksana B, Widjaya H, Kysdarmanto Subianto B (1997) In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia. Am J Trop Med Hyg 56:627–631

    Google Scholar 

  40. Kshirsagar NA, Gogaty NJ, Rajgor D, Dalvi SS, Wakde M (2000) An unusual case of multidrug-resistant Plasmodium vivax malaria in Mumbai (Bombay). India Ann Trop Med Parasitol 94:189–190

    Article  CAS  Google Scholar 

  41. Phan GT, deVries PJ, Tran BQ, Le HQ, Nguyen NV, Nguyen TV, Heisterkamp SH, Kager PA (2002) Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam. Trop Med Int Health 7:858–864

    Article  PubMed  CAS  Google Scholar 

  42. Qari SH, Shi YP, Pieniazek NJ, Collins WE, Lal AA (1996) Phylogenetic relationship among the malaria parasites based on small subunit rRNA Gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Mol Phylo Evol 6(1):157–165

    Article  CAS  Google Scholar 

  43. Leclerc MC, Hugot JP, Durand P, Renaud F (2004) Evolutionary relationships between 15 Plasmodium species from new and old world primates (including humans): an 18S rDNA cladistic analysis. Parasitology 129(6):677–684

    Article  PubMed  CAS  Google Scholar 

  44. Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol 47(1):261–273

    Article  PubMed  CAS  Google Scholar 

  45. Rich SM, Leendertz FH, Guang Xu G, LeBreton M, et al. (2009) The origin of malignant malaria. http://www.pnas.org/content/early/2009/07/31/0907740106

  46. Gysin J (1998) Animal models: Primates. In: Malaria: Parasite Biology, Pathogenesis, and Protection. Sherman IW (Ed.), American Society of Microbiology, Washington,DC

    Google Scholar 

  47. Conway DJ, Fanello C, Lloyd JM, Al-Joubori BM, Baloch AH, et al. (2000) Plasmodium falciparum malaria is traced by mitochondrial DNA 1. Mol Biochem Parasitol 111(1): 163–171

    Article  PubMed  CAS  Google Scholar 

  48. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, et al. (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321

    Article  PubMed  CAS  Google Scholar 

  49. Rich SM, Ayala FJ (2000) Population structure and recent evolution of Plasmodium falciparum. Proc Natl Acad Sci USA 97(13):6994–7001

    Article  PubMed  CAS  Google Scholar 

  50. Hughes AL, Verra F (2002) Extensive polymorphism and ancient origin of Plasmodium falciparum. Trends Parasitol 18:348–351

    Article  PubMed  CAS  Google Scholar 

  51. Coluzzi M (1999) The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41:277–283

    PubMed  CAS  Google Scholar 

  52. Hughes AL, Verra F (2001) Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc R Soc Lond B Biol Sci 268:1855–1856

    Article  CAS  Google Scholar 

  53. Mendis K, Sina BJ, Marchesini P, Carter R (2001) The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64:97–106

    PubMed  CAS  Google Scholar 

  54. Carlton JM (2001) Profiling the malaria genome: a gene survey of three species of malaria parasite with comparison to other apicomplexan species. Mol Biochem Parasitol 118:201–210

    Article  PubMed  Google Scholar 

  55. Feng X, Carlton JM, Joy DA, Mu J, et al. (2003) Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci USA 100:8502–8507

    Article  PubMed  CAS  Google Scholar 

  56. Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E, Collins WE, Lal AA (2005) A monkey’s tale: the origin of Plasmodium vivax as a human malaria parasite. Proc Natl Acad Sci USA 102:1980–1985

    Article  PubMed  CAS  Google Scholar 

  57. Cornejo OE, Escalante AA (2006) The origin and age of Plasmodium vivax. Trends Parasitol 22(12):558–563

    Article  PubMed  Google Scholar 

  58. Ayala FJ, Escalante AA, Rich SM (1999) Evolution of Plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia 41:55–68

    PubMed  CAS  Google Scholar 

  59. Jongwutiwes S, et al. (2005) Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Mol Biol Evol 22:1733–1739

    Article  PubMed  CAS  Google Scholar 

  60. Carlton JM, et al. (1999) Karyotype and synteny among the chromosomes of all four species of human malaria parasite. Mol Bio chem Parasitol 118:201–210

    Article  Google Scholar 

  61. Carter R, Mendis KN (2002) Evolutionary and historic aspects of the burden of malaria. Clin Microbiol Rev 564–594

    Google Scholar 

  62. Gardner MJ, Shallom SJ, Carton JM, et al. (2002) Genome sequences of the human malaria parasite Plasmodium falciparum. Nature 19:531–534

    Article  Google Scholar 

  63. Hey J (1999) Parasite populations: The puzzle of Plasmodium. Curr Biol 9: R5652–R5657

    Article  Google Scholar 

  64. Severini C, et al. (2004) Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region. Trans R Soc Trop Med Hyg 98:585–592

    Article  PubMed  CAS  Google Scholar 

  65. Centers for Disease Control and Prevention (2004) Multifocal autochthonous transmission of malaria — Florida. MMWR Morb Mortal Wkly Rep 53:412–414

    Google Scholar 

  66. Bloland PB (2001) Drug resistance in malaria. WHO/CDS/CSR/DRS/2001.4

    Google Scholar 

  67. Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJ, Donnelly MJ (2008) Field-caught permethrinresistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids 1. PLoS Genet 4(11):e1000286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Datta, N., Singh Chauhan, V. (2010). Origin and evolution of human malaria parasite, P. falciparum and P. vivax . In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_19

Download citation

Publish with us

Policies and ethics