Skip to main content

Testing the melanism-desiccation hypothesis: A case study in Darwinian evolution

  • Chapter
Nature at Work: Ongoing Saga of Evolution

Abstract

In ectotherms, the occurrence of melanism within populations, across populations or closely related species is pervasive in nature. Many hypotheses have been proposed to explain diverse patterns of body color variations or polymorphisms in insects (e.g. thermoregulation, cryptic coloration, sexual selection, pathogen resistance, etc.). Since the body temperature of ectotherms is dependent on their surrounding environment, melanisation should play an important role in these organisms. The thermal melanism hypothesis states that melanic or dark individuals should be at a fitness advantage under cold conditions while lighter individuals are better adapted under warmer conditions. There is overwhelming support for this hypothesis in diverse taxa (beetles, butterflies and flies) from the temperate parts of the world. However, it is not clear why melanics occur in the tropics? We tested the role of desiccation stress in the maintenance of color polymorphism in tropical populations of different Drosophila species on the Indian subcontinent. We tested several predictions which are most significant in the field of evolutionary ecology. First, if desiccation resistance evolves through changes in cuticular permeability, the target of natural selection might be cuticular components either cuticular lipids or cuticular melanisation. Thus, species specific contrasting levels of desiccation resistance might correspond with varying levels of body melanisation across species. Secondly, we tested whether a thicker cuticle (either due to melanisation or cuticular lipids) leads to lesser cuticular water loss and higher desiccation resistance across seasons (autumn vs. winter). Thirdly, we examined, mechanistic basis of evolving desiccation resistance on the basis of differential rates of cuticular water loss in assorted darker and lighter phenotypes from a given population. Finally, if body melanisation confers desiccation resistance, dark morph is expected to prevail under dry season while the reverse may occur for light morph under humid conditions/season. Further, humidity changes (dry vs. wet) impact mating propensity (assortative matings) among different body color morphs. Thus, there are several evidences in favor of melanism — desiccation hypothesis. In this short review, an attempt has been made to sum up the available information on the role of varying levels of humidity as natural selection agent in maintaining body color polymorphism in diverse Drosophila species populations on the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mortan RA (1993) Evolution of Drosophila insecticide resistance. Genome 36:1–7

    Article  Google Scholar 

  2. Ford EB (1975) In: Ecological Genetics. 4th edition, Chapman & Hall, UK

    Google Scholar 

  3. Endler JA (1986) In: Natural Selection in the Wild. Princeton University Press, Princeton

    Google Scholar 

  4. Powell JR (1997) In: Progress and Prospects in Evolutionary Biology — The Drosophila Model. Oxford University Press, Oxford

    Google Scholar 

  5. Parkash R, Munjal AK (2000) Evidence of independent climatic selection for desiccation and starvation tolerance in Indian tropical populations of Drosophila melanogaster. Evol Ecol Res 2:685–699

    Google Scholar 

  6. Parkash R, Sharma V, Kalra B (2009) Correlated changes in thermotolerance traits and body color phenotypes in montane populations of Drosophila melanogaster: Analysis of within and between population variations. J Zool (In Press)

    Google Scholar 

  7. Parkash R, Rajpurohit S, Ramniwas S (2008) Parallel changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J Insect Physiol 54:1050–1056

    Article  PubMed  CAS  Google Scholar 

  8. Parkash R, Singh S, Ramniwas S (2009) Seasonal changes in humidity level in the tropics impact body color polymorphism and desiccation resistance in Drosophila jambulina — Evidence for mealnism-desiccation hypothesis. J Insect Physiol 55:358–368

    Article  PubMed  CAS  Google Scholar 

  9. Majerus MEN (1998) Melanism: Evolution in Action. Oxford University Press, Oxford

    Google Scholar 

  10. Brakefield PM, Willmer PG (1985) The basis of thermal melanism in the ladybird, Adalia bipunctata: Differences in reflectance and thermal properties between morphs. Heredity 54:9–14

    Article  Google Scholar 

  11. Ellers J, Boggs CL (2002) The evolution of wing color in Colias butterflies: Heritability, sex-linkage, and population divergence. Evolution 56:836–840

    PubMed  Google Scholar 

  12. Kennington WJ, Killeen JR, Goldstein DB, Partridge L (2003) Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution 57(4): 932–936

    PubMed  Google Scholar 

  13. Roskam JC, Brakefield PM (1999) Seasonal polyphenism in Bicyclus (Lepidoptera: Satyridae) butterflies: Different climates need different clues. Biol J Linnean Soc 66: 345–356

    Google Scholar 

  14. Hollocher H, Hatcher JL, Dyreson EG (2000) Evolution of abdominal pigmentation differences across species in the Drosophila dunni subgroup. Evolution 54:2046–2056

    PubMed  CAS  Google Scholar 

  15. Hollocher H, Hatcher JL, Dyreson EG (2000) Genetic and developmental analysis of abdominal pigmentation differences across species in the Drosophila dunni subgroup. Evolution 54:2057–2071

    PubMed  CAS  Google Scholar 

  16. Llopart A, Elwyn S, Lachaise D, Coyne JA (2002) Genetics of a difference in pigmentation between Drosophila yakuba and D. santomea. Evolution 56:2262–2277

    PubMed  CAS  Google Scholar 

  17. True JR (2003) Insect melanism: The molecules matter. Trend Ecol Evol 18:640–647

    Article  Google Scholar 

  18. De Jong PW, Gussekloo SWS, Brakefield PM (1996) Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J Exper Biol 199:2655–2666

    Google Scholar 

  19. Dombeck I, Jaenike J (2004) Ecological genetics of abdominal pigmentation in Drosophila falleni: a pleiotropic link to nematode parasitism. Evolution 58:587–596

    PubMed  Google Scholar 

  20. Ellers J, Boggs CL (2004) Functional ecological implications of intra-specific differences in wing melanism in Colias butterflies. Biol J Linnean Soc 82:79–87

    Article  Google Scholar 

  21. Mani MS (1968) Ecology and Biogeography of high altitude Insects. In: The Hague. Junk W (Ed.)

    Google Scholar 

  22. Rapoport EH (1969) Gloger’s rule and pigmentation of Collembola. Evolution 23: 622–626

    Article  Google Scholar 

  23. Pool JE, Aquadro CF (2007) The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Molecular Ecology 16(4):2844–2851

    Article  PubMed  Google Scholar 

  24. Parkash R, Sharma V, Kalra B (2008) Climatic adaptations of body melanisation in Drosophila melanogaster from Western Himalayas. Fly 2:111–117

    PubMed  Google Scholar 

  25. Ohnishi S, Watanabe TK (1985) Genetic analysis of color dimorphism in the Drosophila montium subgroup. Jap J Genetics 60:355–358

    Article  Google Scholar 

  26. Watt WB (1968) Adaptive significance of pigment polymorphism in Colias butterflies, I: Variation in melanin in relation to thermoregulation. Evolution 22:437–458

    Article  Google Scholar 

  27. Berry_RJ, Willmer PG: Temperature and the color polymorphism of Philaenus spumarius (Homoptera: Aphrophoridae). Ecol Entomol 11:251–260 (1986)

    Article  Google Scholar 

  28. Kettlewell B (1973) The Evolution of Melanism. The study of a recurring necessity; with special reference to industrial melanism in Lepidoptera. Clarendon Press, London

    Google Scholar 

  29. Roland J (1982) Melanism and diel activity of alpine Colias (Lepidoptera; Pieridae). Oecologia 53:214–221

    Article  Google Scholar 

  30. Guppy CS (1986) The adaptive significance of alpine melanism in the butterfly Parnassus phoebus (Lepidoptera, Papilionidae). Oecologia 70:205–213

    Article  Google Scholar 

  31. Kingsolver JG, Wiernasz DC (1991) Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptations in Pieris butterflies. Am Natu 137:816–830

    Article  Google Scholar 

  32. Brakefield PM (1984) Selection along clines in the ladybird Adalia bipunctata in the Netherlands. A general mating advantage to melanics and its consequences. Heredity 1984 53:37–49

    Article  Google Scholar 

  33. Verhoog MD, Breuker CJ, Brakefield PM (1998) The influence of genes for melanism in the activity of the flour moth, Ephestia kuehniella. Anim Behav 56:683–688

    Article  PubMed  Google Scholar 

  34. Rettenmeyer CW (1970) Insect mimicry. Annu Rev Entomol 15:43–74

    Article  Google Scholar 

  35. Brakefield PM (1985) Polymorphic Muellerian mimicry and interaction with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol J Linnean Soc 26:243–268

    Article  Google Scholar 

  36. Wittkopp PJ, Caroll SB, Kopp A (2003) Evolution in black and white: Genetic control of pigment patterns in Drosophila. Trend Genet 19:495–504

    Article  CAS  Google Scholar 

  37. Brisson JA, Toni DCD, Duncan I, Templeton AR (2005) Abdominal pigmentation variation in Drosophila polymorpha: Geographic variation in the trait and underlying phylogeography. Evolution 59:1046–1059

    PubMed  CAS  Google Scholar 

  38. Komai T (1956) Genetics of ladybeetles. Adv Genetics 8:155–188

    Article  Google Scholar 

  39. Lusis JJ (1973) Taxonomic relations and geographical distribution of forms in beetles of the genus Adalia Mulsant. Prob Genet Evol 1:5–12

    Google Scholar 

  40. Rhamhalinghan M (1988) Seasonal variations in the color patterns of Coccinella septempunctata L. (Coleoptera: Coccinellidae) in Nilgiri Hills, India. J Bombay Natu Hist Soc 85:551–558

    Google Scholar 

  41. Rajpurohit S, Parkash R, Ramniwas S (2008) Body melanisation and its adaptive role in thermoregulation and tolerance against desiccating conditions in Drosophilids. Entomol Res 38:49–60

    Article  Google Scholar 

  42. Parkash R, Ramniwas S, Rajpurohit S, Sharma V (2008) Variations in body melanization impact desiccation resistance in Drosophila immigrans from Western Himalayas. J Zool 276:219–227

    Article  Google Scholar 

  43. Parkash R, Rajpurohit S, Ramniwas S (2009) Impact of darker, intermediate and lighter phenotypes of body melanisation on desiccation resistance in Drosophila melanogaster. J Insect Sci 9:97–103

    Article  Google Scholar 

  44. Markow TA, O’Grady PM (2006) Drosophila: A guide to species identification and use. Academic Press, UK

    Google Scholar 

  45. Gibbs AG, Chippendale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–1832

    PubMed  CAS  Google Scholar 

  46. Hadley NF (1994) Water relations of Terrrestrial Arthropods. Academic Press, San Diego, California

    Google Scholar 

  47. Rourke BC (2000) Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanoplus sanguinipes. J Exp Biol 203:2699–2712

    PubMed  CAS  Google Scholar 

  48. Parkash R, Kalra B, Sharma V (2008) Changes in cuticular lipids, water loss and desiccation resistance in a tropical Drosophilid: Analysis of within population variation. Fly 2: 189–197

    Google Scholar 

  49. Hoffmann AA, Parsons PA (1993) Direct and correlated responses to selection for desiccation resistance — a comparison of Drosophila melanogaster and Drosophila simulans. J Evolut Biol 6:643–657

    Article  Google Scholar 

  50. Kalmus H (1941) The resistance to desiccation of Drosophila mutants affecting body colour. Proc R Soc Lond B 130:185–201

    Article  Google Scholar 

  51. Fraenkel G, Rudall KM (1940) A study of the physical and chemical properties of the insect cuticle. Proc R Soc Lond Ser B 129:1–35

    Article  CAS  Google Scholar 

  52. Pryor MGM (1940) On the hardening of the cuticle of insects. Proc R Soc Lond B 128:393–407

    Article  CAS  Google Scholar 

  53. Hoffmann AA, Parsons PA (1989) An integrated approach to environmental stress tolerance and life history variation: desiccation tolerance in Drosophila. Biol J Linnean Soc 37:117–136

    Article  Google Scholar 

  54. Telonis-Scott M, Guthgridge KM, Hoffmann AA (2006) A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses. J Exp Biol 209:1837–1847

    Article  PubMed  Google Scholar 

  55. Kimura K, Shimozawa T, Tanimura T (1985) Water loss through the integument in the desiccation-sensitive mutant, parched, of Drosophila melanogaster. J Insect Physiol 31: 573–580

    Article  Google Scholar 

  56. Gibbs AG, Matzkin LM (2001) Evolution of water balance in the genus Drosophila. J Exp Biol 204:2331–2338

    PubMed  CAS  Google Scholar 

  57. Gibbs AG, Fukuzato F, Matzkin LM (2003) Evolution of water conservation mechanism in Drosophila. J Exp Biol 206:1183–1192

    Article  PubMed  Google Scholar 

  58. Edney EB (1977) Water Balance in Land Arthropods. Springer-Verlag, Berlin

    Google Scholar 

  59. Zachariassen KE (1988) Water loss in insects from arid and humid habitats in Eastern Africa. Acta Entmologica Bohemoslov 85:81–93

    Google Scholar 

  60. Toolson EC (1984) Interindividual variation in epicuticular hydrocarbon composition and water loss rates of the Cicada Tibicen dealbatus (Homoptera: Cicadidae). Physiol Zool 57:550–556

    Google Scholar 

  61. Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482

    CAS  Google Scholar 

  62. Gibbs AG (2002) Lipid melting and cuticular permeability: New insights into an old problem. J Insect Physiol 48:391–400

    Article  PubMed  CAS  Google Scholar 

  63. Hoffmann AA, Weeks AR (2007) Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 129:133–147

    Article  PubMed  Google Scholar 

  64. Hoffmann AA, Hallas RJ, Dean A, Schiffer M (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–102

    Article  PubMed  CAS  Google Scholar 

  65. Parkash R, Kalra B, Sharma V (2009) Impact of body melanisation on contrasting levels of desiccation resistance in a circumtropical and a generalist Drosophila species. Evolutionary Ecology

    Google Scholar 

  66. Kingsolver JG (1995) Fitness consequences of seasonal polyphenism in western white butterflies. Evolution 49:942–954

    Article  Google Scholar 

  67. Holloway GJ, Marriott CG, Crocker HJ (1997) Phenotypic plasticity in hoverflies: The relationship between color pattern and season in Episyrphus balteatus and other Syrphidae. Ecol Entomol 22:425–432

    Article  Google Scholar 

  68. Tauber MJ, Tauber CA, Nyrop JP, Villani MG (1998) Moisture, a vital but neglected factor in the seasonal ecology of insects: Hypothesis and tests of mechanisms. Environ Entomol 27:523–530

    Google Scholar 

  69. Chown SL, Nicolson SW (2004) Insect Physiological Ecology: Mechanisms and Patterns. Oxford University Press, Oxford

    Google Scholar 

  70. Danks HV (2007) The elements of seasonal adaptations in insects. Can Entomol 139:1–44

    Article  Google Scholar 

  71. Brakefield PM, Pijpe J, Zwaan BJ (2007) Developmental plasticity and acclimation both contribute to adaptive responses to alternating seasons of plenty and of stress in Bicyclus butterflies. J Biosci 32;465–475

    Article  PubMed  CAS  Google Scholar 

  72. Tantawy AO (1965) Studies on natural populations of Drosophila. III Morphological and genetic differences of wing length in D. melanogaster and D. simulans in relation to season. Evolution 18:560–570

    Article  Google Scholar 

  73. Kari JS, Huey RB (2000) Size and seasonal temperature in free-ranging Drosophila subobscura. J Thermal Biol 25:267–272

    Article  Google Scholar 

  74. Mckenzie JA, Parsons PA (1974) The genetic architecture of resistance to desiccation in populations of D. melanogaster and D. simulans. Aust J Biol Sci 27:441–456

    PubMed  CAS  Google Scholar 

  75. Gotthard K, Nylin S (1995) Adaptive plasticity as an adaptation: A selective review of plasticity in animal morphology and life history. Oikos 74:3–17

    Article  Google Scholar 

  76. Stoehr AM, Goux H (2008) Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol Entomol 33: 137–143

    Article  Google Scholar 

  77. Shapiro AM (1976) Seasonal polyphenism. Evol Biol 9:259–333

    Article  Google Scholar 

  78. Tauber CA, Tauber MJ: Insect seasonal cycles (1981) Genetics and evolution. Ann Rev Ecol System 12:281–308

    Google Scholar 

  79. Walter MF, Black BC, Afshar G, Dermabon AY, Wright TRF, Biessmann H (1991) Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development. Develop Biol 147:32–45

    Article  PubMed  CAS  Google Scholar 

  80. Wittkopp PJ, Vaccaro K, Carroll SB (2002) Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 12:1547–1556

    Article  PubMed  CAS  Google Scholar 

  81. Coyne JA, Beecham E (1987) Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics 117:727–737

    PubMed  CAS  Google Scholar 

  82. Imasheva AG, Bubli OA, Lazebny OE (1994) Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity 72:508–514

    Article  PubMed  Google Scholar 

  83. Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    Article  PubMed  CAS  Google Scholar 

  84. Parkash R, Sharma V, Kalra B (2009) Impact of body melanisation on desiccation resistance in montane populations of D. melanogaster: Analysis of seasonal variation. J Insect Physiology 55:898–908

    Article  CAS  Google Scholar 

  85. Sokolowski MB, Bauer SJ, Wai-Ping V, Rodriguez L, Wong JL, Kent C (1986) Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Animal Behav 32:403–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Parkash, R. (2010). Testing the melanism-desiccation hypothesis: A case study in Darwinian evolution. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_18

Download citation

Publish with us

Policies and ethics