Skip to main content

Macroevolution in relation to the drift models of the Indian plate

  • Chapter
Nature at Work: Ongoing Saga of Evolution
  • 1295 Accesses

Abstract

Macroevolutionary processes, that operate at larger than gene-level evolution, seeks to explain evolutionary processes and patterns of higher taxonomic categories and their phylogenesis. Species multiplication and their radiations, involving several examples of evolutionary novelties are being focused through refinement of DNA sequencing, which are suggestive of dating divergence events. Trends towards linking genetic shifts through space and time are increasingly being associated with paleontology, tectonics and climatic patterns. The fossil records are now better supplemented through information on rifting and colliding landmasses, which help explaining the biogeography and biodiversity changes. The Indian raft exemplifies admixtures of the Cretaceous endemic and Laurasiatic affinities; while the collision of India-Asia landmasses is initiated by thermal maxima phases of Late Palaeocene-Early Eocene; and mammalian diversification happened in the northern Indian landmass in response to progressive land emergence and Tethyan sea withdrawals. Strong trends in fluctuations in biodiversity of mammals in response to orbital forcing and climatic shifts are observed during periods of glaciation and preglaciation during Miocene and later intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyell C (1830) In: Principles of Geology. John Murray

    Google Scholar 

  2. Browne J (2002) In: Charles Darwin — The Power of Place. Jonathon Cape, London

    Google Scholar 

  3. Lieberman BS (2000) In: Paleobiogeography. Plenum/Kluwer Academic Press, New York

    Google Scholar 

  4. Blois JL, Hadly EA (2009) Mammalian response to Cenozoic climatic change. Ann Rew Earth Planet Sci 37:181–208

    Article  CAS  Google Scholar 

  5. Lister AM (2004) The impact of Quaternary ice ages on mammalian evolution. Phil Trans R Soc London B 359:221–241

    Article  Google Scholar 

  6. Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50(1):87–109

    Google Scholar 

  7. Avise JC, Arnild J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522

    Google Scholar 

  8. Avise JC (1994) In: Molecular markers, natural history and evolution. Chapman and Hall, New York

    Book  Google Scholar 

  9. Huelsenbeck JP, Larget B, Swofford D (2000) A compound Poisson process for relaxing the molecular clock. Genetics 6:1879–1892

    Google Scholar 

  10. Arbogast BS, Edwards SV, Wakeley J, Beerli P, Slowinski JB (2002) Estimating divergence times from molecular data on phylogenetic and population genetic timescles. Ann Rev Ecol Syst 33:707–740

    Article  Google Scholar 

  11. Bromham L (2003) Molecular clocks and explosive radiations. J Mol Evol 57:S13–S20

    Article  PubMed  CAS  Google Scholar 

  12. Penny D, Phillips MJ (2004) The rise ofbirds and mammals: Are microevolutionary processes sufficient for macroevolution? Trends Ecol Evol 19(10):516–522

    Article  PubMed  Google Scholar 

  13. Bromham L, Woolfit M (2004) Explosive radiations and the reliability of molecular clocks: island endemic radiations as a test case. Sys Biol 53(5):758–766

    Article  Google Scholar 

  14. Upchurch P (2008) Gondwanan break-up: legacies of a lost world? Trends Ecol Evol 23(4):229–236

    Article  PubMed  Google Scholar 

  15. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  16. Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    Article  PubMed  CAS  Google Scholar 

  17. Hadly EA, Ramakrishnan U, Chan YL, van Tuinen M, O’Keefe, K, Spaeth PA, Chonroy CJ (2004) Genetic response to climatic change: insights from ancient DNA and phylochronology. Plos Biol 210:e290

    Article  Google Scholar 

  18. Hedges SB (2001) Afrotheria: Plate tectonics meets genomics. Proc Nat Acad Sci USA 98(1):1–2

    Article  PubMed  CAS  Google Scholar 

  19. Jaeger JJ (2003) Mammalian evolution: isolationist tendencies. Nature 426:509–511

    Article  PubMed  CAS  Google Scholar 

  20. Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Ann Rev Ecol Syst 33:741–777

    Article  Google Scholar 

  21. McKenna MC (1972) Possible biological consequences of plate tectonics. Bioscience 22(9):519–525

    Article  Google Scholar 

  22. Cox CB, Moore PD (1993) In: Biogeography: An Ecological and Evolutionary Approach. Blackwell Scientific Publications, Oxford

    Google Scholar 

  23. Kurten B (1973) Continental drift and evolution. Scientific American Resource Library. Read Earth Sci 3:644–654

    Google Scholar 

  24. MacFadden BJ (1994) In:Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae. Cambridge University Press

    Google Scholar 

  25. Briggs JC: The biogeographic and tectonic history of India. J Biogeog 30:381–388

    Google Scholar 

  26. Bocxlaer IV, Roelants K, Biju SD, Nagaraju J, Bossuyt (2006) Late Cretaceous vicariance in Gondwanan amphibians. Plois One 1(1):e74

    Article  Google Scholar 

  27. Bossuyut F, Milinkovitch MC (2001) Amphibians as indicators of early tertiary ‘out of India’ dispersal of vertebrates. Science 291:93–95

    Article  Google Scholar 

  28. Sahni A (2006) Biotic responses to the India-Asia collision: changing palaeoenvironments and vertebrate faunal relationhips. Palaeontogr Abt A 278:15–26

    Google Scholar 

  29. Sahni A, Prasad GVR (2008) Geodynamic evolution of the Indian plate: Conseqssuences for dispersal and distribution of the biota. Golden Jubilee Mem Geol Soc India 66:203–225

    Google Scholar 

  30. Prasad GVR, Rage JC (1991) A discoglossid frog in the Late Cretaceous (Maastrichtian) of India. Further evidence for as terrestrial route between Indian and Laurasia in the latest Cretaceous. C R Acad Sci Paris 313:273–278

    Google Scholar 

  31. Kumazawa Y, Mutsumi N (2000) Molecular phylogeny of osteoglossids: a new model for Gondwanan origin and plate tectonic transportation of the Asian Arowana. Molec Biol Evol 17:1869–1878

    Article  PubMed  CAS  Google Scholar 

  32. Clyde WC, Khan IH, Gingerich PD (2003) Stratigraphic response and mammalian dispersal during initial India-Asia collision:evidence from Ghazij Formation, Baluchistan, Pakistan. Geology 31:1097–1100

    Article  Google Scholar 

  33. Beck RA, Sinha A, Burban DW, Sercombe WJ, Khan AM (1998) Climatic, oceanographic and isotopic consequences of the Palaeocene India-Asia collision. In: Late Palaeocene-early Eocene climatic and biotic events in the marine and terrestrial records. Aubry MP, Lucas S, Berggren WA (Eds.), Columbia Univ Press, New York

    Google Scholar 

  34. Rana RS, Kumar K, Loyal RS, Sahni A, Rose KD, Mussel J, Singh H, Kulshreshtha SK (2006) Selachians from the Early Eocene Kapurdi Formation (Fuller’s Earth), Barmer District, Rajasthan, India. J Geol Soc 67:509–522

    Google Scholar 

  35. Loyal RS (1984a) Discovery of new Ypresian microvertebrate pockets in the Subathu Formation, Subathu, Simla Hills, India. Curr Sci 53(23):1251

    Google Scholar 

  36. Loyal RS (1984b) Bearing of palaeontological data on collision models of the Indian Plate. 27th Int Geol Cong, Moscow 284–287

    Google Scholar 

  37. Loyal RS (1985) Vertebrate biostratigraphy of the Type Area of Subathu Formation (Eocene), Subathu, Himachal Pradesh, India. Tertiary Res Leiden 7(4):129–132

    Google Scholar 

  38. Loyal RS (1990) Lithostratigraphy of the basal Subathu Formation (Upper Palaeocene-Middle Eocene) exposed in the stratotype, Kuthar River, Subathu, Himachal Pradesh, India, with introductory notes on physiography and tectonics. Tertiary Res Leiden 12(1):1–16

    Google Scholar 

  39. Kumar K, Loyal RS (1987) Eocene ichthyofauna from the Subathu Formation, northwestern Himalaya, India. J Palaeont Soc India 32:60–84

    Google Scholar 

  40. Kumar K, Loyal RS, Srivastava R (1997) Eocene rodents from new localities in the type Subathu Formation, Himachal Pradesh, northwestern Himalaya, India. J Geol Soc India 50(4):461–474

    Google Scholar 

  41. Magiongalda R, Dupius C, Smith T, Steurbaut E, Gingerich PD (2004) Palaeocene-Eocene carbon excursion in organic carbon and pedogenic carbonate:direct comparison in a continental stratigraphic section. Geology 32:553–556

    Article  Google Scholar 

  42. Blas XPI, Loyal RS, Schleich HH, Agraser EL (2004) Pristichampsine cranial remains from the basal redbed facies of the Subathu Formation (Himachal Pradesh, India) and some palaeobiographical remarks. Palarch nl Vert Paleont, Amsterdam 3(1):1–8

    Google Scholar 

  43. Loyal RS (2004) Basal Paleogene biostratigraphy and biochronology of the collision-induced paralic-fluvial package: interpretations for paleoenvironments and paleobiogeography of a narrowing Tethys, NW Himalaya, India. Geol Soc Am 36(5):93

    Google Scholar 

  44. Maas MC, Krause DW (1994) Mammalian turnover and community structure in the Palaeocene of North America. HistBiol 8:91–128

    Google Scholar 

  45. Zachos JC, Shackleton NJ, Revenaugh JS, Palike H, Flower BP (2001) Climatic response to orbital forcing across the Oligocene-Miocene boundary. Nature 292(5515):274–278

    CAS  Google Scholar 

  46. Kohn MJ, Fremd TJ (2008) Miocene tectonics and climatic forcing of biodiversity, western United States. Geology 36(10):783–786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Sahni, A., Loyal, R.S. (2010). Macroevolution in relation to the drift models of the Indian plate. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_17

Download citation

Publish with us

Policies and ethics