Skip to main content

Darwinian evolution and post developments in genomics

  • Chapter
Nature at Work: Ongoing Saga of Evolution
  • 1299 Accesses

Abstract

The status of Darwin’s theory of Natural Selection in ‘Origin of Species’ and the impact of recent developments in genetics on evolution form the theme of the paper. Despite the conflicting views of the role of mega and micro evolution as visualized by Darwin, his theory, followed by theory of inheritance and chromosome theory of heredity form the very foundation of our knowledge of evolution and continuity of life from generation to generation. In the post Darwinian phase, the importance of the regulatory sequence in the complex expression of genes controlling evolution has been emphasized. The role of high amount of non coding repeat sequences as well as mobile sequences in evolution has been discussed. Finally, the emergence of RNA as the primitive molecule of life and the present role of small RNAs in defence, growth, differentiation and indirectly evolution of species have been indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwin C (1859) On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. John Murray

    Google Scholar 

  2. Pagel M (2008) Natural Selection 150 years on. Nature 457:808–811

    Article  Google Scholar 

  3. Coyne A (1996) Speciation in action. Science 1972:700–701

    Article  Google Scholar 

  4. Coyne JA, Orr HA. Speciation. Sinauer Associates, Inc.

    Google Scholar 

  5. Mayr E (1994) Reasons for the failure of theories. Phil Sci 61:529–533

    Article  Google Scholar 

  6. Reznick DN, Ricklefs RE (2008) Darwin’s bridge between microevolution and macroevolution. Nature 457:837–842

    Article  Google Scholar 

  7. Mendel G (1986) Plant Hybridization. British Nat Hist Soc, Oliver and Boyd, Edinburgh

    Google Scholar 

  8. Sutton NS (1903) The Chromosomes in heredity. Biol Bull 4:213–251

    Article  Google Scholar 

  9. Bateson W, Punnett RC (1905) Reports on the Evolution Committee of the Royal Society. Harrison and Sons, London

    Google Scholar 

  10. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  11. Britten RJ, d Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Article  PubMed  CAS  Google Scholar 

  12. Banerji M, Sharma AK (1979) Variation in DNA content. Experientia 35:42–43

    Article  Google Scholar 

  13. Schmidt T, Heslof Harrison JS (1998) Genomes, Genes, Junk: The large scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Google Scholar 

  14. Kunze R, Sandler H, Lonnig WE (1997) Plant Transposable Elements. In: Advances in Botanical Research. Gallow JA (Ed.), Academic Press, New York

    Google Scholar 

  15. Craig R, Geileot M, Lambowitz AM (2002) In: Mobile DNA II. AMG Press

    Google Scholar 

  16. Walker T, Sabot F, Hunvan A, Bennetzen JL, Capy P, Chalhoab B, Flovell A, Leroy P, Morgante M, Panaud O, Panx E, Sunnignel P, Schulman AH (2009) A unified classification of transposable elements. Nat Rev Genetics 8:875–982

    Google Scholar 

  17. Pennisi E (2008) Deciphering genetics of evolution. Science 321:760–763

    Article  PubMed  CAS  Google Scholar 

  18. Beadle GW, Tatum EZ (1941) Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci USA 27:499–506

    Article  PubMed  CAS  Google Scholar 

  19. Gilbert W (1979) Split genes. Science 204:1979

    Google Scholar 

  20. Parra G, et al. (2006). Genome Res 16:37

    Article  PubMed  CAS  Google Scholar 

  21. Orgel L, Crick FHC (1980) Selfish DNA — the ultimate parasite. Nature 204:604–607

    Article  Google Scholar 

  22. Sharma AK (1983) In: Additional Genetic Materials in Chromosomes. George Allen & Unwin, Oxford Chromosomes Conference, London

    Google Scholar 

  23. Sharma AK (1986) A critical review of some terminologies used for additional DNAs in plant chromosomes: DNA Systematics. Plants II. CRC Press, Florida

    Google Scholar 

  24. Hayden EC (2009) The other strand. Nature 457:776–779

    Article  CAS  Google Scholar 

  25. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 5(5):147–175

    Article  Google Scholar 

  26. Sharma AK (1984) Dynamic DNA and chromosome structure. In Genetics — New frontiers. Proc Inter Congr Genetics 1:205–212

    CAS  Google Scholar 

  27. Mukherjee S and Sharma AK: In situ nuclear DNA content in perennial fast and slow growing Acacias from arid zones. Cytobios 75:33–36 (1993)

    Google Scholar 

  28. Kyudong Han, et al. (2007) Mobile DNA in old world monkeys. Science 316:238–240

    Article  Google Scholar 

  29. Ostertag EM, Kazazian HH (2005) Genetics: Lines in mind. Nature 435:890–891

    Article  PubMed  CAS  Google Scholar 

  30. Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘lego’ genomes. Curr Opin Genet Develop 5:717–724

    Article  CAS  Google Scholar 

  31. Moore G, Foote T, Helentjaris T, Deros K, Kurata N, Gate M (1995) Was there a single ancestral cereal chromosome? Trends Genet 11:81–82

    Article  PubMed  CAS  Google Scholar 

  32. Gilbert W (1986) The RNA World. Nature 319:618

    Article  Google Scholar 

  33. Grobhans H, Filipowicz (2008) The expanding world of small RNAs. Nature 451: 414–416

    Article  Google Scholar 

  34. Curninci P (2009) The long and short of RNAs. Nature 457:974–975

    Article  Google Scholar 

  35. Moazed D (2009) Small RNAs in transitional gene silencing and genome defence. Nature 457:413–420

    Article  PubMed  CAS  Google Scholar 

  36. Cullen BK (2009) Viral and cellular messenger targets of viral micro RNAs. Nature 457:421–425

    Article  PubMed  CAS  Google Scholar 

  37. Hayden EC (2008) Thousands of proteins affected by miRNAs. Nature 454:562

    Article  Google Scholar 

  38. Makeyev EG and Maniatis T: Multilevel regulation of gene expression by micro RNAs. Science 319:1789–1790

    Google Scholar 

  39. Grimson A, Srivastava M, Fahey B, Woodcrift BJ, Rosaria-Chiang H, King N, Degnan BM, Rokhsar DS, Bartel DPL (2008) Early origin and evolution of micro RNAs and interacting RNAs in animals. Nature 455:1193–1197

    Article  PubMed  CAS  Google Scholar 

  40. Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and micro RNAs. Nat Rev Genetics 8:93–103

    Article  CAS  Google Scholar 

  41. Technan K (2008) Small regulatory RNAs pitchin. Nature 455:1184–1185

    Article  Google Scholar 

  42. Amarel PP, Inger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1287–1288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Sharma, A.K. (2010). Darwinian evolution and post developments in genomics. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_15

Download citation

Publish with us

Policies and ethics