Skip to main content

Gibbs Energy of Liquid Water and the Liquid–Liquid Critical Point Hypothesis

  • Chapter
  • First Online:
Liquid-Phase Transition in Water

Part of the book series: NIMS Monographs ((NIMSM))

  • 369 Accesses

Abstract

To study the relationship between liquid water and two amorphous ices in terms of energy, the Gibbs energy of liquid water was constructed as a function of pressure and temperature using available experimental thermodynamic data of stable liquid water, metastable supercooled water, and amorphous ices. It is examined whether the energy surface of low-temperature liquid water is consistent with the liquid–liquid critical point hypothesis. Even though the data of the bulk pure low-density liquid water at low pressures was missing, most of the data suggested indirectly that the low-density liquid water has low density and low entropy. In this case, the Gibbs energy surface became consistent with the phase separation of liquid water into two liquid phases. From the definition of the thermodynamic properties, all the complex properties of water would be derived in a unified manner from the Gibbs energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feistel R, Wagner W (2006) A new equation of state for H2O ice Ih. J Phys Chem Ref Data 35:1021–1047. https://doi.org/10.1063/1.2183324

  2. Mishima O, Stanley HE (1998) Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature 392:164–168. https://doi.org/10.1038/32386

    Article  CAS  Google Scholar 

  3. Suzuki Y (2017) Effect of solute nature on the polyamorphic transition in glassy polyol aqueous. J Chem Phys 147:064511. https://doi.org/10.1063/1.4998201

    Article  CAS  PubMed  Google Scholar 

  4. Stern JN, Seidl-Nigsch M, Loerting T (2019) Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K. Proc Natl Acad Sci USA 116:9191–9196. https://doi.org/10.1073/pnas.1819832116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lobban C, Finney JL, Kuhs WF (1998) The structure of a new phase of ice. Nature 391:268–270. https://doi.org/10.1038/34622

    Article  CAS  Google Scholar 

  6. Chou IM, Blank JG, Goncharov AF, Mao HK, Hemley RJ (1998) In situ observations of a high-pressure phase of H2O ice. Science 281:809–812. https://doi.org/10.1126/science.281.5378.809

    Article  CAS  PubMed  Google Scholar 

  7. Salzmann C, Kohl I, Loerting T, Mayer E, Hallbrucker A (2002) The Raman spectrum of ice XII and its relation to that of a new “high-pressure phase of H2O ice.” J Phys Chem B 106:1–6. https://doi.org/10.1021/jp012755d

    Article  CAS  Google Scholar 

  8. Salzmann CG (2019) Advances in the experimental exploration of water’s phase diagram. J Chem Phys 150:060901. https://doi.org/10.1063/1.5085163

    Article  CAS  PubMed  Google Scholar 

  9. Speedy RJ, Debenedetti PG, Smith RS, Huang C, Kay BD (1996) The evaporation rate, free energy, and entropy of amorphous water at 150 K. J Chem Phys 105:240–244. https://doi.org/10.1063/1.471869

    Article  CAS  Google Scholar 

  10. Smith RS, Matthiesen J, Knox J, Kay BD (2011) Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water. J Phys Chem A 115:5908–5917. https://doi.org/10.1021/jp110297q

    Article  CAS  PubMed  Google Scholar 

  11. Speedy RJ (1987) Thermodynamic properties of supercooled water at 1 atm. J Phys Chem 91:3354–3358. https://doi.org/10.1021/j100296a049

    Article  CAS  Google Scholar 

  12. Angell CA, Shuppert J, Tucker JC (1973) Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to −38°. J Phys Chem 77:3092–3099. https://doi.org/10.1021/j100644a014

    Article  CAS  Google Scholar 

  13. Johari GP, Fleissner G, Hallbrucker A, Mayer E (1994) Thermodynamic continuity between glassy and normal water. J Phys Chem 98:4719–4725. https://doi.org/10.1021/j100068a038

    Article  CAS  Google Scholar 

  14. Speedy RJ (1992) Evidence for a new phase of water: water II. J Phys Chem 96:2322–2325. https://doi.org/10.1021/j100184a056

    Article  CAS  Google Scholar 

  15. Johari GP, Hallbrucker A, Mayer E (1987) The glass-liquid transition of hyperquenched water. Nature 330:552–553. https://doi.org/10.1038/330552a0

    Article  CAS  Google Scholar 

  16. Soper AK, Ricci MA (2000) Structures of high-density and low-density water. Phys Rev Lett 84:2811–2884. https://doi.org/10.1103/PhysRevLett.84.2881

    Article  Google Scholar 

  17. Kim KH, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sell-berg JA, Lee JH, Kim S, Park J, Nam KH, Katayama T, Nilsson A (2017) Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358:1589–1593. https://doi.org/10.1126/science.aap8269

    Article  CAS  PubMed  Google Scholar 

  18. Mishima O (2000) Liquid-liquid critical point in heavy water. Phys Rev Lett 85:334–336. https://doi.org/10.1103/PhysRevLett.85.334

    Article  CAS  PubMed  Google Scholar 

  19. Faraone A, Liu L, Mou CY, Yen CW, Chen SH (2004) Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys 121:10843. https://doi.org/10.1063/1.1832595

    Article  CAS  PubMed  Google Scholar 

  20. Mallamace F, Broccio M, Corsaro C, Faraone A, Majolino D, Venuti V, Liu L, Mou CY, Chen SH (2007) Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc Natl Acad Sci USA 104:424–428. https://doi.org/10.1073/pnas.0607138104

    Article  CAS  PubMed  Google Scholar 

  21. Mallamace F, Branca C, Broccio M, Corsaro C, Mou CY, Chen SH (2007) The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc Natl Acad Sci USA 104:18387–18391. https://doi.org/10.1073/pnas.0706504104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kringle L, Thornley WA, Kay BD, Kimmel GA (2020) Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science 369:1490–1492. https://doi.org/10.1126/science.abb7542

    Article  CAS  PubMed  Google Scholar 

  23. Mishima O (1994) Reversible first-order transition between two H2O amorphs at ~0.2 GPa and ~135 K. J Chem Phys 100:5910–5912. https://doi.org/10.1063/1.467103

    Article  CAS  Google Scholar 

  24. Gagnon RE, Kiefte H, Clouter MJ, Whalley E (1990) Acoustic velocities and densities of polycrystalline ice Ih, II, III, V, and VI by Brillouin spectroscopy. J Chem Phys 92:1909–1914. https://doi.org/10.1063/1.458021

    Article  CAS  Google Scholar 

  25. Noya EG, Menduiña C, Aragones JL, Vega C (2007) Equation of state, thermal expansion coefficient, and isothermal compressibility for ices Ih, II, III, V, and VI, as obtained from computer simulation. J Phys Chem C 111:15877–15888. https://doi.org/10.1021/jp0743121

    Article  CAS  Google Scholar 

  26. Krüger Y, Mercury L, Canizarès A, Marti D, Simon P (2019) Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz. Phys Chem Chem Phys 21:19554–19566. https://doi.org/10.1039/C9CP03647D

    Article  PubMed  Google Scholar 

  27. Mishima O (2010) Polyamorphism in water. Proc Jpn Acad B 86:165–175. https://doi.org/10.2183/pjab.86.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Mishima .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishima, O. (2021). Gibbs Energy of Liquid Water and the Liquid–Liquid Critical Point Hypothesis. In: Liquid-Phase Transition in Water. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56915-2_4

Download citation

Publish with us

Policies and ethics