Skip to main content

Metastable Melting Lines of Crystalline Ices

  • Chapter
  • First Online:
Liquid-Phase Transition in Water

Part of the book series: NIMS Monographs ((NIMSM))

  • 366 Accesses

Abstract

Low-temperature metastable melting lines of crystalline ices were experimentally studied. The melting lines were detected in the no-man’s land, and it suggested existence of supercooled liquid water below the homogeneous nucleation temperature. The melting line of D2O ice III continued smoothly into the no-man’s land at low pressure, and the line strongly curved at about 230 K and 0.02 GPa. This suggested that liquid water continuously changed from a high-density state to a low-density state along the melting line; the existence of the low-density liquid state was suggested. The existence of the low-density liquid was also suggested by experiments like the short-duration X-ray-diffraction measurement and the infrared-spectra measurement. In contrast to the smooth melting line of Ice III, the slopes of the melting lines of ice IV and ice V appeared to change suddenly. This implied the existence of a first-order liquid–liquid transition and the existence of a liquid–liquid critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishima O (1996) Relationship between melting and amorphization of ice. Nature 314:546–549. https://doi.org/10.1038/384546a0

    Article  Google Scholar 

  2. Mishima O, Stanley HE (1998) Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature 392:164–168. https://doi.org/10.1038/32386

    Article  CAS  Google Scholar 

  3. Levitas VI, Henson BF, Smilowitz LB, Asay BW (2004) Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys Rev Lett 92:235702. https://doi.org/10.1103/PhysRevLett.92.235702

    Article  CAS  PubMed  Google Scholar 

  4. Peng Y, Wang F, Wang Z, Alsayed AM, Zhang Z, Yodh AG, Han Y (2015) Two-step nucleation mechanism in solid-solid phase transitions. Nat Mater 14:101–108. https://doi.org/10.1038/nmat4083

    Article  CAS  PubMed  Google Scholar 

  5. Mishima O (2000) Liquid-liquid critical point in heavy water. Phys Rev Lett 85:334–336. https://doi.org/10.1103/PhysRevLett.85.334

    Article  CAS  PubMed  Google Scholar 

  6. Togaya M (1997) Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys Rev Lett 79:2474–2477. https://doi.org/10.1103/PhysRevLett.79.2474

    Article  CAS  Google Scholar 

  7. Mallamace F, Broccio M, Corsaro C, Faraone A, Majolino D, Venuti V, Liu L, Mou CY, Chen SH (2007) Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc Natl Acad Sci USA 104:424–428. https://doi.org/10.1073/pnas.0607138104

    Article  CAS  PubMed  Google Scholar 

  8. Liu D, Zhang Y, Chen CC, Mou CY, Poole PH, Chen SH (2007) Observation of the density minimum in deeply supercooled confined water. Proc Natl Acad Sci USA 104:9570–9574. https://doi.org/10.1073/pnas.0701352104

    Article  CAS  PubMed Central  Google Scholar 

  9. Pallares G, Azouz MEM, González MA, Aragones JL, Abascal JLF, Valeriani C, Caupin F (2014) Anomalies in bulk supercooled water at negative pressure. Proc Natl Acad Sci USA 111:7936–7941. https://doi.org/10.1073/pnas.1323366111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim KH, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg JA, Lee JH, Kim S, Park J, Nam KH, Katayama T, Nilsson A (2017) Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358:1589–1593. https://doi.org/10.1126/science.aap8269

    Article  CAS  PubMed  Google Scholar 

  11. Kringle L, Thornley WA, Kay BD, Kimmel GA (2020) Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science 369:1490–1492. https://doi.org/10.1126/science.abb7542

    Article  CAS  PubMed  Google Scholar 

  12. Krüger Y, Mercury L, Canizarès A, Marti D, Simon P (2019) Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz. Phys Chem Chem Phys 21:19554–19566. https://doi.org/10.1039/C9CP03647D

    Article  PubMed  Google Scholar 

  13. Suzuki Y, Mishima O (2000) Two distinct Raman profiles of glassy dilute LiCl solution. Phys Rev Lett 85:1322–1325. https://doi.org/10.1103/PhysRevLett.85.1322

    Article  CAS  PubMed  Google Scholar 

  14. Mishima O (2011) Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water. J Phys Chem B 115:14064–14067. https://doi.org/10.1021/jp203669p

    Article  CAS  PubMed  Google Scholar 

  15. Holten V, Anisimov MA (2012) Entropy-driven liquid-liquid separation in supercooled water. Sci Rep 2:713. https://doi.org/10.1038/srep00713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holten V, Sengers JV, Anisimov MA (2014) Equation of state for supercooled water at pressures up to 400 MPa. J Phys Chem Ref Data 43:043101. https://doi.org/10.1063/1.4895593

    Article  CAS  Google Scholar 

  17. Kanno H, Speedy RJ, Angell CA (1975) Supercooling of water to −92°C under pressure. Science 189:880–881. https://doi.org/10.1126/science.189.4206.880

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Mishima .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishima, O. (2021). Metastable Melting Lines of Crystalline Ices. In: Liquid-Phase Transition in Water. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56915-2_3

Download citation

Publish with us

Policies and ethics