Skip to main content

Volume of Liquid Water and Amorphous Ices

  • Chapter
  • First Online:
Liquid-Phase Transition in Water

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

Experimental data on the volumes of low-density amorphous ice, high-density amorphous ice, and liquid water were compared to discuss their phase relationships. It was suggested that liquid water becomes low-density amorphous ice when cooled at low pressure and becomes high-density amorphous ice when cooled at high pressure. It was also suggested that the two amorphous ices are distinctly different. Experiments on the amorphous-amorphous transition, vitrification, and glass transition supported the suggested phase relationships and indicated existence of a discontinuous first-order liquid–liquid transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer E (1985) New method for vitrifying water and other liquids by rapid cooling of their aerosols. J Appl Phys 58:663–667. https://doi.org/10.1063/1.336179

    Article  CAS  Google Scholar 

  2. Mishima O, Calvert LD, Whalley E (1984) ‘Melting’ ice I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:393–395. https://doi.org/10.1038/310393a0

    Article  CAS  Google Scholar 

  3. Mishima O, Calvert LD, Whalley E (1985) An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:76–78. https://doi.org/10.1038/314076a0

    Article  CAS  Google Scholar 

  4. Mishima O (1994) Reversible first-order transition between two H2O amorphs at ~0.2 GPa and ~135 K. J Chem Phys 100:5910–5912. https://doi.org/10.1063/1.467103

    Article  CAS  Google Scholar 

  5. Haar L, Gallagher LS, Kell GS (1984) NBS/NRC Steam Tables. Hemisphere, Washington DC. ISBN-13:978-0891163541

    Google Scholar 

  6. Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535. https://doi.org/10.1063/1.1461829

    Article  CAS  Google Scholar 

  7. Rasmussen DH, MacKenzie AP (1972) Effect of solute on ice-solution interfacial free energy; calculation from measured homogeneous nucleation temperatures. In: Jellinek HHG (eds) Water structure at the water-polymer interface. Springer, Boston. https://doi.org/10.1007/978-1-4615-8681-4_11

  8. Angell CA, Shuppert J, Tucker JC (1973) Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to −38°. J Phys Chem 77:3092–3099. https://doi.org/10.1021/j100644a014

    Article  CAS  Google Scholar 

  9. Kanno H, Angell CA (1979) Water: anomalous compressibilities to 1.9 kbar and correlation with supercooling limits. J Chem Phys 70:4008–4016. https://doi.org/10.1063/1.438021

    Article  CAS  Google Scholar 

  10. Mishima O (2010) Volume of supercooled water under pressure and the liquid-liquid critical point. J Chem Phys 133:144503. https://doi.org/10.1063/1.3487999

    Article  CAS  PubMed  Google Scholar 

  11. Hauptmann A, Handle KF, Baloh P, Grothe H, Loerting T (2016) Does the emulsification procedure influence freezing and thawing of aqueous droplets? J Chem Phys 145:211923. https://doi.org/10.1063/1.4965434

    Article  CAS  PubMed  Google Scholar 

  12. Sellberg JA, Huang C, McQueen TA, Loh ND, Laksmono H, Schlesinger D, Sierra RG, Nordlund D, Hampton CY, Starodub D, DePonte DP, Beye M, Chen C, Martin AV, Barty A, Wikfeldt KT, Weiss TM, Caronna C, Feldkamp J, Skinner LB, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Pettersson LGM, Bogan MJ, Nilsson A (2014) Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510:381–384. https://doi.org/10.1038/nature13266

    Article  CAS  PubMed  Google Scholar 

  13. Mishima O (1996) Relationship between melting and amorphization of ice. Nature 384:546–549. https://doi.org/10.1038/384546a0

    Article  CAS  Google Scholar 

  14. Faraone A, Liu L, Mou CY, Yen CW, Chen SH (2004) Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys 121:10843. https://doi.org/10.1063/1.1832595

    Article  CAS  PubMed  Google Scholar 

  15. Mallamace F, Broccio M, Corsaro C, Faraone A, Majolino D, Venuti V, Liu L, Mou CY, Chen SH (2007) Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc Natl Acad Sci USA 104:424–428. https://doi.org/10.1073/pnas.0607138104

    Article  CAS  PubMed  Google Scholar 

  16. Mallamace F, Branca C, Broccio M, Corsaro C, Mou CY, Chen SH (2007) The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc Natl Acad Sci USA 104:18387–18391. https://doi.org/10.1073/pnas.0706504104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kringle L, Thornley WA, Kay BD, Kimmel GA (2020) Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science 369:1490–1492. https://doi.org/10.1126/science.abb7542

    Article  CAS  PubMed  Google Scholar 

  18. Pallares G, Gonzalez MA, Abascal JLF, Valeriani C, Caupin F (2016) Equation of state for water and its line of density maxima down to −120 MPa. Phys Chem Chem Phys 18:5896–5900. https://doi.org/10.1039/c5cp07580g

    Article  CAS  PubMed  Google Scholar 

  19. Millero FJ, Curry RW, Drost-Hansen W (1969) Isothermal compressibility of water at various temperatures. J Chem Eng Data 14:422–425. https://doi.org/10.1021/je60043a018

    Article  CAS  Google Scholar 

  20. Grindley T, Lind JE Jr (1971) PVT properties of water and mercury. J Chem Phys 54:3983–3989. https://doi.org/10.1063/1.1675455

    Article  CAS  Google Scholar 

  21. Trusler JPM, Lemmon EW (2017) Determination of the thermodynamic properties of water from the speed of sound. J Chem Thermodyn 109:61–70. https://doi.org/10.1016/j.jct.2016.10.028

    Article  CAS  Google Scholar 

  22. Ter Minassian L, Pruzan P, Soulard A (1981) Thermodynamic properties of water under pressure up to 5 kbar and between 28 and 120 °C. Estimations in the supercooled region down to −40 °C. J Chem Phys 75:3064–3072. https://doi.org/10.1063/1.442402

    Article  Google Scholar 

  23. Wagner W, Thol M (2015) The behavior of IAPWS-95 from 250 to 300 K and pressures up to 400 MPa: evaluation based on recently derived property data. J Phys Chem Ref Data 44:043102. https://doi.org/10.1063/1.4931475

    Article  CAS  Google Scholar 

  24. Holten V, Sengers JV, Anisimov MA (2014) Equation of state for supercooled water at pressures up to 400 MPa. J Phys Chem Ref Data 43:043101. https://doi.org/10.1063/1.4895593

    Article  CAS  Google Scholar 

  25. Poole PH, Saika-Voivod I, Sciortino F (2005) Density minimum and liquid–liquid phase transition. J Phys Condens Matter 17:L431–L437. https://doi.org/10.1088/0953-8984/17/43/L01

    Article  CAS  Google Scholar 

  26. Poole PH, Becker SR, Sciortino F, Starr FW (2011) Dynamical behavior near a liquid–liquid phase transition in simulations of supercooled water. J Phys Chem B 115:14176–14183. https://doi.org/10.1021/jp204889m

    Article  CAS  PubMed  Google Scholar 

  27. Dubochet J, McDowall AW (1981) Vitrification of pure water for electron mi-croscopy. J Microsc 124:3–4. https://doi.org/10.1111/j.1365-2818.1981.tb02483.x

    Article  Google Scholar 

  28. Tulk CA, Klug DD, Banderhorst R, Sharpe P, Ripmeester JA (1998) Hydrogen bonding in glassy liquid water from Raman spectroscopic studies. J Chem Phys 109:8478–8484. https://doi.org/10.1063/1.477512

    Article  CAS  Google Scholar 

  29. Suzuki Y, Mishima O (2000) Two distinct Raman profiles of glassy dilute LiCl solution. Phys Rev Lett 85:1322–1325. https://doi.org/10.1103/PhysRevLett.85.1322

    Article  CAS  PubMed  Google Scholar 

  30. Mishima O (2000) Liquid-liquid critical point in heavy water. Phys Rev Lett 85:334–336. https://doi.org/10.1103/PhysRevLett.85.334

    Article  CAS  PubMed  Google Scholar 

  31. Liu D, Zhang Y, Chen CC, Mou CY, Poole PH, Chen SH (2007) Observation of the density minimum in deeply supercooled confined water. Proc Natl Acad Sci USA 104:9570–9574. https://doi.org/10.1073/pnas.0701352104

    Article  CAS  PubMed Central  Google Scholar 

  32. Kim KH, Späh A, Pathak H, Perakis F, Mariedahl D, Amann-Winkel K, Sellberg JA, Lee JH, Kim S, Park J, Nam KH, Katayama T, Nilsson A (2017) Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358:1589–1593. https://doi.org/10.1126/science.aap8269

    Article  CAS  PubMed  Google Scholar 

  33. Mishima O, Suzuki Y (2001) Vitrification of emulsified liquid water under pressure. J Chem Phys 115:4199–4202. https://doi.org/10.1063/1.1392365

    Article  CAS  Google Scholar 

  34. Suzuki Y, Mishima O (2002) Raman spectroscopic study of glassy water in dilute lithium chloride aqueous solution vitrified under pressure. J Chem Phys 117:1673–1676. https://doi.org/10.1063/1.1488591

    Article  CAS  Google Scholar 

  35. Kim CU, Kapfer R, Gruner SM (2005) High-pressure cooling of protein crystals without cryoprotectants. Acta Cryst D61:881–890. https://doi.org/10.1107/S090744490500836X

    Article  CAS  Google Scholar 

  36. Kim CU, Chen YF, Tate MW, Gruner SM (2008) Pressure-induced high-density amorphous ice in protein crystals. J Appl Cryst 41:1–7. https://doi.org/10.1107/S0021889807048820

    Article  CAS  Google Scholar 

  37. Richter K (1993) High-density morphologies of ice in high-pressure frozen biological specimens. Ultramicroscopy 53:237–239. https://doi.org/10.1016/0304-3991(94)90037-X

    Article  Google Scholar 

  38. Pais DQ, Rathmann B, Koepke J, Tomova C, Wurzinger P, Thielmann Y (2017) A standardized technique for high-pressure cooling of protein crystals. Acta Cryst D73:997–1006. https://doi.org/10.1107/S2059798317016357

    Article  Google Scholar 

  39. Mishima O (2005) Application of polyamorphism in water to spontaneous crystallization of emulsified LiCl-H2O solution. J Chem Phys 123:154506. https://doi.org/10.1063/1.2085144

    Article  CAS  PubMed  Google Scholar 

  40. Mishima O (2007) Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water. J Chem Phys 126:244507. https://doi.org/10.1063/1.2743434

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki Y, Mishima O (2014) Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K. J Chem Phys 141:094505. https://doi.org/10.1063/1.4894416

    Article  CAS  PubMed  Google Scholar 

  42. Loerting T, Schustereder W, Winkel K, Salzmann CG, Kohl I, Mayer E (2006) Amorphous ice: stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. Phys Rev Lett 96:025702. https://doi.org/10.1103/PhysRevLett.96.025702

    Article  CAS  Google Scholar 

  43. Suzuki Y, Mishima O (2009) Differences between pressure-induced densification of LiCl-H2O glass and polyamorphic transition of H2O. J Phys Condens Matter 21:155105. https://doi.org/10.1088/0953-8984/21/15/155105

    Article  CAS  Google Scholar 

  44. Bridgman PW, Šimon I (1953) Effects of very high pressures on glass. J Appl Phys 24:405–413. https://doi.org/10.1063/1.1721294

    Article  CAS  Google Scholar 

  45. Suzuki Y, Takasaki Y, Tominaga Y, Mishima O (2000) Low-frequency Raman spectra of amorphous ices. Chem Phys Lett 319:81–84. https://doi.org/10.1016/S0009-2614(00)00126-3

    Article  CAS  Google Scholar 

  46. Loerting T, Salzmann C, Kohl I, Mayer E, Hallbrucker A (2001) A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys Chem Chem Phys 3:5355–5357. https://doi.org/10.1039/b108676f

    Article  CAS  Google Scholar 

  47. Nelmes RJ, Loveday JS, Strässle T, Bull CL, Guthrie M, Hamel G, Klotz S (2006) Annealed high-density amorphous ice under pressure. Nature Phys 2:414–418. https://doi.org/10.1038/nphys313

    Article  CAS  Google Scholar 

  48. Handle PH, Loerting T (2018) Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures. J Chem Phys 148:124509. https://doi.org/10.1063/1.5019414

  49. Amann-Winkel K, Böhmer R, Fujara F, Gainaru Cu, Geil B, Loerting T (2016) Colloquium: water’s controversial glass transitions. Rev Mod Phys 88:011002. https://doi.org/10.1103/RevModPhys.88.011002

  50. Johari GP (1998) Liquid state of low-density pressure-amorphized ice above its Tg. J Phys Chem B 102:4711–4714. https://doi.org/10.1021/jp980765h

    Article  CAS  Google Scholar 

  51. Mishima O, Takemura K, Aoki K (1991) Visual observation of the amorphous-amorphous transition in H2O under pressure. Science 254:406–408. https://doi.org/10.1126/science.254.5030.406

    Article  CAS  PubMed  Google Scholar 

  52. Perakis F, Amann-Winkel K, Lehmkühler F, Sprung M, Mariedahl D, Sellberg JA, Pathak H, Späh A, Cavalca F, Schlesinger D, Ricci A, Jain A, Massani B, Aubree F, Benmore CJ, Loerting T, Grübel G, Pettersson LGM, Nilsson A (2017) Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc Natl Acad Sci USA 114:8193–8198. https://doi.org/10.1073/pnas.1705303114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Stern JN, Seidl-Nigsch M, Loerting T (2019) Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K. Proc Natl Acad Sci USA 116:9191–9196. https://doi.org/10.1073/pnas.1819832116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Handle PH, Loerting T (2018) Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa. J Chem Phys 148:124508. https://doi.org/10.1063/1.5019413

  55. Hemley RJ, Chen LC, Mao HK (1989) New transformations between crystalline and amorphous ice. Nature 338:638–640. https://doi.org/10.1038/338638a0

    Article  CAS  Google Scholar 

  56. Yoshimura Y, Stewart ST, Mao HK, Hemley RJ (2007) In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J Chem Phys 126:174505. https://doi.org/10.1063/1.2720830

    Article  CAS  PubMed  Google Scholar 

  57. Mishima O, Suzuki Y (2002) Propagation of the polyamorphic transition of ice and the liquid-liquid critical point. Nature 419:599–603. https://doi.org/10.1038/nature01106

    Article  CAS  PubMed  Google Scholar 

  58. Klotz S, Strässle Th, Nelmes RJ, Loveday JS, Hamel G, Rousse G, Canny B, Chervin LC, Saitta AM (2005) Nature of the polyamorphic transition in ice under pressure. Phys Rev Lett 94:025506. https://doi.org/10.1103/PhysRevLett.94.025506

    Article  CAS  PubMed  Google Scholar 

  59. Winkel K, Mayer E, Loerting T (2011) Equilibrated high-density amorphous ice and its first-order transition to the low-density form. J Phys Chem B 115:14141–14148. https://doi.org/10.1021/jp203985w

    Article  CAS  PubMed  Google Scholar 

  60. Bullock G, Molinero V (2013) Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions. Faraday Discuss 167:371–388. https://doi.org/10.1039/c3fd00085k

  61. Suzuki Y (2017) Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions. J Chem Phys 147:064511. https://doi.org/10.1063/1.4998201

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki Y (2019) Effect of OH groups on the polyamorphic transition of polyol aqueous solutions. J Chem Phys 150:224508. https://doi.org/10.1063/1.5095649

    Article  CAS  PubMed  Google Scholar 

  63. Chatterjee S, Debenedetti PG (2006) Fluid-phase behavior of binary mixtures in which one component can have two critical points. J Chem Phys 124:154503. https://doi.org/10.1063/1.2188402

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Faraone A, Kamitakahara WA, Liu KH, Mou CY, Leão JB, Chang S, Chen SH (2011) Density hysteresis of heavy water confined in a nanoporous silica matrix. Proc Natl Acad Sci USA 108:12206–12211. https://doi.org/10.1073/pnas.1100238108

    Article  PubMed Central  PubMed  Google Scholar 

  65. Bellissent-Funel MC, Bosio L (1995) A neutron scattering study of liquid D2O under pressure and at various temperatures. J Chem Phys 102:3727–3735. https://doi.org/10.1063/1.468555

    Article  CAS  Google Scholar 

  66. Soper AK, Ricci MA (2000) Structures of high-density and low-density water. Phys Rev Lett 84:2881–2884. https://doi.org/10.1103/PhysRevLett.84.2881

    Article  CAS  PubMed  Google Scholar 

  67. Poole PH, Sciortino F, Grande T, Stanley HE, Angell CA (1994) Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys Rev Lett 73:1632–1635. https://doi.org/10.1103/PhysRevLett.73.1632

    Article  CAS  PubMed  Google Scholar 

  68. Jeffery CA, Austin PH (1999) A new analytic equation of state for liquid water. J Chem Phys 110:484–496. https://doi.org/10.1063/1.477977

    Article  CAS  Google Scholar 

  69. Giovambattista N, Loerting T, Lukanov BR, Starr FW (2012) Interplay of the glass transition and the liquid-liquid phase transition in water. Sci Rep 2:390. https://doi.org/10.1038/srep00390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Cerdeiriña CA, Troncoso J, González-Salgado D, Debenedetti PG, Stanley HE (2019) Water’s two-critical-point scenario in the Ising paradigm. J Chem Phys 150:244509. https://doi.org/10.1063/1.5096890

    Article  CAS  PubMed  Google Scholar 

  71. Adams LH (1931) Equilibrium in binary systems under pressure. I. An experi-mental and thermodynamic investigation of the system, NaCl-H2O, at 25°. J Am Chem Soc 53:3769–3813. https://doi.org/10.1021/ja01361a020

    Article  CAS  Google Scholar 

  72. Kell GS, Whalley E (1975) Reanalysis of density of liquid water in range 0–150 °C and 0–1 kbar. J Chem Phys 62:3496–3503. https://doi.org/10.1063/1.430986

    Article  CAS  Google Scholar 

  73. Bradshaw A, Schleicher K (1976) Compressibility of distilled water and seawater. Deep-Sea Res 23:583–593. https://doi.org/10.1016/0011-7471(76)90002-4

    Article  Google Scholar 

  74. Hilbert R, Tödheide K, Franck EU (1981) PVT data for water in the ranges 20 to 600 °C and 100 to 4000 bar. Ber Bunsenges Phys Chem 85:636–643. https://doi.org/10.1002/bbpc.19810850906

    Article  CAS  Google Scholar 

  75. Hare DE, Sorensen CM (1987) The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J Chem Phys 87:4840–4845. https://doi.org/10.1063/1.453710

    Article  CAS  Google Scholar 

  76. Sotani T, Arabas J, Kubota H, Kijima M (2000) Volumetric behaviour of water under high pressure at subzero temperature. High Temp-High Press 32:433–440. https://doi.org/10.1068/htwu318

    Article  CAS  Google Scholar 

  77. Asada S, Sotani T, Arabas J, Kubota H, Matsuo S, Tanaka Y (2002) Density of water at subzero temperature under high pressure: measurements and correlation. J Phys Condens Matter 14:11447–11452. https://doi.org/10.1088/0953-8984/14/44/498

    Article  CAS  Google Scholar 

  78. Guignon B, Aparicio C, Sanz PD (2010) Specific volume of liquid water from (253 to 323) K and pressures up to 350 MPa by volumetric measurements. J Chem Eng Data 55:3338–3345. https://doi.org/10.1021/je100083w

    Article  CAS  Google Scholar 

  79. Romeo R, Albo PAG, Lorefice S, Lago S (2016) Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa. J Chem Phys 144:074501. https://doi.org/10.1063/1.4941580

    Article  CAS  PubMed  Google Scholar 

  80. Angell CA, Oguni M, Sichina WJ (1982) Heat capacity of water at extremes of supercooling and superheating. J Phys Chem 86:998–1002. https://doi.org/10.1021/j100395a032

    Article  CAS  Google Scholar 

  81. Tombari E, Ferrari C, Salvetti G (1999) Heat capacity anomaly in a large sample of supercooled water. Chem Phys Lett 300:749–751. https://doi.org/10.1016/S0009-2614(98)01392-X

    Article  CAS  Google Scholar 

  82. Archer DG, Carter RW (2000) Thermodynamic properties of the NaCl + H2O system. 4. Heat capacities of H2O and NaCl(aq) in cold-stable and supercooled states. J Phys Chem B 104:8563–8584. https://doi.org/10.1021/jp0003914

    Article  CAS  Google Scholar 

  83. Voronov VP, Podnek VE, Anisimov MA (2019) High-resolution adiabatic calorimetry of supercooled water. J Phys Conf Ser 1385:012008. https://doi.org/10.1088/1742-6596/1385/1/012008

    Article  CAS  Google Scholar 

  84. Bosio L, Johari GP, Teixeira J (1986) X-ray study of high-density amorphous water. Phys Rev Lett 56:460–463. https://doi.org/10.1103/PhysRevLett.56.460

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki Y (2018) Experimental estimation of the location of liquid-liquid critical point for polyol aqueous solutions. J Chem Phys 149:204501. https://doi.org/10.1063/1.5050832

    Article  CAS  PubMed  Google Scholar 

  86. Mishima O (2010) Polyamorphism in water. Proc Jpn Acad B 86:165–175. https://doi.org/10.2183/pjab.86.165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Mishima O (2004) Polyamorphism in water and the second critical point hypothesis. Netsu Sokutei 31:23–28. https://doi.org/10.11311/jscta1974.31.23

    Article  CAS  Google Scholar 

  88. Caldwell DR (1978) The maximum density points of pure and saline water. Deep-Sea Res 25:175–181. https://doi.org/10.1016/0146-6291(78)90005-X

    Article  CAS  Google Scholar 

  89. Kanno H, Speedy RJ, Angell CA (1975) Supercooling of water to −92°C under pressure. Science 189:880–881. https://doi.org/10.1126/science.189.4206.880

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Mishima .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishima, O. (2021). Volume of Liquid Water and Amorphous Ices. In: Liquid-Phase Transition in Water. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56915-2_2

Download citation

Publish with us

Policies and ethics