Skip to main content

Abstract

Chemical control remains the main approach for decreasing the incidence of gray mold, a disease of many crops, including grapevine, caused principally by Botrytis cinerea. Fungicides with seven different modes of action are currently authorized in French vineyards, but specific resistance has developed against five of these modes of action. Multidrug resistance caused by fungicide efflux has been detected and affects all the classes of fungicide used. Here, we present the history and current status of resistance to the various botryticides in French vineyards. We also discuss resistance management options, based on decreases in the number of botryticide applications per season and the alternation of single products from different classes of molecules with different biochemical modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajouz S, Walker AS, Fabre F, Leroux P, Nicot PC, Bardin M (2011) Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. Biocontrol 56(3):353–363. doi:10.1007/s10526-010-9333-7

    Article  CAS  Google Scholar 

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29(7):643–651. doi:10.1016/j.cropro.2010.02.019

    Article  CAS  Google Scholar 

  • Banno S, Fukumori F, Ichiishi K, Okada H, Uekusa M, Fujimura M (2008) Genotyping of benzimidazole resistance, dicarboximide resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology 98:397–404

    Article  CAS  PubMed  Google Scholar 

  • Bardas GA, Myresiotis CK, Karaoglanidis GS (2008) Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 98(4):443–450. doi:10.1094/phyto-98-4-0443

    Article  CAS  PubMed  Google Scholar 

  • Bardas GA, Veloukas T, Koutita O, Karaoglanidis GS (2010) Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag Sci 66(9):967–973. doi:10.1002/ps.1968

    Article  CAS  PubMed  Google Scholar 

  • Billard A, Walker AS, Fillinger S, Leroux P, Lachaise H, Beffa R, Debieu D (2011) Le fenhexamid et la vigne, mécanismes de résistance décryptés chez l’agent de la pourriture grise. Phytoma – La Défense des Végétaux 648:40–45 (in French)

    CAS  Google Scholar 

  • Billard A, Fillinger S, Leroux P, Lachaise H, Beffa R, Debieu D (2012) Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Manag Sci 68(5):684–691. doi:10.1002/ps.2312

    Article  CAS  PubMed  Google Scholar 

  • Corio-Costet MF (2012) Fungicide resistance in Plasmopara viticola in France and anti-resistance measures. In: Thind TS (ed) Fungicide resistance in crop protection. Risk and management. CABI, Oxfordshire, pp 157–171

    Chapter  Google Scholar 

  • Cui W, Beever RE, Parkes SL, Templeton MD (2004) Evolution of an osmosensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94(10):1129–1135. doi:10.1094/phyto.2004.94.10.1129

    Article  CAS  PubMed  Google Scholar 

  • Davidse L, Ishii H (1995) Biochemical and molecular aspects of benzimidazoles, N-phenylcarbamates and N-phenylformamidoximes and the mechanisms of resistance to the compounds. In: Lyr HGF (ed) Modern selective fungicides. Gustav Fischer, Iena, pp 309–322

    Google Scholar 

  • De Miccolis AR, Pollastro S, Faretra F (2012) Genetics of fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). In: Thind TS (ed) Fungicide resistance in crop protection. Risk and management. CABI, Oxfordshire, pp 237–250

    Google Scholar 

  • Debieu D, Bach J, Hugon M, Malosse C, Leroux P (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci 57(11):1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Elmer PAG, Michailides TJ (2004) Epidemiology in Botrytis cinerea in orchard and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 243–262

    Google Scholar 

  • Fillinger S, Leroux P, Auclair C, Barreau C, Al Hajj C, Debieu D (2008) Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrob Agents Chemother 52(11):3933–3940. doi:10.1128/aac.00615-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fillinger S, Ajouz S, Nicot PC, Leroux P, Bardin M (2012) Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea. PLoS ONE 7(8):e42520. doi: 10.1371/journal.pone.0042520

  • Forster B, Staub T (1996) Basis for use strategies of anilinopyrimidine and phenylpyrrole fungicides against Botrytis cinerea. Crop Prot 15(6):529–537. doi:10.1016/0261-2194(96)00021-x

    Article  CAS  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000) Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa. J Pestic Sci 25(1):31–36

    Article  CAS  Google Scholar 

  • Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci 58(9):859–867. doi:10.1002/ps.565

    Article  CAS  PubMed  Google Scholar 

  • Glättli A, Grote T, Stammler G (2011) SDH-inhibitors: history, biological performance and molecular mode of action. In: Dehne D, Deising H, Fraaije B et al (eds) Modern fungicides and antifungal compounds VI. DPG, Braunschweig, pp 159–170

    Google Scholar 

  • Guo Z, Miyoshi H, Komyoji T, Haga T, Fujita T (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. Biochim Biophys Acta (BBA) – Bioenergetics 1056(1):89–92

    Article  CAS  Google Scholar 

  • Ishii H (2012) Resistance to QoI and SDHI fungicides in Japan. In: Thind TS (ed) Fungicide resistance in crop protection, risk and management. CABI, Oxfordshire, pp 223–234

    Chapter  Google Scholar 

  • Jacometti M, Wratten S, Walter M (2010) Alternative to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res 16:154–172

    Article  CAS  Google Scholar 

  • Kataoka S, Takagaki M, Kaku K, Shimizu T (2010) Mechanism of action and selectivity of a novel fungicide, pyribencarb. J Pestic Sci 35(2):99–106. doi:10.1584/jpestics.G09-40

    Article  CAS  Google Scholar 

  • Kretschmer M (2012) Emergence of multi-drug resistance in fungal pathogens: a potential threat to fungicide performance in agriculture. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management. CABI, Oxfordshire, pp 251–267. doi:10.1079/9781845939052.0251

    Chapter  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker A, Fillinger S, Mernke D, Schoonbeek H, Pradier J, Leroux P, De Waard MA, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12), e1000696

    Article  PubMed Central  PubMed  Google Scholar 

  • Lalève A, Fillinger S, Walker AS (2014a) Fitness measurement reveals contrasting costs in homologous recombinant mutants of Botrytis cinerea resistant to succinate dehydrogenase inhibitors. Fungal Genet Biol (in press). doi:http://dx.doi.org/10.1016/j.fgb.2014.03.006

  • Lalève A, Gamet S, Walker A-S, Debieu D, Toquin V, Fillinger S (2014b) Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environ Microbiol 16(7):2253–2266. doi:10.1111/1462-2920.12282

    Article  PubMed  Google Scholar 

  • Leroch M, Plesken C, Weber RWS, Kauff F, Scalliet G, Hahn M (2013) Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79(1):159–167. doi:10.1128/aem.02655-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroux P (1995) Progress and problems in the control of Botrytis cinerea in grapevine. Pestic Outlook 6(5):13–19

    CAS  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 195–222

    Google Scholar 

  • Leroux P, Clerjeau M (1985) Resistance of Botrytis cinerea Pers. and Plasmopara viticola (Berl. and de Toni) to fungicides in French vineyards. Crop Prot 4(2):137–160

    Article  CAS  Google Scholar 

  • Leroux P, Walker A (2013) Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance. Eur J Plant Pathol 135(4):683–693. doi:10.1007/s10658-012-0105-3

    Article  CAS  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58(9):876–888

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Gredt M, Leroch M, Walker A-S (2010) Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 76(19):6615–6630. doi:10.1128/aem.00931-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu WW, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol 45(7):1062–1074. doi:10.1016/j.fgb.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  • Malandrakis A, Markoglou A, Ziogas B (2011) Molecular characterization of benzimidazole-resistant B. cinerea field isolates with reduced or enhanced sensitivity to zoxamide and diethofencarb. Pestic Biochem Physiol 99(1):118–124. doi:10.1016/j.pestbp.2010.11.008

    Article  CAS  Google Scholar 

  • Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103(9):880–887. doi:10.1094/phyto-01-13-0009-rvw

    Article  CAS  PubMed  Google Scholar 

  • Suty A, Pontzen R, Stenzel K (1999) Fenhexamid – sensitivity of Botrytis cinerea: determination of baseline sensitivity and assessment of the resistance risk. Pflanzenschutz-Nachrichten Bayer 52(2):149–161 (in German)

    CAS  Google Scholar 

  • Tamura O (2000) Resistance development of grey mould on beans towards fluazinam and relevant countermeasures. In: Abstract of the 10th symposium of research committee of fungicide resistance, Okayama, Japan, pp 7–16

    Google Scholar 

  • Tanaka S, Ishikawa R, Armengaud P, Senechal Y (2012) La fenpyrazamine, une nouvelle génération de fongicide pour lutter contre Botrytis cinerea en vigne. Paper presented at the 10ème conférence internationale sur les maladies des plantes, Tours, France, 3–5 décembre (in French)

    Google Scholar 

  • Veloukas T, Markoglou AN, Karaoglanidis GS (2013) Differential effect of SdhB gene mutations on the sensitivity to SDHI fungicides in Botrytis cinerea. Plant Dis 97(1):118–122. doi:10.1094/pdis-03-12-0322-re

    Article  CAS  Google Scholar 

  • Walker A-S, Gautier A, Confais J, Martinho D, Viaud M, Le Pecheur P, Dupont J, Fournier E (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101(12):1433–1445. doi:10.1094/phyto-04-11-0104

    Article  PubMed  Google Scholar 

  • Walker A-S, Micoud A, Rémuson F, Grosman J, Gredt M, Leroux P (2013) French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag Sci 69(6):667–678. doi:10.1002/ps.3506

    Article  CAS  PubMed  Google Scholar 

  • Yin YN, Kim YK, Xiao CL (2012) Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Phytopathology 102(3):315–322. doi:10.1094/phyto-08-11-0234

    Article  CAS  PubMed  Google Scholar 

  • Young DH, Slawecki RA (2005) Cross resistance relationship between zoxamide, carbendazim and diethofencarb infield isolates of Botrytis cinerea and other fungi. In: Dehne D, Deising H, Fraaije B et al (eds) Modern fungicides and antifungal compounds. BCPC, Alton, pp 125–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Walker, AS., Leroux, P. (2015). Grapevine Gray Mold in France. In: Ishii, H., Hollomon, D. (eds) Fungicide Resistance in Plant Pathogens. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55642-8_26

Download citation

Publish with us

Policies and ethics