Skip to main content

Energy and Mammalian Target of Rapamycin Complex 1 (mTORC1) in Minimal Change Nephrotic Syndrome

  • Chapter
Molecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome
  • 579 Accesses

Abstract

The rupture of the glomerular ultrafiltration barrier due to podocyte injury and loss is considered to be a main pathophysiological cause of glomerular proteinuria in acquired nephrotic syndrome, including minimal change disease. To date, more than 500 protein kinases have been identified, and their functional roles in complicated signaling networks are among the most targeted subjects in the research field of kidney diseases. Currently, signaling network dysregulation is thought to play a crucial role in the pathophysiology involved in so-called podocytopathy, which leads directly to nephrotic syndrome. The proper activation of signaling networks requires sufficient energy within cells. Protein synthesis is tightly regulated and orchestrated by the mammalian target of rapamycin complex 1 (mTORC1) pathway, a major energy-consuming pathway and, by the unfolded protein response (UPR), an energy-economizing pathway. Relatively recent studies have proposed that UPR activation in podocytes is a direct pathophysiological event that causes proteinuria. However, more recent studies, including ours, propose that the excessive activation of mTORC1 acts upstream of UPR, thereby inducing podocyte endoplasmic reticulum stress and leading to nephrotic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–58.

    CAS  PubMed  Google Scholar 

  2. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312:163–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem. 2009;78:649–72. doi:10.1146/annurev.biochem.78.081307.104803.

    Article  CAS  Google Scholar 

  4. Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB. Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol. 2010;299:C464–76. doi:10.1152/ajpcell.00563.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Shoffner JM. Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Lancet. 1996;348:1283–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kurogouchi F, Oguchi T, Mawatari E, Yamaura S, Hora K, Takei M, et al. A case of mitochondrial cytopathy with a typical point mutation for MELAS, presenting with severe focal-segmental glomerulosclerosis as main clinical manifestation. Am J Nephrol. 1998;18:551–6.

    Article  CAS  PubMed  Google Scholar 

  7. Jansen JJ, Maassen JA, van der Woude FJ, Lemmink HA, van den Ouweland JM, t’ Hart LM, et al. Mutation in mitochondrial tRNA(Leu(UUR) gene associated with progressive kidney disease. J Am Soc Nephrol. 1997;8:1118–24.

    CAS  PubMed  Google Scholar 

  8. Hotta O, Inoue CN, Miyabayashi S, Furuta T, Takeuchi A, Taguma Y. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. Kidney Int. 2001;59:1236–43.

    Article  CAS  PubMed  Google Scholar 

  9. Mogensen CE, Christensen NJ, Gundersen HJ. The acute effect of insulin on heart rate, blood pressure, plasma noradrenaline and urinary albumin excretion. The role of changes in blood glucose. Diabetologia. 1980;18(6):453–7.

    Article  CAS  PubMed  Google Scholar 

  10. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010;12:329–40. doi:10.1016/j.cmet.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  11. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298:E141–5. doi:10.1152/ajpendo.00712.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yan K, Ito N, Nakajo A, Kurayama R, Fukuhara D, Nishibori Y, Kudo A, Akimoto Y, Takenaka H. The struggle for energy in podocytes leads to nephrotic syndrome. Cell Cycle. 2012;11:1504–11. doi:10.4161/cc.19825.

    Article  CAS  PubMed  Google Scholar 

  13. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54:3095–102.

    Article  CAS  PubMed  Google Scholar 

  14. Guzman J, Jauregui AN, Merscher-Gomez S, Maiguel D, Muresan C, Mitrofanova A, et al. Podocyte-specific GLUT4-deficient mice have fewer and larger podocytes and are protected from diabetic nephropathy. Diabetes. 2014;63:701–14. doi:10.2337/db13-0752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70:43–77.

    CAS  PubMed  Google Scholar 

  16. PalacÚn M, EstÕvez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78:969–1054.

    Google Scholar 

  17. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, et al. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem. 2003;278:43838–45.

    Article  CAS  PubMed  Google Scholar 

  18. Fukuhara D, Kanai Y, Chairoungdua A, Babu E, Bessho F, Kawano T, et al. Protein characterization of Na+ -independent system L amino acid transporter 3 in mice. Am J Pathol. 2007;170:888–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sekine Y, Nishibori Y, Akimoto Y, Kudo A, Ito N, Fukuhara D, et al. Amino acid transporter LAT3 is required for podocyte development and function. J Am Soc Nephrol. 2009;20:1586–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rosilio C, Nebout M, Imbert V, Griessinger E, Neffati Z, Benadiba J, et al. L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia. Leukemia. 2014. doi:10.1038/leu.2014.338.

    PubMed  Google Scholar 

  21. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514:291–302.

    Article  CAS  PubMed  Google Scholar 

  22. Nakanishi K, Matsuo H, Kanai Y, Endou H, Hiroi S, Tominaga S, et al. LAT1 expression in normal lung and in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Virchows Arch. 2006;448:142–50.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuo H, Tsukada S, Nakata T, Chairoungdua A, Kim DK, Cha SH, et al. Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport. 2000;11:3507–11.

    Article  CAS  PubMed  Google Scholar 

  24. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 2000;879:115–21.

    Article  CAS  PubMed  Google Scholar 

  25. Ritchie JW, Taylor PM. Role of the system L permease LAT1 in amino acid and iodothyronine transport in placenta. Biochem J. 2001;356:719–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Park SY, Kim JK, Kim IJ, Choi BK, Jung KY, Lee S, et al. Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule. Arch Pharm Res. 2005;28:421–32.

    Article  CAS  PubMed  Google Scholar 

  27. Dave MH, Schulz N, Zecevic M, Wagner CA, Verrey F. Expression of heteromeric amino acid transporters along the murine intestine. J Physiol. 2004;558:597–610.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pineda M, Fernández E, Torrents D, Estévez R, López C, Camps M, et al. Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem. 1999;274:19738–44.

    Google Scholar 

  29. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y. Identification and functional characterization of a Na + −independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem. 1999;274:19745–51.

    Article  CAS  PubMed  Google Scholar 

  30. Rossier G, Meier C, Bauch C, et al. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999;274:34948–54.

    Article  CAS  PubMed  Google Scholar 

  31. Bodoy S, MartÚn L, Zorzano A, PalacÚn M, EstÕvez R, Bertran J. Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem. 2005;280:12002–11.

    Article  CAS  PubMed  Google Scholar 

  32. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273:23629–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kurayama R, Ito N, Nishibori Y, Fukuhara D, Akimoto Y, Higashihara E, et al. Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. Lab Invest. 2011;81:992–1006. doi:10.1038/labinvest.2011.43.

    Article  CAS  Google Scholar 

  34. Gray JH, Owen RP, Giacomini KM. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 2004;447:728–34.

    Article  CAS  PubMed  Google Scholar 

  35. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004;447:735–43.

    Article  CAS  PubMed  Google Scholar 

  36. Kong W, Engel K, Wang J. Mammalian nucleoside transporters. Curr Drug Metab. 2004;5:63–84.

    Article  CAS  PubMed  Google Scholar 

  37. Molina-Arcas M, Casado FJ, Pastor-Anglada M. Nucleoside transporter proteins. Curr Vasc Pharmacol. 2009;7:426–34.

    Article  CAS  PubMed  Google Scholar 

  38. Podgorska M, Kocbuch K, Pawelczyk T. Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol. 2005;52:749–58.

    CAS  PubMed  Google Scholar 

  39. Rodriguez-Mulero S, Errasti-Murugarren E, Ballarin J, Felipe A, Doucet A, Casado FJ, et al. Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: effect of diabetes. Kidney Int. 2005;68:665–72.

    Article  CAS  PubMed  Google Scholar 

  40. Nakajo A, Khoshnoodi J, Takenaka H, Hagiwara E, Watanabe T, Kawakami H, et al. Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J Am Soc Nephrol. 2007;18:2554–64.

    Article  CAS  PubMed  Google Scholar 

  41. Aymerich I, Foufelle F, FerrÕ P, Casado FJ, Pastor-Anglada M. Extracellular adenosine activates AMP-dependent protein kinase (AMPK). J Cell Sci. 2006;119:1612–21.

    Article  CAS  PubMed  Google Scholar 

  42. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400. doi:10.1146/annurev-pharmtox-010611-134537.

    Article  CAS  PubMed  Google Scholar 

  43. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–908. doi:10.1101/gad.17420111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 2011;11:201–12. doi:10.1038/nri2938.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783:673–94. doi:10.1016/j.bbamcr.2008.01.024.

    Article  CAS  PubMed  Google Scholar 

  46. Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006;86:901–40.

    Article  CAS  PubMed  Google Scholar 

  47. Pawelczyk T, Grden M, Rzepko R, Sakowicz M, Szutowicz A. Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat. Am J Pathol. 2005;167:315–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–9.

    Article  CAS  PubMed  Google Scholar 

  49. Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, et al. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol. 1993;13:6012–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62. doi:10.1038/nrm3757.

    Article  CAS  PubMed  Google Scholar 

  51. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  CAS  PubMed  Google Scholar 

  52. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.

    Article  CAS  PubMed  Google Scholar 

  53. Pearce LR, Huang X, Boudeau J, Pawłowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405:513–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Martin J, Masri J, Bernath A, Nishimura RN, Gera J. Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun. 2008;372:578–83. doi:10.1016/j.bbrc.2008.05.086.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23:3151–71.

    Article  CAS  PubMed  Google Scholar 

  56. Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15:555–64. doi:10.1038/ncb2763.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93. doi:10.1016/j.cell.2012.03.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14:473–80. doi:10.4161/15384101.2014.991572.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.

    Article  CAS  PubMed  Google Scholar 

  60. Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle. 2011;10:2305–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Anelli T, Sitia R. Protein quality control in the early secretory pathway. EMBO J. 2008;27:315–27. doi:10.1038/sj.emboj.7601974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hegde RS, Ploegh HL. Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol. 2010;22:437–46. doi:10.1016/j.ceb.2010.05.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Stone KR, Smith RE, Joklik WK. Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses. Virology. 1974;58:86–100.

    Article  CAS  PubMed  Google Scholar 

  64. Shiu RP, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977;74:3840–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell. 2001;107:827–30.

    Article  CAS  PubMed  Google Scholar 

  66. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, et al. Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci. 2009;66:1556–69.

    Article  CAS  PubMed  Google Scholar 

  67. Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 2013;84:25–33.

    Article  CAS  PubMed  Google Scholar 

  68. Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300:F1054–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Cybulsky AV, Takano T, Papillon J, Khadir A, Liu J, Peng H. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem. 2002;277:41342–51.

    Article  CAS  PubMed  Google Scholar 

  70. Cybulsky AV, Takano T, Papillon J, Bijian K. Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem. 2005;280:24396–403.

    Article  CAS  PubMed  Google Scholar 

  71. Inagi R, Nangaku M, Usuda N, Shimizu A, Onogi H, Izuhara Y, et al. Novel serpinopathy in rat kidney and pancreas induced by overexpression of megsin. J Am Soc Nephrol. 2005;16:1339–49.

    Article  CAS  PubMed  Google Scholar 

  72. Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, et al. Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int. 2005;68:2639–50.

    Article  CAS  PubMed  Google Scholar 

  73. Chen YM, Zhou Y, Go G, Marmerstein JT, Kikkawa Y, Miner JH. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J Am Soc Nephrol. 2013;24:1223–33. doi:10.1681/ASN.2012121149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, et al. Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 2009;296:F213–29. doi:10.1152/ajprenal.90421.2008.

    Article  CAS  PubMed  Google Scholar 

  75. Yan K, Khoshnoodi J, Ruotsalainen V, Tryggvason K. N-linked glycosylation is critical for the plasma membrane localization of nephrin. J Am Soc Nephrol. 2002;13:1385–9.

    Article  CAS  PubMed  Google Scholar 

  76. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, et al. The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 2006;69:1350–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ozcan U, Ozcan L, Yilmaz E, Düvel K, Sahin M, Manning BD, et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell. 2008;29:541–51. doi:10.1016/j.molcel.2007.12.023.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kato H, Nakajima S, Saito Y, Takahashi S, Katoh R, Kitamura M. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1-JNK pathway. Cell Death Differ. 2012;19:310–20. doi:10.1038/cdd.2011.98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Ito N, Nishibori Y, Ito Y, Takagi H, Akimoto Y, Kudo A, et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest. 2011;91:1584–95. doi:10.1038/labinvest.2011.135.

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011;25:1664–79. doi:10.1096/fj.10-173492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121:2181–96. doi:10.1172/JCI44771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Daniel C, Ziswiler R, Frey B, Pfister M, Marti HP. Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative. Exp Nephrol. 2000;8:52–62.

    Article  CAS  PubMed  Google Scholar 

  83. Ramaiah A, Hathaway JA, Atkinson DE. Adenylate as a metabolic regulator. Effect on yeast phosphofructokinase kinetics. J Biol Chem. 1964;239:3619–22.

    CAS  PubMed  Google Scholar 

  84. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays. 2001;23:1112–9.

    Article  CAS  PubMed  Google Scholar 

  85. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113:1390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3:169–76.

    Article  CAS  PubMed  Google Scholar 

  87. Carpenter S, O’Neill LA. Recent insights into the structure of toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J. 2009;422:1–10. doi:10.1042/BJ20090616.

    Article  CAS  PubMed  Google Scholar 

  88. Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, et al. Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J Clin Invest. 2005;115:1188–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Oberbauer R, Segoloni G, Campistol JM, Kreis H, Mota A, Lawen J, et al. Rapamune maintenance regimen study group: early cyclosporine withdrawal from a sirolimus-based regimen results in better renal allograft survival and renal function at 48 months after transplantation. Transpl Int. 2005;18:22–8.

    Article  CAS  PubMed  Google Scholar 

  90. Schena FP, Pascoe MD, Alberu J, del Carmen RM, Oberbauer R, Brennan DC, et al. Sirolimus CONVERT trial study group: conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation. 2009;87:233–42. doi:10.1097/TP.0b013e3181927a41.

    Article  CAS  PubMed  Google Scholar 

  91. Alberu J, Pascoe MD, Campistol JM, Schena FP, Rial Mdel C, Polinsky M, et al. Sirolimus CONVERT trial study group: lower malignancy rates in renal allograft recipients converted to sirolimus-based, calcineurin inhibitor-free immunotherapy: 24-month results from the CONVERT trial. Transplantation. 2011;92:303–10. doi:10.1097/TP.0b013e3181927a41.

    Article  CAS  PubMed  Google Scholar 

  92. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363:820–9. doi:10.1056/NEJMoa0907419.

    Article  CAS  PubMed  Google Scholar 

  93. Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transplant Rev (Orlando). 2014;28:126–33. doi:10.1016/j.trre.2014.03.002.

    Article  Google Scholar 

  94. Pape L, Ahlenstiel T, Ehrich JH, Offner G. Reversal of loss of glomerular filtration rate in children with transplant nephropathy after switch to everolimus and low-dose cyclosporine A. Pediatr Transplant. 2007;11:291–5.

    Article  CAS  PubMed  Google Scholar 

  95. Ettenger R, Hoyer PF, Grimm P, Webb N, Loirat C, Mahan JD, et al. Everolimus pediatric study group. Multicenter trial of everolimus in pediatric renal transplant recipients: results at three year. Pediatr Transplant. 2008;12:456–63. doi:10.1111/j.1399-3046.2007.00832.x.

    Article  CAS  PubMed  Google Scholar 

  96. Bumbea V, Kamar N, Ribes D, Esposito L, Modesto A, Guitard J, et al. Long-term results in renal transplant patients with allograft dysfunction after switching from calcineurin inhibitors to sirolimus. Nephrol Dial Transplant. 2005;20:2517–23.

    Article  CAS  PubMed  Google Scholar 

  97. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.

    Article  CAS  PubMed  Google Scholar 

  98. Ko HT, Yin JL, Wyburn K, Wu H, Eris JM, Hambly BD, et al. Sirolimus reduces vasculopathy but exacerbates proteinuria in association with inhibition of VEGF and VEGFR in a rat kidney model of chronic allograft dysfunction. Nephrol Dial Transplant. 2013;28:327–36. doi:10.1093/ndt/gfs453.

    Article  CAS  PubMed  Google Scholar 

  99. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65:2003–17.

    Article  CAS  PubMed  Google Scholar 

  100. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111:707–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Olszewska A, Szewczyk A. Mitochondria as a pharmacological target: magnum overview. IUBMB Life. 2013;65:273–81. doi:10.1002/iub.1147.

    Article  CAS  PubMed  Google Scholar 

  102. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61:599–610. doi:10.1016/j.jacc.2012.08.1021.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 2013;83:568–81. doi:10.1038/ki.2012.441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75:1–12. doi:10.1016/j.steroids.2009.09.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Heitzer MD, Wolf IM, Sanchez ER, Witchel SF, DeFranco DB. Glucocorticoid receptor physiology. Rev Endocr Metab Disord. 2007;8:321–30.

    Article  CAS  PubMed  Google Scholar 

  106. Yan K, Kudo A, Hirano H, Watanabe T, Tasaka T, Kataoka S, et al. Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int. 1999;56:65–73.

    Article  CAS  PubMed  Google Scholar 

  107. Kataoka S, Kudo A, Hirano H, Kawakami H, Kawano T, Higashihara E, et al. 11beta-hydroxysteroid dehydrogenase type 2 is expressed in the human kidney glomerulus. J Clin Endocrinol Metab. 2002;87:877–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunimasa Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yan, K. (2016). Energy and Mammalian Target of Rapamycin Complex 1 (mTORC1) in Minimal Change Nephrotic Syndrome. In: Kaneko, K. (eds) Molecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55270-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55270-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55269-7

  • Online ISBN: 978-4-431-55270-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics