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    Abstract     The “Green Revolution” has increased food production to meet world 
population growth, therefore global food production is at present suffi cient to feed 
all the world’s people. However, the modern agricultural system is no longer sus-
tainable due to deterioration of soil conditions. Alternative agricultural methods that 
aim to conserve biodiversity and soil functioning are not intensively studied, thus 
the productivity of alternative methods is often not compatible with conventional 
agricultural practice, and most people are skeptical of the feasibility of introducing 
alternative methods. Recent advancements in studies of biodiversity and ecological 
functioning are now supporting early trials by advanced farmers, who respect biodi-
versity in their fi elds. In this review, I would like to present some ecological theories 
to support biodiversity agriculture and its potential to support human populations.  

  Keywords     Above- and below-ground interaction   •   Conservation tillage   •   Ecological 
theory   •   Food security   •   Soil conservation  

2.1         Introduction 

 The world produces suffi cient food to feed its population, but still there remain 
more than one billion people who suffer from food insecurity and malnutrition 
(IAASTD  2009 ). Agricultural activities are now one of the major factors affecting 
global environmental change through reducing biodiversity, increasing greenhouse 
gas (GHG: CO 2 , N 2 O, and CH 4 ) emissions and accelerating eutrophication and pol-
lution of aquatic systems. Agriculture’s main challenge will be to produce suffi cient 
food and fi ber for a growing global population at an acceptable environmental cost. 
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To meet the global demand for food without signifi cant increases in prices, it has 
been estimated that we need to produce 50–110 % more food, in light of the 
growing impacts of agricultural activities on climate change (Godfray et al.  2010 ; 
Tilman et al.  2011 ). Closing ‘yield gaps’ on underperforming lands, increasing 
cropping effi ciency, shifting diets, and reducing waste can double food production 
while greatly reducing the environmental impacts of agriculture (Foley et al.  2011 ). 
However, most of these discussions are based on the assumption that the agricul-
tural production is sustainable using modern agricultural technology. 

 Biodiversity loss is obviously a major driving force of ecosystem change (Hooper 
et al.  2012 ). Even in the fi eld of agriculture, loss of biodiversity is linked to degrada-
tion of ecosystem function. Carbon loss (decomposition), nitrogen mineralization, 
and leaching are infl uenced by both land use and soil biota (de Vries et al.  2013 ). 
Intensifi cation of agriculture decreases soil biodiversity, thus soil degradation is 
inevitable under the modern agricultural system. Soil degradation includes physical 
factors (e.g., decline in soil structure, crusting, compaction, accelerated erosion); 
chemical factors (e.g., nutrient depletion, elemental imbalance, acidifi cation, salini-
zation); and biological factors (e.g., reduction in soil organic matter (SOM), and the 
activity and species diversity of soil microorganisms) (Lal  2004 ). Conserving 
soil biodiversity and utilizing its ecosystem functioning is benefi cial not only for 
agriculture but also for consumers (Robertson and Swinton  2005 ). Many ecosystem 
services are synergistic; for example, soil carbon storage keeps CO 2  from the 
atmosphere and also promotes soil fertility, soil invertebrate diversity, plant water-
use effi ciency, and soil conservation (Lal  2004 ), and these ecosystem services are 
supported by biodiversity (Hooper et al.  2005 )  

2.2     Green Revolution and Organic Farming 

 Green Revolution technology has been criticized for its defi ciencies (Swaminathan 
 2006 ;    Robertson and Swinton  2005 ). Economists stress that, because market- 
purchased inputs are needed for production, only resource-rich farmers can take 
advantage of high- yielding crops. Environmentalists emphasize that the excessive 
use of fertilizers and pesticides, as well as the monoculture of a few crop cultivars, 
will create serious environmental problems, including the breakdown of resistance 
in plants and the degradation of soil fertility by disturbing the stoichiometry. 

 Organic farming is probably an alternative to modern intensive farming. Organic 
farming uses organic fertilizers to sustain fertility of soil and reduce chemicals to 
control pests and weeds. Badgley et al. ( 2007 ) argued that the global population can 
be supported by organic farming. The principal objection to the proposition that 
organic agriculture can contribute signifi cantly to the global food supply is the fact 
that organic yields are typically lower than conventional yields (Seufert et al.  2012 ), 
necessitating more land to produce the same amount of food as conventional farms. 
However, when using best organic management practices yields are closer to 
conventional yields (−13 %). Organic agriculture also performs better under certain 
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conditions—for example, organic legumes or perennials, on weak-acidic to weak- 
alkaline soils, in rainfed conditions, achieve yields that are only 5 % lower than 
conventional yields (Seufert et al.  2012 ).  

2.3     Biodiversity, Ecological Functioning, 
and Ecosystem Services 

 Recent experimental advancements in biodiversity and ecological functioning were 
mainly obtained in laboratory microcosms, benthos communities (Cardinale et al. 
 2012 ), and model grassland studies (Tilman et al.  2001 ). Varying component species 
numbers from one (monoculture) to 16 species (average species richness in natural 
grasslands in Minnesota), Tilman et al. ( 2001 ) showed that plant production was 
higher with increasing species richness. Increase in species richness heightens the 
chances of involving functional species (sampling effect; c.a. legumes that fi x atmo-
spheric nitrogen thus increase nitrogen resources in soil) and also enhances functional 
diversity (niche complementarity effect). 

 Niche complementarity explains the decrease in nitrate nitrogen concentration in 
soil with increasing plant species richness. The greater the species richness, the 
more effi ciently the plant uptakes nitrogen by root due to complement root depth 
and morphology compared to monoculture soil. 

 The longer the experiment continues, the higher the stability of primary production 
(Tilman et al.  2006b ). This is explained by the portfolio effect of different species 
that respond differently to environmental conditions such as drought, high and low 
temperature, etc. The ratio of predators to prey in aboveground communities tends 
to increase with plant species richness (Haddad et al.  2011 ). Therefore this mecha-
nism also contributes to the stability of primary production. Tilman et al. ( 2006a ) 
concluded that natural short grass prairie is the most productive for supplying biomass 
for energy use under no-fertilization conditions. 

 Organic farming avoids utilization of synthetic fertilizers, chemical pesticides, 
and herbicides. The recent ecological studies on biodiversity suggest that increasing 
plant species richness leads to effi cient nutrient use, fewer outbreaks of pests and 
pathogens, and stable yields for a certain period. Some organic farming techniques, 
such as intercropping, use of companion plants, patchy land use, and also agroforestry 
all increase plant biodiversity compared to monoculture.  

2.4     Soil Sustainability 

 Modern agricultural practice is degrading soil by accelerating erosion (Montgomery 
 2004 ) and disturbing stoichiometry of nutrients essential for human health (Jones 
et al.  2013 ). Organic farming is a system aimed at producing food with minimal 
harm to ecosystems, animals, or humans. Intensive cultivation, on the other hand, 
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always damages soil biodiversity. Not surprisingly, therefore, comparisons of soil 
biodiversity in conventional and organic farming showed that conventional farming 
had been more damaging (Altieri  1999 ; Chappell and LaValle  2009 ; Gomiero et al. 
 2011 ). Conservation tillage offers an alternative approach involving soil manage-
ment practices that minimize the disruption of the soil’s structure, composition, 
and natural biodiversity, thereby minimizing erosion and degradation, and water 
contamination (Holland  2004 ). 

 Soil carbon is a good indicator of soil functions. The following technologies 
should be considered to increase C sequestration in cropland soil: no- and reduced- 
tillage; residue mulch and cover crops; integrated nutrient management; and bio-
char used in conjunction with improved crops and cropping systems (Lal  2009 ). 
However, biodiversity both above- and belowground also plays an important role in 
increasing soil carbon. High-diversity mixtures of perennial grassland plant species 
stored 500 % and 600 % more soil C and N than, on average, did monoculture plots 
of the same species during a 12-year-long grassland experiment (Fornara and 
Tilman  2008 ). 

 Soil aggregate stability depends on plant community properties, such as compo-
sition of functional groups, diversity, and biomass production. Soil aggregate stabil-
ity increased signifi cantly from monocultures to plant species mixtures (   Pérès et al. 
 2013 ). Root-derived carbon (C) is preferentially retained in soil compared to 
aboveground C inputs, and microbial communities assimilating rhizodeposit-C are 
sensitive to their microenvironment. There was ten times more labeled microbial-C 
(derived from living roots) in the rhizosphere compared to non-rhizosphere soil (   Kong 
and Six  2012 ). Weeds are considered to be useless in agricultural soil. However, 
keeping living roots, even of weeds, can enhance microbial activities in soil.  

2.5     Soil Biodiversity and Its Functioning 

 Producing enough food with fewer effects on the environment requires a radical 
shift in thinking by the agricultural and environmental communities. 

 Plants are competing neighbors in terms of both shoots and roots. Wild plants are 
stronger competitors for below-ground resources than are crop plants (Kiaer et al. 
 2013 ). However, some Japanese advanced farmers have been successfully growing 
crops with weeds in their croplands. Introducing weeds as living mulch increases 
plant biodiversity including crop species. The farmers reduced tillage and fertiliza-
tion, and no chemical pesticides are sprayed. All these practices enhance not only 
the aboveground biodiversity of both plants and insects but also soil biodiversity 
due to less soil disturbance, and increase the amount and diversity of resources for 
soil organisms. These farmers slash weeds several times during the crop-growing 
season, thereby reducing aboveground competition between weeds and crops. 
Adopting these practices is expected to increase soil biodiversity. 

 Experimental introduction of no-tillage with weed management rapidly changed 
the soil microbial community and soil carbon sequestration. Our trial in Sumatra, 
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Indonesia, compared tillage, and no-tillage with a combination of bagasse mulch, in 
a sugarcane plantation, where productivity of sugarcane had been declining during 
30-years of continuous cropping after clear-cutting the forest. All weeds at tillage 
treatments were suppressed by herbicide, whereas those at no-tillage treatments 
were hand picked. Soil fungal community structure clearly refl ected the treatment 
one-year after beginning the experiment, and there was an increase in soil carbon 
content (Miura et al.  2013 ). 

 Converting from conventional practice to no-tillage with weed mulch effi ciently 
increased the soil carbon pool despite the carbon input to the soil being very small 
compared to standard manure application in Japan (Arai et al.  2014 ).  

2.6     Conclusion 

 Comparison of conventional practice and no-tillage with weed mulch shows a 
contrast, especially in terms of soil biodiversity (Fig.  2.1 ). There is a growing body 
of theoretical and empirical studies on the capacity of biodiversity within cropland 
to improve both stability in production and synergetic effects on production, and to 
reduce crop loss due to pests and pathogens. These studies are suggesting that ecologi-
cal analysis is urgently needed to support a novel sustainable cropping system that will 

support and be supported by biodiversity other than crop plants.  

  Fig. 2.1    Conventional farming and farming using no-tillage with weed mulch       
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