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    Abstract     In amphibians, most urodeles (newts) exhibit polyspermy physiologically, 
but primitive urodeles ( Hynobius ) and anurans (frogs) exhibit monospermy. Several 
fertilizing sperm induce multiple small Ca 2+  waves in the polyspermic egg, but a 
single large Ca 2+  wave occurs in the monospermic egg. The Ca 2+  waves in newt eggs 
are caused by a sperm-specifi c citrate synthase localized outside the mitochondria. 
The single Ca 2+  wave at monospermy is necessary for eliciting a fast block to poly-
spermy, whereas the small multiple Ca 2+  waves provide slower egg activation to 
permit the entry of several sperm at polyspermy. Physiological polyspermy seems 
to be evolved in association with the increase in size of eggs in urodeles, reptiles, 
and birds laying larger yolky eggs. The sperm factor (citrate synthase) operating in 
slower egg activation in polyspermic eggs is already prepared in the monospermic 
urodele  Hynobius . We have focused on comparative studies in fertilization among 
amphibians to understand the role of egg activation in establishment of polyspermy 
with discussion of the evolution in vertebrates.  
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15.1         Introduction 

 Fertilization is indispensable for sexual reproduction in animals. Both sperm and 
eggs are highly specialized to ensure development with the diploid genome. We 
have focused on the molecular mechanism of fertilization in amphibians, which are 
one of the best models for studying fertilization, in particular, for understanding the 
evolution in egg activation and polyspermy blocks in vertebrates. There are two dif-
ferent types of fertilization in vertebrates: monospermy, in which only one sperm 
penetrates into the egg, and physiological polyspermy, in which several sperm enter 
the egg at normal fertilization. Fertilization in the ancestral vertebrates seems to be 
monospermic, because not only deuterostome invertebrates such as sea urchins and 
ascidians, but also most fi shes, including a primitive fi sh, the lamprey, exhibit 
monospermy (Iwao  2012 ). Amphibians consist of three groups: anurans (frogs and 
toads), urodeles (newts and salamanders), and caecilians (limbless amphibians) 
(Iwao  2000a ). Although there is little information on fertilization of caecilians, 
most anurans exhibit external and monospermic fertilization (Table  15.1 ). Only one 
sperm is incorporated into the egg, and other sperm are prevented from entering the 
fertilized egg. Several blocks to polyspermy operate to exclude the extra sperm 
outside the egg plasma membrane. In contrast, most urodeles exhibit internal fertil-
ization and the female stores the sperm in a spermatheca near the cloaca (Akiyama 
et al.  2011 ). The eggs are inseminated by a small number of sperm released from the 
spermatheca just before oviposition. Although several sperm enter a physiologically 
polyspermic urodele egg, development with the diploid genome is ensured by the 

       Table 15.1    Characteristics of fertilization in amphibians   

 Species 
 Mode of 
fertilization  Ca 2+  wave 

 Positive 
fertilization 
potential 

 Fast 
polyspermy 
block 

 Sperm 
citrate 
synthase 

 Size of egg 
(diameter 
in mm) 

 Anurans 
   Discoglossus 

pictus  
 External 

occasional 
polyspermy 

 Multiple a   +  −  ND  1.6 

   Xenopus laevis   External 
monospermy 

 Single  +  +  −  1.2 

   Bufo japonicus   External 
monospermy 

 Single a   +  +  ND  1.8 

 Urodeles 
   Hynobius 

nebulosus  
 External 

monospermy 
 Single a   +  +  +  2.4 

   Andrias 
japonicus  

 External 
polyspermy 

 ND  ND  −  ND  5.0 

   Cynops 
pyrrhogaster  

 Internal 
polyspermy 

 Multiple  −  −  +  2.3 

   ND  not determined 
  a Based on the transient opening Ca 2+ -activated Cl −  channels  
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intracellular block to polyspermy in egg cytoplasm (Fankhauser  1948 ;    Iwao and 
Elinson  1990 ; Iwao et al.  1993 ,  2002 ). Only one sperm nucleus forms a zygote 
nucleus with the egg nucleus, and the other extra sperm nuclei degenerate before 
cleavage. However, the most primitive  Hynobius  salamanders exhibit external fertil-
ization and monospermy as with anurans (Iwao  1989 ). Thus, comparative studies in 
fertilization among amphibians will provide better understanding of the role of egg 
activation in establishment of polyspermy during vertebrate evolution.

15.2        Egg Activation at Physiologically Polyspermic 
Fertilization 

 The egg nucleus in unfertilized eggs of vertebrates is arrested at metaphase of the 
second meiotic division until the sperm breaks the attest at fertilization. Fertilization 
provides the sperm nucleus into the egg, as well as initiates its embryonic develop-
ment, which is called egg activation. An increase in [Ca 2+ ]  i   in the egg cytoplasm 
induced by the fertilizing sperm is essential for egg activation in vertebrate fertiliza-
tion (Iwao  2000b ). In monospermic anurans, the fertilizing sperm induces a tran-
sient and single [Ca 2+ ]  i   increase that propagates from a sperm entry site toward the 
opposite site on the whole egg surface as a [Ca 2+ ]  i   wave (Fontanilla and Nuccitelli 
 1998 ). The [Ca 2+ ]  i   increase causes the opening of Cl −  channels on the egg plasma 
membrane to produce a positive fertilization potential within 1 s (Kline and 
Nuccitelli  1985 ), which prevents the entry of another sperm as a fast, but temporal, 
block to polyspermy (Cross and Elinson  1980 ; Iwao  1989 ; Iwao and Jaffe  1989 ). 
The Ca 2+  wave then induces exocytosis of cortical granules, resulting in transforma-
tion of the vitelline coat into a fertilization coat (Hedrick  2008 ). The fertilization 
coat prevents extra sperm from reaching the fertilized egg, as a slow and permanent 
block to polyspermy. In the monospermic salamander  Hynobius nebulosus , the eggs 
exhibit a large positive fertilization potential mediated by opening of Ca 2+ -activated 
Cl −  channels (Iwao  1989 ). The fast and transient opening of Cl −  channels indicates 
a single Ca 2+  wave at fertilization. Polyspermy is also prevented by a positive fertil-
ization potential without formation of a fertilization coat in monospermic salaman-
ders. Thus, the fast generation of a single Ca 2+  wave soon after the entry of the fi rst 
sperm is important for the accomplishment of the fast polyspermy block in mono-
spermic species. 

 In contrast, in physiologically polyspermic newts, small and multiple increases 
of [Ca 2+ ]  i   occur at fertilization (Grandin and Charbonneau  1992 ; Yamamoto et al. 
 1999 ; Harada et al.  2011 ). The [Ca 2+ ]  i   increase at the sperm entry site propagates as 
a Ca 2+  wave (Harada et al.  2011 ). The small Ca 2+  wave is induced by each fertilizing 
sperm in the polyspermic egg. Because 2 to 20 sperm enter an egg at normal newt 
fertilization (Iwao et al.  1985 ), multiple Ca 2+  waves induce [Ca 2+ ]  i   increase, lasting 
30–40 min after the fi rst sperm entry (Harada et al.  2011 ). The [Ca 2+ ]  i   increase 
induces no change (Charbonneau et al.  1983 ) or a very small hyperpolarization in 
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response to each sperm entry (Iwao  1985 ) in the egg membrane potential. Sperm 
entry into newt eggs is not sensitive to the positive membrane potential (Iwao and 
Jaffe  1989 ). No cortical granule is observed in urodele eggs, indicating lack of fer-
tilization envelope formation (Iwao  2000a ).  

15.3     The Signaling Mechanism of [Ca 2+ ]  i   Increase Induced 
by the Fertilizing Sperm 

 The Ca 2+  increase at fertilization is caused by the release of Ca 2+  ions from the endo-
plasmic reticulum (ER), a major intracellular Ca 2+  store in the egg cytoplasm 
(Fig.  15.1 ). Inositol 1,4,5-trisphosphate (IP3) generated by phospholipase C (PLC) 
opens Ca 2+  channels of IP3 receptors on the ER. However, the mechanism for induc-
tion of [Ca 2+ ]  i   increase by the fertilizing sperm is quite different between monosper-
mic and physiologically polyspermic eggs. In monospermic anurans, a sperm 
agonist (ligand) probably binds an egg receptor at contact between the sperm and 
egg membranes, and then a signal for stimulating IP3 production is transmitted into 
the egg cytoplasm. Indeed,  Xenopus  eggs are activated by external treatment with 
tryptic sperm protease (   Iwao et al.  1994 ; Mizote et al.  1999 ), which can hydrolyze 
one of the candidates of egg receptors, uroplakin III (UP III), on the egg plasma 

  Fig. 15.1    Model of signaling for Ca 2+  increase in a physiologically polyspermic newt egg. The 
sperm-specifi c citrate synthase is introduced from the sperm cytoplasm into the egg cytoplasm 
after sperm–egg fusion. Citrate synthase, in association with cytoskeletons, sensitizes the inositol- 
1,4,5-trisphosphate (IP3) receptor on the inner endoplasmic reticulum ( ER ) to release Ca 2+  ions. 
The local Ca 2+  increase propagates through the inner ER with cytoskeletons as a Ca 2+  wave by the 
activation of phospholipase C ( PLC ) to produce IP3 or stimulation of IP3 receptors       
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membrane (Sakakibara et al.  2005 ; Sato et al.  2003 ). The cleavage of UP III induces 
activation of Src kinase and PLCγ to produce IP3 in egg cytoplasm (Mahbub Hasan 
et al.  2005 ,  2007 ; Ijiri et al.  2012 ). In addition, the [Ca 2+ ]  i   increase in  Xenopus  eggs 
is induced by external treatment of the egg with RGD-containing peptides (Iwao 
and Fujimura  1996 ) or KTE-containing peptides (Shilling et al.  1998 ), which binds 
integrins on the plasma membrane accompanied by activation of Src kinase (Sato 
et al.  1999 ). RGDS peptide also activates the eggs of monosperrmic  Hynobius  sala-
manders (Iwao, unpublished observations, 2012). Although the precise interaction 
between those molecules remains to be investigated, the initial Ca 2+  release induced 
at the sperm entry site is propagated through further activation of PLCγ or direct 
sensitization of IP3 receptors on ER abundant in egg cortex, resulting in the forma-
tion of a single Ca 2+  wave.

   In polyspermic newt eggs, the signal for egg activation is provided from sperm 
cytoplasm after sperm and egg fusion (Fig.  15.1 ). Injection of an extract containing 
newt sperm cytoplasm into unfertilized eggs induces egg activation accompanied by 
a Ca 2+  wave (Yamamoto et al.  2001 ; Harada et al.  2007 ,  2011 ). A sperm-specifi c 
form of citrate synthase is purifi ed from the sperm extract as one of the major com-
ponents of the sperm factor for egg activation (Harada et al.  2007 ). A large amount 
of citrate synthase is localized in the neck to the midpiece of newt sperm (Fig.  15.2A ), 
but a smaller amount is also distributed under the plasma membrane around the 
nucleus (Fig.  15.2B ). Injection of not only purifi ed citrate synthase protein, but also 
mRNA of citrate synthase, induces egg activation with a Ca 2+  increase (Harada et al. 
 2007 ). A single newt sperm contains about 2 pg citrate synthase, but injection of 
sperm cytoplasm equivalent to one sperm activates about 20 % of the eggs, indicat-
ing that the entry of at least two sperm is necessary for activating the egg. This 
estimation corresponds well to the observation that a small Ca 2+  wave is induced by 
each sperm entry in the polyspermic newt egg (Harada et al.  2011 ). How does the 
sperm-specifi c citrate synthase induce the Ca 2+  wave in the egg cytoplasm? In some 
cases, the Ca 2+  wave is preceded by a small spike-like Ca 2+  increase (Harada et al. 
 2011 ). The sperm tryptic protease seems to be involved in the small and nonpropa-
gative Ca 2+  increase, but this is insuffi cient for inducing the Ca 2+  increase to cause 
egg activation, probably because of the lack of cortical ER in newt eggs. The inner 
ER forms a larger complex with some cytoskeletons and is required to trigger a Ca 2+  
wave by the sperm factor (Harada et al.  2011 ). Egg activation not only by injection 
of the sperm factor, but also by fertilizing sperm, is probably mediated by the enzy-
matic activity of sperm citrate synthase (Harada et al.  2011 ). Reactive substrates of 
citrate synthase, acetyl CoA and oxaloacetate, induce Ca 2+  increase to cause egg 
activation, but citrate does not. The reverse reaction might occur in egg cytoplasm 
containing a large amount of citrate, and acetyl CoA might then sensitize IP3 recep-
tors to release Ca 2+ . Further investigation is, however, necessary for determining the 
exact changes of those substances at fertilization. Furthermore, it is possible that 
citrate synthase interacts with other molecules such as cytoskeletons (see Fig.  15.1 ; 
Iwao and Masui  1995 ). Investigations into the role of microtubules and microfi la-
ments are important for clarifying the Ca 2+ -signaling cascade by the sperm factor.
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15.4        Evolution of a Sperm Factor in Vertebrate Fertilization 

 It is worth discussing the species specifi city of sperm factors to understand the evo-
lution of egg activation in vertebrates. Although it is reported that extract of the 
monospermic  Xenopus  sperm induces Ca 2+  oscillation when injected into mouse 
eggs (Dong et al.  2000 ), and the injection of several sperm into a  Xenopus  egg 
causes egg activation (Aarabi et al.  2010 ), no activity to activate  Xenopus  eggs is 

  Fig. 15.2     (A) ,  (B)  Newt  Cynops pyrrhogaste r sperm show localization of citrate synthase ( red ) on 
 left  and merge with the differential interference contrast (DIC) image on  right .  (C) ,  (D)  Salamander 
 Hynobius nebulosus  sperm show citrate synthase ( red ) on  left , α-tubulin ( green ) in  middle , and 
merge with DIC image on  right .  A  acrosome,  H  head region,  M  midpiece       

 

Y. Iwao



177

detected in homologous sperm extract (Harada et al.  2011 ).  Xenopus  eggs do not 
respond to the newt sperm factor, and no citrate synthase is detected in  Xenopus  
sperm (Table  15.1 ). Not only polyspermic newt sperm, but also monospermic 
 Hynobius  sperm, contain a large amount of citrate synthase under the plasma mem-
brane in the head region, except for the acrosomal region (Fig.  15.2C ). Citrate syn-
thase is distributed in close association with microtubules (Fig.  15.2D ). A large 
amount of sperm citrate synthase is observed in mammalian mouse sperm, but not 
in fi sh carp sperm (Iwao and Harada, unpublished observations, 2011). Thus, the 
extramitochondrial localization of citrate synthase in the sperm appears to be 
acquired in the transition between monospermy and physiological polyspermy in 
urodele amphibians. 

 Taken together, the large and single Ca 2+  wave induced by the fi rst sperm entry is 
necessary for ensuring monospermy to elicit the positive fertilization potential 
mediated by Ca 2+ -activated Cl −  channels in monospermic vertebrates, such as lam-
preys (Kobayashi et al.  1994 ), frogs, and  Hynobius  salamanders (Table  15.1 ). In the 
bony fi shes, a single Ca 2+  wave is induced by a fertilizing sperm (Gilkey et al.  1978 ; 
Webb and Miller  2013 ), but monospermy is ensured by a micropyle (canal) on the 
hard chorion, through which only one sperm approaches the egg (Iwamatsu  2000 ). 
Thus, the single Ca 2+  wave at egg activation is characteristic of monospermic verte-
brates (Iwao  2012 ). In this connection, it is interesting to know the Ca 2+  increase at 
the physiological polyspermy of large eggs in sharks and chimera (Hart  1990 ). In 
contrast, multiple Ca 2+  waves are necessary for egg activation in physiological poly-
spermy because a single newt sperm does not have a suffi cient amount of sperm 
factor to induce egg activation and multiple Ca 2+  increases are necessary for com-
plete activation of the large eggs (Iwao  2012 ). Some transitional characteristics are, 
however, observed in occasionally polyspermic eggs of the frog  Discoglossu s  picu-
tus  with multiple Ca 2+  increases (Talevi  1989 ), or in external and polyspermic fertil-
ization in the Japanese giant salamander  Andrias japonicus  (Table  15.1 ) (Iwao 
 2000a ). Physiological polyspermy probably appeared in species whose egg size was 
more than about 2 mm in diameter (Table  15.1 ). Reptiles and birds lay larger and 
yolky eggs, but their Ca 2+  increase at polyspermy remains to be investigated. In 
primitive mammals, the monotrematous platypus laying big eggs exhibits physio-
logical polyspermy (Gatenby and Hill  1924 ). Although a small and yolkless egg of 
the higher eutherian mouse exhibits monospermy, it elicits multiple Ca 2+  increase to 
ensure suffi cient egg activation (Ozil  1990 ; Ducibella et al.  2002 ). Sperm-specifi c 
PLCζ is known as a potent sperm factor for egg activation in mammals (Saunders 
et al.  2002 ; Kouchi et al.  2004 ) and birds (Mizushima et al.  2009 ). In mammalian 
egg activation, the role of sperm citrate synthase remains unknown.  

15.5     Perspective 

 Thus, comparative studies in fertilization among vertebrates provide better under-
standing of the role of egg activation in establishment of polyspermy during evolu-
tion. Because egg activation by sperm citrate synthase is tightly linked to slow egg 
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activation in physiological polyspermy, investigations in polyspermic birds and 
 reptiles are important to clarify the evolution of egg activation in vertebrates. It is 
also interesting to know the mechanisms of egg activation in bony fi shes that exhibit 
monospermy but lack the fast electrical block to polyspermy. In addition, investiga-
tions in invertebrates, such as ascidians and sea urchins, may provide us with the 
ancestral and universal mechanisms of egg activation during the evolution of animal 
reproduction.     
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